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A B S T R A C T  

 
 

In this paper, an estimator for speech enhancement based on Laplacian Mixture Model (LMM)has been 
proposed. The proposed method, estimates the complex Discerete Fourier Transform(DFT) coefficients 
of clean speech from noisy speech using the Minimum Mean Square Error(MMSE)  estimator, when 
the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of  
noise are assumed zero-mean Gaussian distribution. Furthermore, the MMSE estimator under speech 
presence uncertainty and the Laplacian mixture model were derived. It is shown that the proposed 
estimator has better performance than  three estimators based on single Gaussian and single Laplacian 
models. Also under speech presence uncertainty the results become better. 
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1. INTRODUCTION1 

 
In recent years there has been a lot of interest in the 
enhancement of noisy speech for digital voice 
communications, human-machine interfaces, automatic 
speech recognition systems and many other 
applications. Because, the presence of noise  degrades 
the performance of these systems. A lot of methods 
have been  proposed for speech enhancement, such as 
the spectral subtraction[1, 2], the signal subspace[3, 4], 
the statistical method [5-7] and so on, but it has been 
reported that the statistical methods have better 
performances compared with other methods [8]. In these 
methods, the clean speech and noise are modeled by 
proper distributions and then the clean speech are 
estimated by an estimator such as Maximum Likelihood 
(ML)[9], Minimum Mean Square Error (MMSE) [5, 6, 
10] or Maximum A Posteriori (MAP)[10-12]. The first 
statistical speech enhancement method in Discerete 
Fourier Transform(DFT) domain was based on the 
complex Gaussian distribution for DFT coefficients of 
                                                        
1*Corresponding Author’s Email: Z.Mohammadpoory@yahoo.com 
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speech and noise [5, 6]. The Gaussian assumption is 
motivated by the central limit theorem. The Gaussian 
assumption is valid when the analysis frame size is long  
and the DFT length is longer than the span of 
correlation of signal (more than 100ms for the speech 
signal).Thus this assumption is not proper for the speech 
DFT coefficients, estimated using relatively short 
frames in the range of 10-40 ms, which is a typical 
frame size inspeech applications, whereas, it might be 
proper for the noise DFT coefficients [13].  

For this reason, Gamma, Laplacian and Chi models 
of the clean speech DFT coefficients were proposed. 
Martin[10, 14] has proposed complex DFT coefficients 
estimator  with Laplacian and Gamma distributions for  
the clean speech. Lotter and Vary [11, 12] have 
proposed a MAP spectral amplitude estimator with 
Gamma distribution assumption for speech amplitude. 
They provided histograms of speech DFT coefficients 
using their own experiment and confirmed  that the 
Laplacian and Gamma densities provide a reasonable fit 
to the experimental data. Chen and Loizou presented an 
analytical solution for MMSE estimating of the 
magnitude spectrum, when the clean speech DFT 
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coefficients are modeled by single laplacian distribution 
[15].  

Trawickiand Johnson propsed Chi statistical models 
for the speech prior with Gaussian statistical models for 
the noise likelihood [16]. 

Some researchers have proposed mixture of 
distributions such as Gaussian Mixture Model (GMM), 
Rayleigh Mixture Model (RMM) and so on for speech 
spectral coefficients or magnitude [17-19].In some 
papers the distribution of the noise spectrum are also 
modeled by non-Gaussian distributions [14]. 

In many researches, statistical method are used in 
other domain, for example time domain, DiscreteCosine 
Transform domain, Canonical Transform domain andso 
on [20, 21]. 

In this paper, the Laplacian Mixture Model(LMM), 
forclean speech DFT coefficients has been proposed, 
due to its more accurate fit to the distributions of 
complex speech DFT coefficients than single laplacian, 
Gaussian or even mixture of Gaussian model. 
Furthermore, analytical derivation of estimator with 
proposed distributions is relatively simple. In the 
proposed method, the real and imaginary parts of the 
noise DFT coefficients are modeled by Gaussian 
distribution.  

