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ABSTRACT

Nowadays many well-known firms may produce similar products at different prices in order to remain
in the competitive environment. The price differences may cause substitution condition which
motivates the customers to substitute similar cheaper product with an expensive one leading to an
environment which is known as “customer-based price driven substitution”. This research proposes a
new mathematical model towards a joint dynamic pricing and inventory control for seasonal and
substitutable goods in a competitive market over a finite time planning horizon. It is assumed that the
two substitute goods belong to two different rival firms. The objective is to determine the optimal
price, order quantity and the number of periods for one product in the presence of symmetrical and
asymmetrical substitutions such that the total profit of the related firm is maximized. First it is showed
that total profit is a concave function of price which leads us to a unique optimal solution. To provide
the optimal solution a simple algorithm is developed. Finally, in order to evaluate the performance of
proposed algorithm a numerical example is presented.
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1. INTRODUCTION

In recent years, pricing and inventory models for
various types of products have been studied by many
researchers [1-4]. Most of the researches refer to
dynamic pricing of deteriorating items [5-7]. Dynamic
pricing and inventory policies for seasonal goods have
been studied first by [8]. He considered a two-period
stochastic demand, where the price of second period
depends on the price of first period. Later, [9]modeled
the pricing of seasonal products by considering two
classes of discount in the model: Inventory based and
fixed discounting. The optimal solution of the classes is
found by using Nash equilibrium as a game between the
seller and the customers and optimization problem for
the seller, respectively. [10] modeled dynamic pricing
and order quantity for perishable seasonal goods with
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spot and forward purchase demand, which provide
customers with both prompt delivery and scheduled
delivery option. Demand functions are time and price
dependent. [11] extended a dynamic model for
consumer choice behavior in markets. In their research
the products are seasonal with limited availability and
the costumers are classified in two types: strategic
customers and myopic customers. Strategic customers
are willing to purchase later with higher stock-out risk
but lower price and myopic customers are willing to
purchase early in the season with higher price but lower
stock-out risk.

Furthermore competition in the markets usually
motivates the firms to produce similar products at
different prices. Demand of the products depends on the
customers’ tendency whether to substitute one product
for another or not. [12] classified the substitution in two
types: manufacture driven substitution in which a
manufacture substitute the higher value product for the
lower value one when there is stock-out and customer
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driven substitution in which the customer substitutes
one product for another. In the second type, if shortages
lead to substitution, we call this inventory-driven
substitution, and if the price differences cause the
substitution, it is called price driven substitution. Both
types of these substitutions lead to demand substitution.
Also, [13] categorized substitution as symmetrical and
asymmetrical. Based on their definition, the
symmetrical substitution happens when all of the lost
demands of one product are added to the demands of the
substitute product whereas asymmetrical substitution
happens when just a fraction of lost demands are added
to the demands of the substitutable product. In this
paper both symmetrical and asymmetrical price driven
substitution are taken into account.

According to the above mentioned issues, some
researchers were motivated to study the substitutable
goods. Stochastic demand in the pricing model and
inventory control for substitutable products was
considered by [14]. The model is based on two essential
assumptions: the demand function is price dependent
and substitution is one-way. [15] proposed a stochastic
pricing model for perishable goods with inventory
driven substitution and demand correlation that
maximizes the seller’s cumulative revenues. The pricing
model for services such as concerts or sporting events
with dynamic substitution was proposed by [16]. The
model aims to maximize the revenue in which the
customers choose a product that maximizes their
consumer surplus. [17] studied stochastic programming
of pricing and inventory control for products with static
and dynamic inventory driven substitution. [13]
developed a model of pricing and production capacity
decisions for symmetrical and asymmetrical price-
driven substitution products with deterministic and
stochastic demands. [18] established a model for
substitutable products under operational postponement
to determine optimal capacity. They studied the impact
of operational delay and degree of substitution on the
profit and optimal capacity. [19] studied the order
quantity of the retailer for two substitutable products
with stochastic inventory dependent demand. He
proposed two heuristics solutions as procedure
solutions.

