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ABSTRACT

There are different methods for the hydraulic analysis of water supply networks. In the solution process
of most of these methods, a large system of linear equationsis solved in each iteration. This usualy
requires a high computational effort. Hardy Cross method is one of the approaches that do not need
such aprocess and may converge to the solution through scalar divisions. However,this method has two
short comings: firg, initial discharges should satisfy continuity equation at each node; second a large
number of iterations are required to converge to solution. In this article an algorithm is suggested for
the selection of initial discharges that are close to the final results while the continuity equations are
automatically established. This algorithm may be directly implemented in the Hardy Cross method. To
reduce the number of iterations the Hardy Cross method is combined with third-order and sixteenth-
order methods. The results of some numerical examples demonstrate that the use of the combined
approach with the suggested initial guess reduces the number of iterations and hydraulic analysis time

and the solutions converge with a high accuracy.

doi: 10.5829/idosi.ije.2014.27.09¢.02

1. INTRODUCTION

Cross [1], developed a mathematical approach for
moment digribution in indeterminate structures. He
discovered that this method mayalso be applied for
estimating the pressures and discharges in a water
distribution network.In the firs approach or loop
methodinitial pipe discharges, satisfying the continuity
equation at gjunction or node, areadjusted to balancethe
energy equation at a loop. Nodal heads are then
obtained from areference point by adding or subtracting
head | osses between adjacent nodes.

In the second approach or nodal head method initial
heads at nodes are modified in successive iterations to
satisfy the continuity equation a a junction. In this
method, pipe discharges are estimated by solving the
Hazen-Williamsor Darcy-Weisbach equations where
the head lossesare obtained from the head difference
between adjacent nodes.

*Corresponding Author’s Email: naser.moosavian@yahoo.com (N.
Moosavian)

In practice, the convergence rate of the nodal head
method was slow and the choice of initial heads was
inconvenient [2, 3]. As a result, the loop method
received a greater acceptance in the engineering
community. Although the Hardy Cross method was
originally developed for hand calculations its overal
formulation was imply compatible with computer
programming in the following decades. However,
depending on the size and complexity of the network,
the Hardy Cross method requirestoo much iteration to
converge and sometimes it may diverge.

Martin and Peters were the first who used Newton-
Raphson method in the analysis of water supply
networkg[4]. In their method, all equations arewritten in
terms of nodal heads, H. Then the solution is obtained
through modifying the head in successive iterations.
One of the disadvantages of Martin and Peters method
is the lack of optima convergence in large-scae
networks. To eiminate this problem, some pipes of the
network should be temporarily removed in the analysis
procedure. Other disadvantage is the high oscillationsto
achieve optima convergence. To decrease the
oscillations, the value of AH is reduced by half; though
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thiswill increase the number of iterations.

Epp and Fowler developed a new technique for
andyzing pipe networks where the Newton-Raphson
method was applied for the smultaneous solution of
flow corrections in the Cross loop method [5]. The
result proved a considerable improvementon the
convergence properties of the original agorithm.

In 1972 Wood and Charles, presented the linear
theory method[6]. According to this method, continuity
equations at nodesand energy conservation for each
loop or path are solved simultaneoudy and the
dischargein each pipe is directly obtained.There is no
need to guess initial discharges to satisfy the continuity
equations at nodes.Subsequent developments of this
algorithm which led to commercid software (like
WOODNET, KYPIPE, PIPE2000) was due to the
implementation of the Newton—Raphson method[ 6-8].

Jeppson presented an agorithm based on the loop
method. In this method nonlinear equation of energy for
each loop or path in the network,is written in terms of
the flow corrections. These equations are linearized by
Taylor series expansion and repetitively solved using
Newton—Raphson method[9].

The global gradient methodof Todini and Filati is
ahighly popular method, implemented in Epanet
software [10].In this method, energy eguations are
combined with the nodal eguations and are
simultaneoudly solved to estimate the nodal heads and
flow discharge. Here, like the methods of “simultaneous
loop” and "linear theory", nonlinear energy equations
are linearized using Taylor series expansion. However
they are solved using an optima and reversal scheme
which appliesthe inverse of the coefficients matrix.