This paper is organized as follows:  next section is 
about signal model and assumptions used in this work 
and section 3 discusses about LMM distribution.  
Section 4 presents the new MMSE estimator with 
proposed models for speech and noise. In Section 5 the 
explanation of Expectation-Maximization (EM) 
algorithm for estimating the LMM parameters  are given, 
Section 6is about proposed estimator under signal 
presence uncertainty (SPU) and Section 7 presents 
experimental results.  

 
 

2. BASIC ASSUMPTIONS IN THE PROPOSED 
METHOD 
 
We assume a signal model of the form: 

y(i) = s(i) + n(i) (1) 

in which y(i), s(i) and n(i) denote noisy speech, clean 
speech and noise signal at the sampling time index i, 
respectively. It is assumed that s(i) and n(i) are 
statistically independent. These signals are transformed 
into the frequency domain by applying them short time 
Discrete Fourier Transform (DFT) which can be written 
as: 

Y (k ,µ) = S(k , µ) +N(k , µ) (2) 

where k is the frequency bin index and µ is the  frame  
index. 

Another assumption is the decorrelation of spectral 
components. Since the spectral components can 

behaveindependently, the MMSE spectral estimator S(k 
, µ) can be derived from Y(k,µ) only and MMSE 
derivation are simplified [22]. 
     For simplifying the following results, we  will omit 
our notations both the k and µ, thus Y ,Y ,S , S , N  and N  denote real and imaginary parts of noisy 
speech, clean speech and noise signal, respectively. 

 
 

3. LAPLACIAN MIXTURE MODEL FOR COMPLEX 
SPEECH  DFT COEFFICIENTS 
 
It was confirmed that the probability PDF of the complex 
DFT coefficients for short  frames in the range of 10-40 
ms, is much better modeled by a Laplacian, Gamma or Chi 
density rather than a Gaussian density [10, 14, 16]. 
   We suggest the Laplacian Mixture Model for the PDF 
modeling of the real and imaginary parts of the DFT 
coefficients and we show LMM produces better results 
than single Laplacian model.The Laplacian density is 
usually represented by: L(x،c،m) = ce   |   |  (3) 

where m represents the center (mean) and c > 0 controls 
the width of the density.The  LMM is defined as 
follows: p(s) = ∑ α      L  s،c ،m  = ∑ α     c e    |    |  (4) 

where N is the number of Laplacians andα , m ,c  are 
the weights, means and variances of each Laplacian, 
respectively and  ∑ α     = 1. A common method used 
to train a mixture model is the  Expectation-
Maximization (EM) algorithm [23]. 
     As it is mentioned, the real and imaginary parts of 
the speech DFT coefficients are modeled byLMM. 
Thus, they can be written as follow: p(S ) = ∑ α     c e    |     |  (5) p(S ) = ∑ α     c e             (6) 

The LMM distribution is selected because the 
histograms of the real and the imaginary parts of the 
clean speech DFT coefficients are not exactly zero-
mean Laplacian distributed, but we can get more 
accurate fits to these histograms with combination of 
several  nonzero-mean Laplacian distributions. 
     This result is confirmed by the estimation of 
Kullback–Leibler  discrimination information for  the 
histogram data p (x)and assumed  densities p(x) such 
as Laplacian, GMM and LMM. Kullback–Leibler  
discrimination information is defined as follows: I  = ∑ p (x)  log (  ( ) ( ) )  (7) 
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     For comparing two distributions (two different p(x)), 
having smaller I   means more accurate fit to the 
histogram of data p (x)[24]. 
     We find that the Kullback–Leibler discrimination 
information is smaller for theLMM distribution  than the 
GMM distribution with the same components. Another 
result is that by increasing the number of LMM’s 
components(N),  I   becomes smaller and it seems 
reasonable. After N=30, I  doesn’t have significant 
variations and it shows that N=30 is a proper value for  
number of the LMM's components.  