To the best of our knowledge the effect of price
driven substitution on the models of dynamic pricing
and inventory control has not been mentioned
previously, while in the real reaction, most of the
seasonal goods can be substituted with similar products.
So, the demand depends on the customers whether to
substitute the products or not. The assumption is that
two seasonal substitutable goods belong to two rival
firms. In this paper symmetrical and asymmetrical
customer-based price driven substitution is considered.
For the seasonal goods with price-driven substitution,
the demand function is dependent on time, product price
and price differences between the substitutable goods.

The major objective is to determine the optimal price,
order quantity and the optimal number of price settings
for one product, such that the total profit of the firm will
be maximized. This model can be used by the firms
which sell seasonal goods; an example for such
situations can arise in air conditioner firms. Suppose
that a firm sells the known brand of air conditioner.
Undoubtedly, there are many rival firms with different
brands which can be easily substituted by the customers.
So, the products are seasonal and substitutable. Hence,
the firm can use the following extended model to gain
maximum profit according to the optimum prices, order
quantity and the number of price settings.

Accordingly, in Section 2, the notations and
assumptions of the paper are presented. In Section 3, the
mathematical model based on the mentioned objective,
and also related constraints is proposed. Then, it is
proved that for any given number of price settings, the
objective function is a strictly concave function of
selling price. In Section 4, a solution procedure is
introduced to find the optimal price, order quantity and
number of periods for the product. In Section 5, a
numerical example is solved to show the efficiency of
the model and algorithm, and finally Section 6 refers to
the conclusions and some future directions.

2. NOTATIONS AND ASSUMPTIONS

In this section, we introduce the products and the firms
as A and B. A is used for the main product and the
related firm for which we want to determine the optimal
solution, and B for the substitute product and the related
firm. The following notations and assumptions are used
in this paper.

2.1. Notations:

Parameters

M Length of sales season

T Time space for each period

Niax Maximum number of price settings

L Substitution factor >0

(5] The fraction of the lost demands of high priced product

that are added to the demand of low priced substitutable

product
Ba,@a,ga  Constant values of da
pb; Unit selling price of products B
ha Unit time inventory holding cost per unit product A
co Unit price setting cost
SC Price setting cost
Ccs Unit Delivery setup cost
DC, Delivery setup cost of product A (loading and unloading
Functions
da Demand rate of product A
Ra(j) Sales revenues of product A during period j
TRq Total sales revenues of product A
1Ca(j) Inventory holding cost during period j for productA

TICa Total inventory holding cost for product A
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Ca Unit purchasing cost of product A

PCq Purchasing cost of product A

Safk) Cumulative sales amount up to end of period k for
product A

laj(t) Inventory level at time t of period j for product A

Fa(n, paj) Profit of the firm A

Decision variables

n Number of price settings (1<Njax)

paj Unit selling price of products A(pa>ca

qa Order quantity of product A

2. 2. Assumptions

e Two seasonal substitute items (AB) are assumed,
which belong to rival firms and are sold at different
prices.

e The time horizon is limited to the sale season.

e Demand function is dependent on time, product
price and price differences between substitutable
goods.

e Symmetrical and asymmetrical customer based
price-driven substitution is assumed.

e The products A and B are more or less similar.
Hence, the number of periods for both of them can
be assumed as the same.

e In the start of the season, the rival firm (B)
determines pb; before firm A. So, firm A determines
pa; according to the known pb;. For the next periods,
pb; is affected by the pa; in the previous period and
also is determined earlier than pa; (For example: for
0=0,, n=mand j=j>1, pb;is affected by pa;

for 9 =0,, n=nand j=j -1).

e For any given © we have different values of pb, but
for simplicity we assumed that the average of the pb;

for different values of © has been given.
* pa;is assumed to be smaller than pb; ( pa; < pb; ).

e The items are not perishable.

e The ordering is just done at the beginning of the sale.

e The sales season (M) is divided into equal time
spaces Twhich is given by T=M/n (refer to [8]).

e Period j (j=1,2,...,n) indicates the time interval
between the j-th and j+ I-th price setting. The Prices
are constant during the periods but are reset
(decrease) at the beginning of the next period.

e Delivery setup cost per sales amount cannot be
ignored (refer to [8]).

o Shortages are not allowed.

