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A B S T R A C T  

 
 
The present paper is devoted to implementation of the immersed boundary technique into the Fourier 
pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible 
Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification 
of the convection and diffusion terms, and therefore, in contrast to some other similar methods, there is 
not an explicit external forcing function in the present formulation. At the beginning of each time step, 
the solenoidal velocities (also satisfying the desired immersed boundary conditions), are obtained and 
fed into a conventional pseudo-spectral solver, together with a modified vorticity. The classical explicit 
fourth-order Runge-Kutta method is used in time integration, and the boundary conditions are set at the 
beginning of each sub-step, in order to increase the time accuracy. The method is employed in 
simulation of some different test cases, including the flow behind impulsively started circular cylinder, 
oscillating circular cylinder in fluid at rest and insect-like flapping wing motion. The results show 
accuracy and efficiency of the method. 
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1. INTRODUCTION1 
 
Fourier pseudo-spectral solution of the voricity-based 
formulations of the Navier-Stokes equations (NSE) have 
been used widely in the two-dimensional 
incompressible flow simulations [1]. However, the 
classical implementations are limited to the regular 
domains with simple coordinate-coinciding boundaries 
and periodic boundary conditions. Now, recent 
advances in the immersed and embedded boundary 
techniques have raised hopes of extending the range of 
applicability of these methods to the more general 
domains and boundary conditions [2, 3].  

To the best knowledge of authors, the immersed 
boundary method was applied into the vorticity-stream 
function formulation of the NSE by Calhoun [4, 5] for 
the first time. In the Calhoun’s work the immersed 
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surfaces are introduced, and the overall mass balance is 
satisfied, by definition of an appropriate distribution of 
vorticity source term. More or less similar line was 
followed in the work of Russell and Wang [6]. They 
decomposed the effects of solid wall into a no-slip 
condition, imposed by a boundary element method 
(which satisfied the overall mass balance). In the work 
of Linnick and Fasel[7], a higher-order compact method 
was used, and a source term was defined in crossing the 
discontinuities, which was obtained from a jumped 
function. Recently, Wang et al. [8] applied the direct 
forcing idea of Mohd-Yusof[9] into the vorticity-
velocity formulation of the NSE. They added an explicit 
vorticity source term to the vorticity transport equation, 
which was obtained by taking curl of the forcing 
functions of momentum equations in the primitive 
variable form of the NSE. However, all of the above 
methods are based upon finite-difference or finite-
volume discretization.  

In the pseudo-spectral solutions, the volume 
penalization is one of the popular remedies, which has 
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been used several times for implementation of the no-
slip condition. The method was first proposed in the 
primitive variables formulation of the NSE by 
Arquisand Caltagirone [10], and then re-formulated by 
Angot[11]. In the following years the method was 
extended to the vorticity-velocity formulation [12, 13], 
and used for the fixed, as well as moving boundary 
problems [14, 15].  

A new immersed boundary method is proposed in 
the present paper, in which the arbitrary immersed 
velocity boundary conditions (including the no-slip 
condition), are introduced into the Fourier pseudo-
spectral solution of the vorticity-velocity formulation of 
the NSE, without explicit addition of external forcing 
functions. Instead of the conventional forcing functions, 
the immersed boundaries are implemented by direct 
modification of the convection and diffusion terms of 
the vorticity transport equation in such a way that can be 
implemented to the Fourier pseudo-spectral solutions.  

The paper is continued by presenting the 
mathematical formulations of the classical Fourier 
pseudo-spectral method and the suggested algorithm for 
imposing the immersed velocity boundary conditions. 
Because of its crucial role, the boundary condition 
setting process is presented in details, in an individual 
section. As our numerical experiments, the method is 
implemented into some fixed as well as moving 
boundary problems, with the surfaces which are 
coinciding and non-coinciding with the regular grids.  

 
 

2. PROBLEM FORMULATION 
 

The mathematical and numerical frameworks of the 
method are described in this section. Beginning from 
the classical Fourier pseudo-spectral formulation, the 
suggested modifications for imposing the immersed 
boundaries and then embedding the solution domain 
into the regular domain are explained.  