 
 

4. MMSE SPECTRAL ESTIMATION WITH THE 
PROPOSED DISTRIBUTION 
 
For finding closed form solution to the estimation 
problem, it is  assumed that the real and  the imaginary 
parts are independent and identically distributed(i.i.d). 
Because of these assumptions, the MMSE estimation for 
the complex DFT coefficients (E(S|Y)) can be split into 
the two estimations for the real and the imaginaryparts 
which can be written as follows [10]: E(S|Y) = E(S |Y ) + jE(S |Y )  (8) 

At first,E(S |Y ) and E(S |Y )are estimated, separately 
and then, their results will be combined together.The 
optimal MMS estimator of the real part is obtained as 
follows: E(S |Y ) = ∫    (  |  ) (  )        (  )   (9) 

By modeling the real and imaginary parts of the noise 
DFT coefficients by zero-mean Gaussian distributions 
as  follow: 

p(N )=  √   exp   (  )      (10) 

p(N )=  √   exp   (  )      (11) 

in which σ    denotes the variance of the real and 
imaginary parts of the noise DFT coefficients, and 
assuming the LMM speech prior, (Equations (5) and 
(6)), the MMSE estimation of real part will be provided 
as follows: 

E(S |Y ) =  √πσ  (  )∫ S exp   (     ) 
σ      ∞   ∑ α c     exp(−2c |s −m |) ds   

(12) 

After some manipulations, and using a theorem 
described in [25],the MMSE estimation of the real part 
will be obtained as follows: E(S |Y ) =    (  )∑ α c exp c  σ       {σ [L  (Y −m )exp 2c (Y −m )  erfc L  (Y −m ) −L  (Y −m ) exp −2C (Y −m ) erfc L  (Y −m ) ]+m  [ exp 2c (Y −m ) erfc L  (Y −m )  +exp −2c (Y −m ) erfc L  (Y −m ) ]}       

(13) 

where 

P(Y )=∫ P(S )   ∞ P(Y |S )dS  (14) 

Also by using another theorem in [25], P(Y ) will be 
calculated as follows: P(Y ) =   ∑ α c exp c  σ          [ exp 2c (Y −m )  erfc L  (Y −m )   +exp −2c (Y −m ) erfc L  (Y −m ) ]  (15) 

In Equations (13) and (15) erfc(x) denotes the 
complementary error function [25] and is defined as 
follows: erf(x) =  √π∫ e   ∞ dt = 1− erfc(x)  (16) 

and L  (Y −m ) = cσ +      
σ   (17) 

L  (Y −m ) = cσ −      
σ   (18) 

     The MMSE estimator for the imaginary part is 
derived in the same method. Finally, the MMSE 
estimator for the complex DFT coefficients is  
calculated byE(S|Y) = E(S |Y ) + jE(S |Y ),where E(S |Y ) and E(S |Y )are given in Equations (19) and 
(20), respectively. 

 (  |  ) = ∑ α          σ    σ     (     )       (     )         (     )     (     )        (     )         (     )             (     )         (     )          (     )         (     )       ∑ α          σ           (     )         (     )          (     )         (     )        
(19) 

 (  |  ) = ∑                       (     )       (     )         (     )     (     )        (     )         (     )             (     )         (     )          (     )         (     )       ∑                        (     )         (     )          (     )         (     )        
(20) 
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5. TRAINING USING THE EM ALGORTHM 

 
In this section, the EM algorithm [23] for estimating the 
parameters of the LMM (used for calculating Equations 
(19) and (20) ) from training data are described, based 
on the literature[26]. 
    Considering Equation (4) and assuming T samples, 
EM’s cost function for LMM  is defind as follows:  

J(c ،m )=∑ ∑ (logc     − 2c |s −m |) . p(i|s )     (21) 

where p(i|s ) describs the probability of s  belonging to  
the ith Laplacian. p(i|s )andα are updated as follow: 

α =   ∑ p(i|s )      (22) 

p(i|s ) = α        |     |∑ α            |     |  (23) 

  For updating m and c , the Equations      = 0 and       = 0 
have to be solved. Then the updates are given as follow: m = ∑   |   θ | ( |  )    ∑  |   θ |  ( |  )      (24) 

c = ∑  ( |  )     ∑ |   θ |  ( |  )      (25) 

For initializing the EM algorithm, at first   this 
algorithm is ran with random initial values and then the 
results of this EM are considered as initial values for the 
main EM. 
 