3. THE MODEL FORMULATION

In this paper an inventory system is considered where g,
units of items arrive to the inventory system at the
beginning of the sales season and are sold during that
season. Two seasonal and substitutable items with

symmetrical and asymmetrical price-driven substitution
are considered where two rival firms or manufactures
offer the items at different prices.

The demand function for seasonal goods is time and
price dependent and has the form of:

dt(p)=e¢*'— B p(where p is sales price and a, f, a>0)
[8]. Moreover, the demand function for a substitutable
item with a price-driven substitution is a function of
product price and price differences of substitute goods
as follows:

d,= A, - B,-L0(pa-pb)), where pa<pb, A, and
B.>0 are constant and known values, I>0 is the
substitution factor, § >0 the fraction of asymmetrical
substitution and pa, pb the price of substitutable
products A and B respectively [11]. According to these
functions, the effect of substitution is not considered in
the first function, while in the real world, most of the
similar products can be substituted. Moreover, in the
second function the demand is constant over time so it is
not efficient for the seasonal products. Therefore, we
introduce a demand function for seasonal and substitute
items as follows:

da(t,paj):aaefg“'7ﬁapaj76L(pajfpbj)
(j-DT<t<jT1<j<n

(1

It is clear from Equation (1)that the demand function is
dependent on time, price and price difference of the
products. As mentioned in the assumptions, for both
symmetrical and asymmetrical substitution, the selling
price during each period is constant while it decreases
in the start of the next period. According to (1), by
decreasing the selling price, the demand rate increases.
Thus, the demand decreases exponentially during the
time in each period and increases in the start of the next
period because of the price reduction as shown in Figure
1. If pa; < pb; , in the symmetrical substitution (0 =1) all

of the lost demand of product B are added to d,, while in
the asymmetrical substitution just a fraction of lost
demands of product B are added to d,. So, in the
symmetrical case, d, is expected to be more than the case
of asymmetrical with 0<g <1 as shown in Figure 1.

fy
i @ symmetrical
[ : substitution
;
h; ' — asymmetrical
! ) substitution
i1 i i3 S =

L

t(day)
Figure 1. Representation of d, during the time
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As mentioned before, shortages are not allowed. So,
the cumulative sales amount from the start of the sales
season up to the end of period kis given by:

ZS(J)—Z J' d, (t.pa; )t =

J=l(j-nT

—KTg, (_1 1 ekTes k )
e(lg;)‘”MZ(prberaj(w +B.))

a Jj=1
The differential equation governing the system at time ¢
of period jis given by:

dr, (0 .
%:_da((J—l)T*'t,Paj)

0<t<T,I<j<n

©)

It is clear that the inventory level of product A at the
start of period j is the difference value between order
quantity and the cumulative sales amount up to period j-

I; so we have:l, (0)=q,-S,(j-1). Using this
condition, the Equation (3) is:

(j-)T+t
I j(0=0,= S, (-1~ d, (tpa ;)dt =~ LOtpb;

(j-nT

-(t+(j-DTg,
b - S pa (10 + ) - “4)
&a 8a

j-1
D" (LOTpb; —Tpa ;(L6 + B, )

=

Since the objective function is to maximize the profit, it
includes some revenue and cost terms. The revenue is
related to the sales revenue and the costs consist of
inventory holding cost, purchasing cost, delivery setup
cost and price setting cost. The inventory holding cost
during period j and total inventory holding cost are
respectively given by:
iT
16,()= [ LjOhdt=
=T N
a, - e g, Ta, + e/ ™ g? T((1-2)LOTpb; +
Jj-1
(2j=1)*Tpa ;(L+ By)+2(dy = ), (LOTpb; ~ Tpa; *
Jj=1