According to Figure. 1, for a two dimensional 
velocity vector 1 2u ( , )u u= , defined on the regular 
closure ( )DD D= ∪ Γ , the dynamics of vorticity 
vector ˆ(0,0,  e u)z zω ω ω= = = ∇ ×  is obtainable from 
time integration of the vorticity transport equation: 

(1)  
  

while the velocity vector u satisfies the following 
Poisson’s problem with Dirichlet boundary conditions: 

(2)  ( )

2 ˆu e    in    ,
u u .

D

z

D

Dω

Γ
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One of the advantages of the above vorticity-velocity 

formulation, in comparison to e.g. many primitive 
variable formulations, is the possibility of 
decomposition of the kinematics and dynamics of the 
flow field in each time instant. In fact, for any arbitrary 
distribution 1Hω ∈ , the physical (divergence-free) 
velocity vector is obtainable from solution of Equation. 
(2), if the appropriate boundary conditions are imposed. 
As it will be seen, this issue has a vital role in 
construction of the physical immersed velocities in the 
present method. 

On the other hand, to improve the efficiency of the 
computations, it is convenient to change the vorticity 
transport Equation (1) to 

(3)  
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which in comparison to the classical form (1), saves one 
fast Fourier transform (FFT) in the pseudo-spectral 
algorithm. Although this formulation has been used in 
some other studies, to the best knowledge of the 
authors, in the pseudo-spectral solution of the 
incompressible flow, it was proposed by Chasnov[16] 
for the first time. The diffusion term L  and the non-
linear terms, 

1N and 
2N , are named for the future 

references. In fact, the immersed velocity boundary 
conditions will be introduced to the solution by direct 
modification of these terms. 

For the periodic boundary conditions, the Fourier 
series provides such an accurate and efficient tool which 
makes it worthwhile re-formulating the problem in the 
Fourier space. In this way, the vorticity transport 
Equation (3) recasts 

 

(4) 

while the Poisson problem (2) simplifies to  

 (5)  2
K ˆû ;
K

i ω
⊥

= −  

In these equations, ( ⋅$ ) stands for the quantities in the 
Fourier space, 1 2K=( , )k k is the wave number vector 
with the magnitude 2 2 2

1 2K = +k k ; while 
1 2K ( , )k k⊥ = − is 

the perpendicular wave number vector, and 2 1i = − . 
Practically, in the finite dimensional calculations, the 
nonlinear terms 

1N̂ and 
2N̂ are constructed (and are de-

aliased) in the physical space| the algorithm which is 
known (and will be referred in this paper) as the pseudo-
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spectral method. Discretization in time, and time 
integration of the fully discretized system can be done 
using an appropriate time marching method. The 
explicit fourth-order Runge-Kutta method is used in the 
present work. More or less, similar formulations have 
been used in many efficient and accurate solvers of the 
periodic flow in regular domains. In the sequel we will 
modify Equations (4) and (5), and suggest an algorithm 
to use them in the flow configuration of Figure. 1. 

 
 

  
Figure 1. The flow domain fΩ , together with fixed or 

moving obstacle(s), and other given-velocity regions uΩ , are 
embedded in the regular solution domain D (with regular 
boundary DΓ ), via a zero-velocity margin B . 
 
 

 
Figure 2. The main steps of the proposed algorithm. The box 
(PS) contains a classical Fourier pseudo-spectral solver 
(calculation of the right hand side of Equation. (4), solution of 
Equation. (5), de-aliasing, time integration. . . ). Therefore, a 
classical Fourier pseudo-spectral solution with periodic 
boundary conditions can be retrieved by switching-off the 
boundary condition setting box, and following the dashed line. 

2. 1. Implementation of the Immersed Velocity 
Boundary Conditions        In the present method, 
without explicit addition of a forcing function in the 
right hand side of Equation. (4), the immersed surfaces 
are introduced by modification of the 

1 2
ˆ ˆN , N and L̂ . 

Particularly, it is desired to carry out these 
modifications such that the velocities remain solenoidal, 
and in a manner that the method can be implemented 
easily into a Fourier pseudo-spectral solver. The 
suggested procedure is summarized in Figure 2, in 
which the boundary conditions box (BC) can be more 
explained by the following remarks: 

 
1. Given the vorticity field ˆ nω , from the initial condition 
or the last time step, the velocity vector u  in the regular 
domain D , is obtained from Equation (5)an two inverse 
FFTs (box ( I )). 