 
6.DERIVATION OF MMSE ESTIMATOR UNDER 
SPEECH PRESENCE UNCERTANTY  

 
  In order to further performance improvement of the 
estimator, we alsoderive a Speech Presence Uncertainty 
(SPU) estimator and incorporate it into the  spectral 
estimator. SPU addresses the speech/silence detection 
problem in terms of probability, and is derived using the 
Bayes’ rule. After the spectral coefficients are estimated 
by the method proposed above, the SPU estimator 
refines the estimate of the spectral coefficients by 
scaling them by the SPU probability. 
     We consider a two-state model for each frequency 
bin of the speech, 1- Speech is present at a particular 
frequency bin (k)(hypothesis H  ) 2- Speech is not present 
(hypothesis H  ).This is expressed mathematically using the 
following binary hypothesis model: H   : speech absence: Y  = N  (26) H  : speech present: Y = S +N  (27) 

     To incorporate the above binary model to an MMSE 
estimator, we can use a weighted average of two 
estimators: one that is weighted by the probability that 

speech is present, and one that is weighted by the 
probability that speech is absent. So, if the original 
MMSE estimator had the form  E(S |Y ), then the new 
estimator has theform S = E(S |Y ,H  )P(H  |Y ) + E(S |Y ,H  )P(H  |Y )    (28) 

where P(H  |Y ) denotes the conditional probability that 
speech is present in frequency bin k given the noisy 
speech spectrum. Similarly, P(H  |Y ) denotes the 
conditional probability that speech is absent given the 
noisy speech spectrum. The term E(S |Y , H  ) in the 
above equation is zero since it represents the average 
value of S  given the noisy spectrum Y  and the fact that 
speech is absent. Therefore, the MMSE estimator in 
Equation (28) reduces to: S = E(S |Y , H  )P(H  |Y  ) (29) 

The MMSE estimator of the spectral component at 
frequency bin k is weighted by the probability that 
speech is present at that frequency. Bayes’ rule can be 
used to compute P(H  |Y ): 

P(H  |Y )=           (   )                          (   ) (30) 

where p(H  ) denotes the a priori probability of speech 
absence and p H   is the a priori probability of speech 
presence, for frequency bin k. It is clear that  p(H  ) =1− p(H  ). 
     Under hypothesis H  , Y  = N and given that the 
noise is complex Gaussian with zero mean and variance σ  , it follows that p Y  H    will also have a Gaussian 
distribution with the same variance. p Y  H   =  √   exp  (  )        (31) 

If S  follows a Mixture of Laplacian distribution, 
we need to compute p Y  H   . Assuming independence 
between real and imaginary components, we have: p Y  H   = P  (y ) = P  (y )P  (y )  (32) 

where y  = Re{Y  }, and y  = Im{Y }.Under hypothesis H  , we need to derive the PDF of Y = S + N  ,  where S  = S + jS  and N  = N + jN . The PDFs of S  and S  
are assumed to be Mixture of Laplacian and the PDFs of N  and N  are assumed to be Gaussian with variance σ  /2 and zero mean. The derivation of Equation (32) is 
given in Appendix A. The solution for Equation (32) is 
given by: P  (y ) = ∑ α c exp σ   c  + 2m c         

 exp(−c y ) + exp(c y ) + exp(−c y )erf c (y − σ . ) + exp(c y )erf c (y + σ . )    (33
) 

P  (y ) =∑ α c exp σ  (c  +    (34) 

^ 

^ 
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2m c )  exp(−c y ) + exp(c y ) + exp(−c y )erf c (y − σ . ) + exp(c y )erf c (y + σ . )    
Simply substituting Equations (33) and (34) into 
Equation (32), and Equations (32) and (31) into 
Equations (30) and (29),we obtain the Speech  Presence 
Uncertainty (SPU) estimator [27]. 
 
 
7. EXPRIMENTS AND RESULTS 
 
7. 1. Experimental Setup        The TIMIT database 
has been used in our experiments. We used 200 
sentences from 100 male and 100 female (about 11 
minutes) for training  the LMM models with EM 
algorithm and 10 sentences from 5 males and 5 females  
for evaluating our proposed method.  
     White noise, babble noise, and F-16 cockpit  
noiseare added  at 0, 5 and 10 dB SNR to 10 mentioned 
sentences. Then the proposed method is applied to noisy 
sentences. To determine the variance of these noises 
(used for calculating Equations (19) and (20) ), a Voice 
Activity Detection (VAD) method is employed to noisy 
sentences. Indeed, the clean speech LMM model 
parameters are found off-line using training data and 
EM algorithm and  noise variance are estimated on-line 
using noisy test data VAD method.VAD  refers to the 
ability of distinguishing speech from noise, and 
estimating the parameter of noise from noise 
frames[28].   