~2jTga gy
¢ - a (2eTga (eTga —1)*

)

(L6 +5,)))

(1-e 2"Tgﬂ)h a, nTha,

(1+e T8)g,? &a

TIC, 72 IC, (j) =

j=1

n n—1
0.5T2h, B, * Y (2j-1)pa;+Th,B, Y (n- j)pa;

p =
n

~0.5L0T%h, » (1-2 j)(pa; - pb;)— LOT?h, * (6)
=1

-nTg, (enTga _ ])(1

8a

4+

n-1
D" (n=j)(pa;— pbj)+ nTh, (=

j=1

z (LOTpb, — Tpa ;(LO + B,)))

j=1

Also, the cost terms including purchasing cost, delivery
setup cost and the price setting cost are respectively
given by following equations:

PC, =q,c, Q)
DC, = S, (n)c; (3)
SC = nc 9)

As mentioned, S,(j)is the sales amount of period j. So,

the sales revenue during period j and total sales revenue
are respectively given by:

R,())=S,(j)pa (10)

e /T8 (T8 - Da,

TR, = D Ry(j)=, pa;(LOTpb; +
€ (11)

j=1 j=1
Tpa (L0 + B,))

When there is no inventory shortage, the order quantity
is given by the total sales amount. If we set k=n into (2),
the total amount of sales can be calculated as follows:

T (T, &

+Z(LT9pbj ~Tpa,*

Qs = S,(n) =
a (12)

a

(L0 +B,))

As mentioned before, the objective function is the
difference between revenues and the costs. Thus, our

problem is formulated as follows:
F(n, pa;)=1TR, - TIC, — q,c, — ncy — S,(n)cs =

—2nT,
(l—e "g“)haaa nThya,
+

1.2
—ncy — -=T°h,B
0 (1+e7Tgﬂ)g32 8a 2
n —l+n
*Z(—l+2j)paj—T2haﬁaZ(—j+n)paj+
=1 =1

0.5L*T2h Z
i"(—jJrn)(pa 7pbj)f

pa - pb; )+ Tzha *

1— —nTga) (13)
[ +Z( LOTpb; — Tpa (w+[33))}

j=1
2 p=

cs[erZ":(prbijaj(erﬁa))J
nTh, [ﬂJrZ":(prbijaj(erﬁa))J*

s p=

n e /T (—1 +elé )aa
Zpaj LOTpb; + p —Tpa; (L6 + B,)
= a
S.t
g o o,e 8T +6Lpb; 14
t,pa;)20 —p pa; <
L (t, pa;) pa B+ 10

N < Nyjax (15)
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The main goal of this model is to find the optimal
paj,q, and n which maximize the profit of firm A The

optimal order quantity for product A is given by (12)
and pa;,n can be obtained according to (13)-(15). pa;

is a real continuous variable, while n is a integer
variable. For simplicity, we solve the problem for any
given n and denote this problem as G,. Then, the global

maximum of the main problem F*(n, paj)is the

maximum of G, where n < Ny,,.
First, we show that the profit function is concave. So, let
discuss the following theorem.

Theorem. For any given n, F(n,pa;) is a concave

function of pa

Proof. The second derivation of F(n, pa;) with respect

to pa; is taken as follows:

SF
dpaj

2 . 2 2
=0.510T%h, —2 jIOT*h, +210nT>h, —

(*J-“)Tgaaa - eijTg“OCa N (16)
ga ga
0.5T%h,B, —2Tpa ;B, + Tc, (L0 + B, )+ Te (10 + B, )

2L9Tpaj + LHprj + &

2
0 Fz =-2T(B, + 1O) (17)