 
2. The velocity vector u is modified to satisfy all needed 
immersed velocity boundary conditions (box (II)). This 
conditioned velocity will be called BCu . The 
modifications will be explained in detail in the next 
section. Note that BCu  is neither necessarily solenoidal, 
nor its mean value is zero at this point. 

 
3. The conditioned vorticity BCω is re-calculated from 

BCu  (that is, BC BCuω = ∇ × ), as it is shown in box 
(III). 

There are two main reasons for this step. Firstly, the 
solenoidal velocities can be obtained from this 
conditioned vorticity in the next steps, provided that the 
appropriate boundary conditions are implemented; and 
secondly, the vorticity will be needed in the subsequent 
pseudo-spectral algorithm. 

Although BCω can be found by any method (e.g. the 
finite difference), to preserve the spectral accuracy, and 
because the vorticity in the Fourier space is needed in 
the subsequent steps of the pseudo-spectral algorithm, 
calculation in the Fourier space is suggested here. In this 
way: 

BC BC BC
1 2 2 1ˆ ˆ ˆ( ).i k u k uω = −  (6) 

Note that, it is aimed to simulate the confined flows, and 
therefore, the vorticity field has zero-mean according to 
the Stokes theorem; the fact that legitimates the use of 
the above equation. Moreover, note that BCω = IFFT
{ }BCω̂ is automatically defined on D , it is double 

periodic, and it has zero mean- the properties that makes 
it ready to use for the subsequent Fourier pseudo-
spectral steps. 
 
4. The conditioned vorticity BCω is fed into the classical 
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pseudo-spectral procedure (that is, box (PS) in Figure 
2), in which the solenoidal velocity vector BCûSol  is 
calculated from: 

BC BC
2

K ˆˆ ;
K

u i ω
⊥

= −Sol
 

and these velocities, in addition to the conditioned 
vorticity BCω̂ are substituted into the modified vorticity 
transport equation 

(7)  

  

Time integration of the above equation yields the new 
vorticity field 1ˆ nω + which closes the algorithm loop.  

An attractive feature of the above procedure is that 
the boundary conditions box can be added easily to a 
classical pseudo-spectral solver without any change in 
the internal structure. In fact, the box (PS) contains all 
steps of a classical pseudo-spectral solution. Moreover, 
note that in addition to the solid obstacles, the given 
immersed fluid velocities can be implemented as well. 

In our numerical experiments that are presented in 
this paper, the fourth-order Runge-Kutta method is used 
for time integration, and in order to increase the time 
accuracy, the boundary conditions are set at the 
beginning of each Runge-Kutta sub-steps. 

 
2. 2. Setting Boundary Conditions     This section is 
devoted to a full description of the method used in 
setting of the immersed velocity boundary conditions 
(that is, modifying u into BCu , mentioned in the 
previous subsection). The process of setting boundary 
condition is divided into the following sub-steps: 
1. Identification of the numerical boundary points, and 
2. Evaluation of the numerical boundary conditions. 

The details of the above sub-steps are in orderly 
arranged. In what follows, we will consider one 
immersed body. For the multi-object problems, the 
method can be applied exactly in the same way. 
Moreover, according to Figure 3, we assume that the 
physical velocity boundary conditions pbu are given on 
the physical boundary

pΓ , and the solution is sought in 

( )\D BΩ ∪ , and the regular domain D  is overlaid by a 

uniform Cartesian grid ( ,i jx y ). 
 

2. 2. 1. Identification of Numerical Boundary 
Points     In the present method, all calculations are 

performed on a fixed Cartesian grid. Therefore, in  
following of our previous work [3], we define the 
numerical boundary points, which play the role of 
Eulerian points in some fluid-solid interaction methods, 
which use both the Eulerian and Lagrangian points (see 
e.g. [17]).  
 
Definition 1. A numerical boundary point 
corresponding to the given physical boundary , is a 

point ( ) in the Cartesian grid, if and only if 

i)  

ii) contains at least one point from  

where  is a circle of radius , 
centered in ( ).The definition is illustrated in 
Figure 4 (for a uniform grid), and for some more detail 
one can see [3].  

The set of all numerical boundary points will be 
called the numerical boundary , and that part of the 

Cartesian grid which is surrounded by  will be 
called the numerical immersed domain . 

For the fixed boundary problems, it is just needed to 
determine the numerical boundaries once for all 
computations, while for the moving boundary problems  
they should be updated in the beginning of each time 
step with the computational cost of , where 

 is the number of grid points in a box, contains the 
immersed domain . 
 