The proposed estimator are applied to 32ms frams, 
with 50% overlap, which are multiplied by Hamming 
window. For obtaining the enhanced speech signal, 
these frames are transform to the time domain by IDFT 
and the Overlap-Add method is applied to them.  
 
7. 2. Performance Evaluations       Three objective 
measures, segmental SNR, log-likelihood ratio (LLR)  
and PESQ (Perceptual Evaluation of Speech 
Quality),were applied for performance evaluation of 
proposed method. The segmental SNR is computed as 
follows: 

      = 10        ∑   ( ) .        . ∑ [ ( )−  ̂( )]  .        .   
    (35) 

where M is the total number of frames, L is the frame 
size, s(n)is the clean signal and s (n) is the enhanced 
signal. As        does not have strong correlation with 
subjective evaluation methods, we use LLR and PESQ 
measures which have stronger correlations with 
subjective evaluation methods. 
    The LLR measure is one of the most common all-
pole-based measure for evaluating speech enhancement 
algorithms. The log-likelihood ratio (LLR) for each 
frame is computed as follows: 

LLR=log(              ) (36) 

where   and    are the prediction coefficients of the 
clean and enhanced signals, respectively, and    is the 
autocorrelation matrix of the clean signal. For LLR 
values, being lower shows that the enhanced signal is 
more similar to the clean signal [29-31]. The PESQ is 
an objective measurement tool thatpredicts the results of 
subjective listening tests. PESQ uses a sensory model to 
compare the original, unprocessed signal with the 
enhanced signal. The PESQ scores are calibrated using 
a large database of subjective tests and it is between -
0.5-4.5.The higherPESQ means the higher quality of 
enhanced signal [30]. Figure1 shows the output SNR   (in dB) measure of the enhanced speech, for 
different values of N(number of Laplacian components), 
under different input SNR conditions and white noise. 
 It is important to find a reasonable N  that the proposed 
method provides an acceptable performance 
andcomplexity. It is clear that larger N has better 
performance.Beacause  higher number of Laplacian 
components leads to better PDF matching of the clean  
signal. But larger N causes increasing the computational 
complexity. As it was  mentioned  before, after N=30,    and subsequently the  assumed LMM distributions, 
do not have significant changes. Thus the results based 
on assumed distributions, do not have considerable 
variations. For this reasons, N=30 is selected as proper 
value.As Figure 1 shows, N has been increased until 
N=50, and after N=30 the results do not havesignificant 
variations, while computational complexity is increasing   
and proposed method becomes very time consuming.  
For comparative purposes, the performance of the 
Gaussian-based MMSE estimator [5], Log-MMSE 
estimator [6]  and Laplacian based MMSE spectral 
estimator [10] are evaluated. They are indicated as 
MMSE, Log-MMSE and Lap-MMSE,  respectively. 
The proposed method is also indicated as LMM-MMSE  
andLMM-MMSE-SPU estimator. 
 
 

 
Figure 1. SegSNR of the enhanced speech signalat different 
Ns and different  input SNRs for additive white noise 
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Table 1 and 2 show the segmental SNR and LLR 
values obtained by mentioned estimators for babble and 
F-16 cockpite  noise at different SNRs, and Table 3 
shows the PESQ values. As can be seen, the SNRseg 
values (Table 1) obtained withthe Laplacian estimators 
(LMM-MMSE, Lap-MMSE) are significantly higher than 
the SNRseg values obtained with the Gaussian 
estimators (MMSE and Log-MMSE), in all 
SNRconditions and two noises. It confirms that 
Laplacian estimators have better performance in 
reducing the additive noise than Gaussian 
estimtors.Table 1 shows that for the babble noise at 
different SNRs, theproposed methods provide more than 
1dB improvement in SNRseg compared to Gaussian-
based estimators. As Table 2 shows, the LLR values 
obtained with theLaplacian-based estimators (LMM-
MMSE, Lap-MMSE)were also significantly smaller 
than the values obtained by the Gaussian estimators  
(MMSEand Log-MMSE) in all SNR conditionsand 
noises.  
     Higher PESQ values (Table 3) are obtained by 
theLaplacian estimators compared to the Gaussian-