Recently, Moosavian and Jaefarzadeh applied a
shuffled complex evolution agorithm (SCE) in an
optimization model (co-content model) for the hydraulic
analysis of pipe networks. This strategy could simulate
pressure-driven demand and leskage in networks
accurately [11].

The development of the computational efficiency of
water system modeling can be achieved by: (i)
advanced mathematics, such as, new robust numerical
solvers to fast solution of the linear system of
equationg[12]; (i) new technology, such as,
paradldization of existing algorithms for multi-cores
processing or Graphic Processor Units (GPU) [13, 14]
and (iii) innovative engineering, such as methodol ogies
for simplifying the topological representation of water
distribution networks while preserving the accuracy of
the analysis as for example in the referenced works [15-
17].

In this paper the Hardy-Cross loop method is
reviewed and its matrix formulation is presented. An
algorithm is proposed for the initial discharges which is
very close to the fina solution and sdtisfies the
continuity equation. Application of the proposed
algorithm increases the reliability of the method and

reduces the number of iterations considerably. Two
methods of third- and sixteenth-order are implemented
in to the original method to improve the rate and time of
convergence and reduce the number of iterations.
Solving some examples indicates the capability of this
new algorithm in the hydraulic analysis of water supply
networks.

2. HARDY-CROSS METHOD

Hardy—Cross proposed a standard agorithm based on
systematic approximations and successive corrections.
Due to its simplicity, this agorithm is widely used in
the pipe network analysis. This method is based on two
principle criteria

The sum of inflows is equal to the sum of outflows
at each node (the continuity or mass balance
equation)[19].

aiQ:quorj=1,2,3,...,NJ @

where Q is the discharge in pipe i meeting at node j, g
isnodal outflow and NJ isthe total number of junctions.
1. The sum of head loss hf, around a closed loop is
equal to zero (theloss or energy balance equation).

a hf,=0 @)
Loop

The nonlinear relationship between the head | oss hfy and
discharge Q in a pipe k connecting nodesi and j may be
written as:

hf, = RQ( ©)

where Ry is a coefficient of resistance depending on pipe
roughness, its length and diameter and n is an
exponential constant; for Darcy-Weisbach equation
n=2 and for Hazen-Williams equation n=1.852.
Subsgtituting for hf, from Equation (3) into Equation (4),
the loss equations may be rewritten as:

3 RQ'=0

La.oop ka (4)
The set of Equations (1) and (4) produces a system of
nonlinear equations for pipe network analysis. Cross
converted this system into a scalar problem that may be
solved by hand calculations. Later on, other researchers
observed the above criteria as the necessary rules fornet
work analysis. In the Cross loop method initial
discharges in the pipes should sdtisfy the continuity
equations at the nodes. These discharges are
consecutively modified inthe analysis to satisfy the
energy equations for each loop with ahigh accuracy.

If the correction of discharge in aloop L is shown by
AQ,, the modified discharge of pipe k in this loop

would beQ, + AQ, . Asaresult, for n=2, Equation (3)
may be written as:
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hf, = R(Qc + 4Q, )* =

= R(QZ+2Q,4Q + AQ%) » 5
» R(QZ+2Q,4Q, )

Assuming AQ, to be small, the value of AQ? may be
neglected. Subgtituting Equation (5) in(2) we have:
an,=0p

a R(Q{)+ 24 RQAQ =0

Thus, the discharge correction may be obtained from
AR ahf

2aRQ g g’ﬂ? ©)
€Q g

AQ, =

For the general head loss-discharge relationship of
Equation (3), correction is calculated from

g - QRQ _ _ an
© naRQ™ ng 2 6" @)
&0

Thus, according to Equation(7) the value of discharge at
each loop is modified by dividing the total energy loss
to its derivative. Hardy-Cross formulation may aso be
presented in matrix notation. The dements of matrix
M,, is thus defined to clarifythe mutual situation

ofloops and pipes

i+l if theflowof pipekinloop L isdockwise
M, (kL)=1{ 0 if pipekisnotinloop L

-1 if theflow of pipek inloop L is counterclockwise
Obviously, we may deduce M, = M},