 
 
 

 
Figure 3. The numerical boundary corresponding to the 
physical boundary .The immersed boundary conditions

are given on . 

pΓ

,i jx y

p( , ) ( )i jx y ∈ Ω = Ω + Γ

ijC \D Ω

ijC min( , )ijr x y= ∆ ∆

,i jx y

NΓ

NΓ

NΩ

( )O N Ω

N Ω

N NΩ = Ω ∪Γ

NΓ

pΓ pbu

pΓ
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Figure 4. Time evolution of the horizontal velocity profile of 
impulsively started circular cylinder at Re = 550 compared 
with the experimental data. Lines show the results of the 
present method, while symbols show the experimental data 
[18]. 
 

 
 
2. 2. 2. Approximating the Boundary Conditions  
Given the numerical boundary points , the next step 
is to evaluating velocities on these points (will be called 

), such that the physical boundary conditions be 
satisfied approximately.  

In the present work, since the method is not high-
order, we suggest a simple approximation without any 
interpolation. Although this treatment of the boundary 
conditions (sometimes called staircasing[19]) is first-
order, it is simple and effective. These properties might 
be the main reason that this method has been used in 
some other immersed boundary methods [2,20]. In the 
present formulation, the method is mostly suitable for 
the rigid immersed bodies (fixed and moving), however 
the modifications for the immersed bodies is straight 
forward.   
The method contains the following two steps: 

1)  Given the numerical boundary point nb and 
the physical boundary Γp(t), the physical 
boundary point pb corresponding to nb is 
obtained by intersecting Γpwith the normal to 
Γpfrom nb(called ). 

2)  Now, given (t) the corresponding unb is 
calculated from: 

, 

where is the angular velocity vector of the 
immersed body. By definition,  is the set of 
all unb obtained on ΓN. 
Substitution of for u results in the modified 
velocity vector , which is identical with u in 

, and approximately satisfies the physical 
boundary conditions on Γp. 

 
 
3. NUMERICAL EXPERIMENTS 
 
In order to assess the capabilities of the method, three 
test cases are analyzed in this section, including the 
moving boundaries, as well as given non-zero immersed 
velocity boundary conditions. 
 
3. 1. Impulsively Started Circular Cylinder at 
Re=550        The experimental observations and the 
numerical simulations have revealed substantial 
differences between the wake structures in the low and 
moderate Reynolds numbers [18]. In this section Re = 
550 is considered as a moderate Reynolds number. The 
flow in this regime is characterized by formation of an 
unsteady wake, which is two-dimensional at least in the 
early stages. Near the cylinder wall the so-called bulge 
phenomenon is observable which follows by a 
secondary vortex in the next times [18, 21, 22]. 

Consider a circular cylinder of diameter  moving 
with velocity  in an incompressible 
Newtonian quiescent fluid with kinematic viscosity , 
which is confined in a square box on 

grid points. The Reynolds number is set as Re 
, and the ratio is chosen 

for the sake of comparisons [21, 22]. The details of the 
physical and geometric parameters are given in Table 1. 

Time evolution ( ) of the horizontal velocity 

profiles on the symmetry axis behind the cylinder are 
compared with the experimental data in Figure 4. The 
figure shows a very good agreement between the 
results. Moreover, note that for > 2 velocities higher 

are observable in places in the wake region. This is 
the main reason for causing bulge in the streamlines 
near the cylinder wall, and formation of the secondary 
vortex in the next times 
(see [18] for a detailed discussion). 

To show that the simulation was able to capture the 
phenomenon correctly, time history of the maximum 
non-dimensional velocity is compared with 
the experimental data in Figure 5. As one can see, the 
maximum velocity is increased in time monotonically, 
and is exceeds after .  

In Figure 6, time history of the non-dimensional 
wake length is compared with the experimental 
data [18]. Again a good agreement is observable. 
Furthermore, the nearly linear growth in the wake 
length is noticeable, which means an approximately 

NΓ

N
uΓ pbu

n̂
pbu

nb pbu u sδ= − ⊗ Θ&

sΘ&

u
NΓ

u
NΓ

BCu

\ ND Γ

d
0u ( , 0)U=

υ
1 2 2 2l l π π× = ×

2512
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constant growth rate in the wake length. However, this 
growth rate has been less than the velocity of the 
cylinder, which is shown by the dashed line in the 
figure. Particularly, this means that the cylinder motion 
was followed by the fluid particles behind the cylinder. 
 