based estimators for all noises and SNR conditions. It 
means that the enhanced signal with Laplacian 
estimators has higher quality than Gaussian estimators. 
Thus, better results (higher segmental SNR, higher PESQ, 
and lowerLLR at different SNRs and differentnoises) 
were obtained by the Laplacian-based  estimators. 

Comparing the results of two Laplacian-based 
methods, Lap-MMSE (based on single Laplacian) and 
LMM-MMSE (based on Mixture of thirty 
laplacians),shows that better results in term of 
allmeasures, at different SNRs andnoises, areobtained 
by the LMM-MMSE estimator. Beacause the use of 
higher number of Laplacian components causes better 
PDF matching of the clean  signal and  thusbetter 
results. Also comparing the results of two LMM-
basedmethods, LMM-MMSE  and LMM-MMSE-SPU, 
shows that better results in term of all objective 
measures, at different SNRs and different noises, 
areobtained by the LMM-MMSE-SPU estimator. It 
showsproposed estimator under  SPU has better 
performance, while the complexity increases. 

 
 
 
TABLE 1.Comparative performance, in terms of segmental SNR of the Gaussian-based MMSE, Gaussian-based LogMMSE , 
Laplacian based  MMSE spectral, LMM-based MMSE and LMM-based MMSE with SPU estimators 

 Cockpitnoise F-16  Babble  noise  Noises 
-2.1/10 dB 6.1/5 dB - 9.1/0 dB - -1.4/10 dB 5.48/5 dB - -9.48/0 dB Estimators 

6.731 4.132 1.57 6.42 3.892 1.341 MMSE [5] 
6.69 4.052 1.873 7.123 4.251 1.773 Log-MMSE [6] 
7.288 4.613 2.81 7.582 4.808 2.874 Lap-MMSE [11] 
7.623 4.671 2.849 7.916 4.915 2.912 LMM-MMSE 
7.692 4.703 2.976 7.98 4.992 3.043 LMM-MMSE-SPU 

 
 
 

TABLE 2.Comparative performance, in terms of  LLR of the Gaussian-based MMSE, Gaussian-based LogMMSE , Laplacian based  
MMSE spectral, LMM-based MMSE and LMM-based MMSE with SPU estimators 

 Cockpitnoise F-16   Babble  noise   Noises 
10 dB 5 dB 0 dB 10 dB 5 dB 0 dB Estimators 
0.619 0.812 1.021 0.572 0.751 0.981 MMSE [5] 
0.734 0.935 1.196 0.852 0.984 1.213 Log-MMSE [6] 
0.57 0.696 0.879 0.507 0.644 0.81 Lap-MMSE [11] 

0.532 0.663 0.861 0.503 0.612 0.793 LMM-MMSE 
0.515 0.637 0.806 0.487 0.594 0.734 LMM-MMSE-SPU 

 
TABLE 3.Comparative performance, in terms of  PESQ of the Gaussian-based MMSE, Gaussian-based LogMMSE, Laplacian based  
MMSE spectral,  LMM-based MMSE and LMM-based MMSE with SPU estimators 

 Cockpit noise F-16  Babble  noise  Noises 
10 dB 5 dB 0 dB 10 dB 5 dB 0 dB Estimators 
2.712 2.396 2.081 2.781 2.456 2.114 MMSE [5] 
2.585 2.19 2.035 2.833 2.487 2.172 Log-MMSE [6] 
2.508 2.314 2.136 2.857 2.52 2.183 Lap-MMSE [11] 
2.841 2.51 2.17 2.89 2.576 2.225 LMM-MMSE 
2.849 2.524 2.198 2.911 2.612 2.481 LMM-MMSE-SPU 
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Figure2. A TIMIT sentence corporates with babble noise at SNR=-5dB enhanced by MMSE, Lap-MMSE, LMM- MMSE LMM- 
MMSE-SPU estimators. From top to bottom, the clean signal, the  noisy signal,the signal enhanced by the LMM- MMSE-SPU,  the 
signal enhanced by the LMM- MMSE, the signal enhanced by the Lap-MMSE and the signal enhanced by the MMSE estimator. 
 