Opaj

It is clear that aze <0, so the objective function is
apaj

strictly concave and the proof is completed. © The root
of (16) gives pa ; as follows:

pa (1) :(%LBTzha +2jLOT?h, —2LOnT*h, —

TR, T,
19Tpb; ~ %a & 0 Ly g (13)
8 & 2

Te, (L0 + B, ) — Teg (16 + B, ) /2T (L0 + B,)

4. ALGORITHM

To obtain the optimal values of pa; and n the following

Algorithm is developed. Obviously, the algorithm starts
with n=2. This is true because n=1 is used for the static
pricing strategy while here the problem encountered
with dynamic pricing strategy.

1. Start with =1, =2, N=2, F'=0.

2. While n < Ny, do steps 3-8, else go to step 9.

3. While j<n do steps 4-5, else go to 6.

4. Calculate pa;(1) according to (18) and calculate the
upper bound of pa; according to (14) named Up.

4.1. If pa;(1) <Up, set pajzpaj(l), otherwise set

pa;=Up

5. Set j=j+1 and go to step 3.

6. Calculate q:,F(n, paj) respectively by (12), (13)

7. If F(n,paj) >F", then let N=n, pa;= paj, q, = q: ,
F'= F(n, paj) .

8. Set n=n+1 and go back to step 2.
9. Stop.

5. NUMERICAL EXAMPLE

To illustrate the algorithm, the following numerical
example is presented. The results are based on the
results applied by Mathematica 8.0.1.

Example. In order to evaluate the performance of
proposed model as well as the developed heuristic
algorithm, the following numerical example is solved.
This example is run on the Mathematica 8.01
optimization package.

Consider a firm which purchases seasonal goods
named Aat ¢, =$3per unit at the start of the sales season
and sells them over that season. The assumption is that
there is a similar product named B which is substitutable
with product A. The example is based on the parameters
as follows:

M=1200(units of time), h, =0.003$/per unit time, ¢,
=1008, c,=18%, Npw=4, [= 1(units of demand/per price
differences of products (3)).

The model is solved foro =0, 0.1, 0.4, 0.7 and 1.
Demand function for the product A is assumed to be:

d,(t, paj)= 10¢70-001¢ —0.7pa;—0L(pa;— pbj)

These data are mostly taken from the study conducted
by [10].
Table 1 shows the different values of pb;. As

mentioned in the assumptions, for any given 6 we have
different values of pb; but for simplicity we assumed

that the average of the pb; for different values of ¢ has

been given. By implementing the proposed algorithm,
the optimal values of pa;,q, and F(n,pa;) are obtained

as shown in Table 2.

In this research, the model was solved for Ny,,=6. In
all cases, the optimal solution was obtained for n<4, so
we ignored the results of n=5 and n=6. Hence, Ny,,=4 is
considered. The results can be analyzed as follows:
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TABLE 1. Data for different values of pb; for 2<n<4 and 1<j<n

1390

n 2 3 4
j 1 1 3 1 2 3 4
pby($) 7.9 53 8.8 6.8 53 9 8.1 6.8 5.2
TABLE 2. Computational results for the case of no substitution (9 =0)
0=0 n 2 3 4
j 1 2 1 2 3 1 2 3 4
pa;($) 7.82 43 8.19 6.25 43 8.4 6.8 5.61 43
F(n,paj)($) 2501.88 2683.12 2604.74
a 1898 1740 1715
TABLE 3. Computational results for the case of asymmetrical substitution (0 <0 <1)
0=0.1 n 2 3 4
j 1 2 1 2 3 1 2 3 4
pa;($) 7.85 4.43 8.3 6.33 4.43 8.52 6.96 5.73 4.41
F(n,paj)($) 2587.84 2679.33 2536.41
a 1886 1725 1713
0=04 n 2 3 4
3 1 2 1 2 3 1 2 3 4
4.67 8.77 7.26 5.94 4.63 4.67 8.77 7.26 5.94 4.63
F(n,paj)($) 2744.04 2673.18 2415.8
a 1886 1678 1702
60=0.7 2 3 4
3 1 2 1 2 3 1 2 3 4
4.8 8.91 7.44 6.7 4.75 4.8 8.91 7.44 6.7 4.75
F(n,paj)($) 2828.03 2673.29 2356.16
a 1890 1635 1687.66
TABLE 4. Computational results for the case of symmetrical substitution (0 =1)
0=1 n 2 3 4
j 1 2 1 2 3 1 2 3 4
pa;($) 7.88 4.89 8.72 6.63 4.89 9 7.55 6.15 4.79
F(n,pa;)($) 2888.41 2678.76 2326.79
a 1883 1585 1699