 
TABLE 1. Geometric, physical and numerical parameters of 
the impulsively started circular cylinder at  Re=550. 

Re (m) (m/s) (m2/s)  

550 0.4 0.05 3.63×10-5 0.03 

 
 
TABLE 2. The physical and numerical parameters used in the 
solution of the oscillating cylinder problem. 

D f A  N 

0.35 1 0.27852 6.12×10-3 5122 

 
 

 
Figure 5: Time evolution of the maximum non-dimensional 
horizontal velocity at the symmetry axis. The horizontal 
velocity exceeds after . 
 
 

 
Figure 6. Time evolution of the wake length. Displacement of 
the cylinder center is shown by the dashed line and the wake 
length (the solid line) is compared with the experimental data 
[18]. The growth rate of the wake length is less than the 
cylinder center displacement. 

 
Figure 7. Geometric parameters of the oscillating circular 
cylinder problem. 
 
 
3. 2. Oscillating Circular Cylinder in Fluid at Rest    
The problem of an in-line oscillating cylinder in a 
quiescent fluid has been analyzed several times 
experimentally and numerically [23]. The geometric 
parameters of the fluid–solid system are illustrated in 
Table 2. 

Previous works have revealed that [23] the flow 
regime is mainly under the influence of two non-
dimensional parameters: the Reynolds number 
Re = , and the Keulegan–Carpenter number KC = 

; where  is the maximum velocity,  is the 

oscillations frequency, and  is the cylinder diameter. 
In the present study to facilitate assessment of the 
results the well-documented combination (Re,KC) = 
(100, 5) is considered. 

A simple harmonic oscillation in the  direction is 
exerted to the cylinder center by 

where is the amplitude of oscillations. It can easily be 
shown that for this harmonic oscillation KC= . 

Figure 7 illustrates the problem setup, and the main 
physical and numerical parameters are summarized 
Table 2. 

More quantitative comparisons can be made by 
comparing the instantaneous velocity profiles, as 
illustrated in Figure 8. The velocities are compared with 
the experimental data of Dautch et al. [23]. Like other 
works [23, 24] for each phase angle the velocity profiles 
of four x1/D sections are illustrated. As one can see, 
there is a general agreement between the present results 
and the experimental data. 

 
3. 3. Flow Around an Insect-like Flapping Wing   
In order to show the ability of the method in handling 
fairly complex geometries and body motions, a 

d 0U υ λ

υ

0U 2t ∗ >

UD
υ

U
fD

U f

D

1x
1 ( ) sin(2 ),cx t A ftπ=

A
2 A
D
π
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combination of translating and rotating motion of an 
insect-like flapping wing is studied here. Understanding 
the unsteady characteristics of a flapping wing at high 
frequencies is one of the attractive problems in the field 
of aerodynamics of natural and man-made flyers [25]. 
The problem has been studied by many authors 
experimentally, analytically and numerically [26-28]. 

Here we study a simplified model for the kinematics 
of an insect-like flapping wing proposed by Wang [29]. 
In this model the wing motion comprises of two down-
stroke and up-stroke translational phases, in addition to 
two rotational phases which change the angle of attack 
during the translational motions. Therefore, the flow is 
under the influence of the stroke amplitude, the 
Reynolds number and the rotational and translational 
speeds, in addition to the initial angle of attack [29]. 
In the present work, the better documented regime Re = 
157 is considered [30], where the Reynolds number will 
be defined later. 

 
 
 

 
Figure 8. Comparison of the instantaneous velocity profiles 
for three phase angles (a): 180, (b): 210, and (c): 330. Lines 
show the results of the present method, while the symbols are 
the experimental data [23]. 

 
Figure 9.The geometric parameters of the insect-like flapping 
wing problem. 
 