 

Figure 2 shows a TIMIT sentence enhanced by the 
LMM-MMSE-SPU, LMM-MMSE, Lap-MMSE and 
MMSE methods. The Babble noise is added to this 
sentence at  -5 dB SNR. It is clear that the  residual 
noise in the sentence enhanced by the proposed methods 
is less than the others. Also proposed methods, 
especially LMM-MMSE-SPU, remove main signal 
instead of noise, less than the others. Therefore this 
method does not create significant perceptible distortion 
in the speech signal comparing the others. 
   As the results of experiment, it is credible that  the 
LMM based MMSE estimator can be considered as an 
effective method for speech enhancement. 
 
 
8. CONCLUSION 
 
An MMSE estimator  was derived for the speech 
spectral estimation from noisy signal based on the LMM 
for the speech DFT coefficient and the Gaussian model 
for the noise DFT coefficients.Results, in term of  the 
objective measures, indicate  that the better performance 
are obtained with the increment ofN, but after N=30 
there is not significant difference between results. Also, 
the proposed LMM-based MMSE estimator, provides  
better  performance  than Gaussian-basedMMSE, Log 
MMSE and Laplacian-based MMSE spectral estimators. 

Also under speech presence uncertainty the results 
become better. The improvement in performance shows 
that the PDF of clean speech DFT coefficients in 
MMSE clean speech estimation is better modeled using 
the LMM.  
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APPENDIX 
 

In this appendix, we derive the PDF of   =   +    ,  
where    =   + j   and    =   + j  . The PDFs of    
and    are assumed to be Mixture of Laplacian and the 
PDFs of    and    are assumed to be Gaussian with 
variance    /2 and zero mean. Let Y=   + j   , then    =   +    and    =   +   . The PDF of Yr can be 
computed by the convolution of the  Mixture of 
Laplacian and Gaussian densities, and is given by: P  (y )=∫ P  (y − n )∞  P  (n )dn = ∑ (     ∫  α   √πσ exp(−         σ    σ        σ      

σ  )    dn   
+∫  α   √πσ exp −         σ    σ        σ      

σ   ∞  dn ) 

(37) 

After using a theorem based on the literature [26], we 
get:  P  (y ) =∑ α c exp σ  (c  + 2m c )  exp(−c y ) +    exp(c y ) + exp(−c y )  erf c (y − σ . ) +exp(c y )erf c (y + σ . )    (38) 

The probability density for the imaginar y part, has 
exactly the same form as that of P  (y ). Assuming 
independence between y  and y  we get the following 
expression for the conditional density p Y  H    at 
frequency bin k: p Y  H   = P  (y )P  (y )  (39) 
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  چکیده
  

  

در این مقاله یک روش بهسازي گفتار آماري با فرض توزیع مخلوط لاپلاس براي گفتار، براي تخمین سیگنال گفتار تمیز 
در روش پیشنهادي، ضرایب تبدیل فوریه زمان کوتاه گسسته سیگنال . از سیگنال گفتار نویزي ارائه شده است) بدون نویز(

در این تخمین، فرض می شود که تابع چگالی . ن مربعات خطا، بدست می آیدگفتار با استفاده از تخمین گر کمترین میانگی
همچنین برا . احتمال ضرایب تبدیل فوریه سیگنال تمیز و نویز به ترتیب، مخلوط لاپلاس و گوسی با میانگین صفر می باشد

و LLRقطعه اي، SNRرهاي نتایج حاصل از معیا. بهبود نتایج تخمین طیف با الحاق عدم فطعیت گفتار محاسبه شده است
PESQ  نشان می دهد که روش پیشنهادي عملکرد بهتري نسبت به دو روش مبتنی بر توزیع گوسی و روش مبتنی بر

  .توزیع لاپلاس دارد و با الحاق عدم قطعیت گفتار به تخمین گر، نتایج بهتر می شوند
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