5. 1. Case of no Substitution (0 =0) In this
case, as shown in Table 2, the prices of products A and
B are independent from each other. It is clear from the
table that the maximum profit is obtained as $2683.12
with @,=1740 units for r=3. The number of price
settings for n=3 is 2 times, at the time points 400 and
800. The optimal price of product A during time interval
[0,400] is $8.19, during time interval [401,800] is $6.25
and during time interval [801, 1200] is $4.3.

5. 2. Case of Asymmetrical Substitution (
6=0.1,04,0.7) It can be concluded from Table 3
that for 6 =0.1 the maximum profit is obtained as
$2679.33 for n=3 and for 6=04,0.7 the maximum
profits are obtained as $2744.04 and $2828.03
respectively for n=2. The table shows that the optimal
profit increases from $2679.33 to $2828.03 when 6
increases. This is reasonable because by increasing 6
more lost demands of product Bare added to the
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demands of product A. So, the profit increases. Also, the
dynamic prices for fixed n and fixed j increases when 6
increases; for example for n=3, the dynamic prices for
6 =0.1 are $8.3, $6.33 and $4.43 for j=1-3; the dynamic
prices for 6 =0.4are $8.52, $6.48 and $4.67 for j=1-3
and the dynamic prices for 6 =0.7 are $8.64, $6.57 and
$4.8 for j=1-3. It means that the firm A will increase the
dynamic prices when 6 increases.

5. 3. Case of Symmetrical Substitution (6=1) In
this case, all of the lost demands of product B are added
to the demand of product A. In this case, as shown in
Table 4, the maximum profit is obtained for n=2 with
the value of $2888.41. The profit is higher than both
cases with no substitution (6 =0 ) and asymmetrical
substitution (0<@ <1). As mentioned before, it is
assumed that pa; < pb;. Hence, the customers will be

motivated to substitute product A for B. So, the demand
and the profit of firm A increases. It means that, in the
condition of pa; < pb;, increases in 6 have a positive

effect on the profit of firm A.

6. CONCLUSION

This paper deals with a dynamic pricing and inventory
models for symmetrical and asymmetrical substitution
with a demand function which is dependent on time,
price and price differences of the products. Most of the
pricing and inventory papers assume that the products
are either seasonal or substitutable. However, in real
world, the competition in the market forces the firms to
produce similar products at different prices. By
considering these factors, a mathematical model has
been developed to overcome the lack of previous works.
We show that for any fixed number of price settings, the
objective function is a concave function of the product
price, so the optimal solution is attainable. Then, we
proposed a solution procedure to find the optimal
dynamic prices, order quantity and the number of price
settings. Finally, a numerical example is provided to
illustrate the efficiency of the algorithm.

The results show that the optimal profit increases
when 6 increases. So, increasing 6 has a positive
effect on the optimal profit.

Also, it can be concluded from the results, wheno is
increasing the firm will increase the dynamic prices to
obtain the optimal profit. Our model can be used by a
firm with seasonal products, which have a substitution
effect on similar products, to optimize the dynamic sales
prices, inventory control variables and number of price
settings. For possible future research, the model can be
extended for situations in which the products are
perishable and/or the substitutable product prices are not
well-known.
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