 
TABLE 3. The physical and geometric parameters of the 
insect-like flapping wing problem. 
β  

0 (m)A  (m)c  e  (sec)T  
0α  Re 

6
π  1.25 0.5 0.25 0.0125 

4
π  157 

 
 
 

The geometric parameters are illustrated in Figure 9. 
The regular domain  is chosen, and the 

results are presented on grid points. The fourth-
order Runge–Kutta method is used in time integration 
with a constant time step Δt = 10−5 sec, which resulted 
in a stable solution. In this model an ellipse is chosen as 
the wing with chord c and thickness ratio . The wing 
center position A(t) changes in the direction as: 

 (8) 

While the angle of attack changes as 

 

In these relations is the flappling period, and  
and are the initial angle of attack, and the stroke 

amplitude, respectively. Using the above definitions, the 

Reynolds number is defined as . The details 

of the physical and geometric parameters are given in 
Table 3. In Figure10vorticity snapshots of one flapping 
period are compared with the results of the second-order 
immersed boundary solution of Xu et al.[30].Obviously, 
there is a good agreement between the captured vertical 
structures. During the down-stroke phase, a pair of 
counter-rotating vortices are generated and grow (see 
parts (a) and (b) of Figure 10).  

1 2 2 2l l π π× = ×
2512

e
β

0 2( ) cos( ) 1
2

A tA t
T
π = +  

( )tα

0
2( ) 1 sin( ) .tt
T
π

α α  = −  

T

0α 0A

0Re cA
T

π
υ
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Figure 10. Distribution Vorticity snapshots of the insect-like flapping wing in the Re = 157 regime at different time instances. Left: 
the results of the present method. Right: the results of Xu et al. [30]. 

  
 

In the (d) part of Figure 10, the wing in the middle 
of the upstroke phase is shown. As one can see, the 
wing vortices separate from the wing such that the wing 
is no longerin the influence of these vortices at the end 
of this phase. 
 
 
5. CONCLUSION 
 
An immersed boundary Fourier pseudo-spectral method 

is proposed for the vorticity-velocity formulation of the 
two-dimensional incompressible NSE. The zero-mean 
Fourier pseudo-spectral solution is used, and therefore, 
the method is applicable to the confined flows, which 
are modeled by considering a zero velocity margin in 
the vicinity of the regular boundaries. Without explicit 
addition of external forcing functions, arbitrary 
Dirichlet velocity boundary conditions are implemented 
by direct modification of the diffusion and convection 
terms of the vorticity transport equation; and in this 
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way, it was shown that the obtained velocities are 
solenoidal. The immersed boundary conditions are 
approximated on some regular grid points (called the 
numerical boundary points). The method is applied to 
some moving boundary problems.  

The impulsive started circular cylinder and 
oscillating circular cylinder in fluid at rest have been 
considered as examples of moving boundary problems. 
Good agreements are observed between our numerical 
results of unsteady features and experimental data. The 
method is extended to the combined translating and 
rotating motion of obstacles such as insect-like flapping 
wing motion. The dynamics of vorticity is in well 
agreement with predicted dynamics of other numerical 
simulations.  

It should be noted that in contrast to some other 
methods, which are iterative and therefore are weakly 
depended on the viscosity ν, our numerical solution is 
essentially unsteady; and therefore, its stability depends 
on ν. Regarding this constraint, although the results are 
rather accurate, the method is not preferable for the 
steady solutions. 

Moreover, the main algorithm is not restricted to the 
pseudo-spectral discretization method. Therefore, 
employing the finite–difference, or finite volume 
methods can be seen as other extension directions; 
although the rate of convergences may be different. 
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  چکیده

  

  

تاوایی با استفاده از - ناپذیر دوبعدي در فرم سرعت استوکس تراکم- طیفی فوریه معادلات ناویر رو به حل شبهمقاله پیش
شرایط مرزي مستور بدون اضافه کردن تابع نیرو و از طریق اصلاح مستقیم جملات جابجایی . پردازدروش مرز مستور می

همراه تاوایی  هاي بقایی ارضاکننده شرایط مرزي مستور به در ابتداي هر گام زمانی سرعت. استاعمال شدهو پخش 
کوتاي مرتبه چهار انجام -پیشروي زمانی با استفاده از روش صریح رانج. شوندشده در معادله انتقال تاوایی اعمال می اصلاح

روش به مسائل مرز متحرکی . اندي در ابتداي هر زیرگام اعمال شدهشده است که در آن به منظور افزایش دقت، شرایط مرز
. استبال یک حشره اعمال شدهشامل استوانه با حرکت ناگهانی، حرکت نوسانی استوانه در یک سیال ساکن و حرکت شبه

 .نتایج موید دقت و راندمان مناسب روش هستند
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