The diagonal matrices A, and D,; are defined as:

A n-1 u
gR1|Q1| |O|"'1 0 0 g
& 0 RIQ™ o 0 u
A =a G (8
g g O 0 0
g O O O RNPlQNF’ln-IH
éh n-1 U
&RIQ" 0 0 0 U
a 0 00 0 u
Puz=e o o . o U ©)
g i
g O 0 0 nR|Qw| H

where NP is the total number of pipes in the network.
Inmatrix form Equation (6) in the tth iteration may be
written as:

i M 31A1(ll)diag (Q(l)) (10)

AQ(‘) =
MDY

and the discharge in pipesare corrected in the t+1
iteration:

Q(”l) - Q(‘) + M 13AQ(‘) (11

3. INITIAL GUESS

One of the drawbacks of the loop method is its high
dependence on an appropriate initial guess for
discharges. In other words, when the initia dischargeis
close enough to the fina solution, the convergence
rateis high, and when itis far from the solution, thereisa
possibility of divergence. However, in typica
approaches there is no relation between the initia
discharge and the fina solution. In this section an
algorithmis proposed through which a specific discharge
is estimated for each pipe, as the initia guess. This is
usually very close to the fina solution while satisfying
the continuity equation. If the nonlinear 10ss Equations
(4) are propely linearized, the linear continuity
Equations (1) plus the linearized 10ss equations may be
solved using any classical direct or iterative method.
The results provide an acceptable initial discharge to
start the analysis of linear-nonlinear system of
continuity and loss Equations (1) and (4) with a
relatively small percentage of error. This initial guess
enters the range of possible solutions even in complex
networks. Using this approach to estimate avariable
initial dischargeis very appropriate, especialy for the
Hardy Cross method, because it frees the application
from searching in ranges that are far from the
actualsolution. Accordingly, assuming n=2, linearized
form of 1oss Equation (3) may be written as:

where Qnax IS the maximum discharge which may pass
the pipe k. It may be assumed equal to the total nodal
demands across the network, because no pipe can
passany flow greater than this. In Figure 1 parabolic and
linearized loss functions are plotted for comparison.

By solving the equations system of linear continuity
and linearized energy loss a proper initial guess to start
the calculationsis obtained. One of the advantages of
linearization of loss function is its flexibility in various
issues. This means that using this method in al water
supply networks in any geometric shape, the initial
guessis estimated in the area close to the final solution
and consequently the convergence process is
accelerated. This approach can be used for al network
andysis methods including the Hardy-Cross method, as
the initial guess. The matrix form of the initial guess
selection isas follows:

N

M 31Qmax R "

é u
Q(U) - X y (13)
g A v

21
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2
fiQ)=Qmax

fﬂ}=02

Figurel. Linearization of anon-linear function

In Equation (13) the vector (4 includes the noda

demands and the diagonal matrix R isasfollows:
Kk 00 0u
_&0 R0 0y
€ 0 .. 0U
€0 0 0 Ry

R (14

After solving the Equation system(13), vector Q@is
defined astheinitial guess. The effect of a proper initia
guessis explained in the examplesin Section?.

4. THIRD-ORDER NEWTONIAN METHODS

If more terms in Taylor expansion, are considered
around the point x, higher order derivatives of 2 will
arise. The calculation of these derivatives is very time
consuming and costly. For this reason, in the Newton—
Raphson method these terms are omitted.

But using some tricks we can obtain a higher order
of convergence without calculating second-order
derivatives. In this section a highly efficient third-order
method is introduced. This method was presented by
Darvishiand Barati[19] and itsalgorithm isas follows:
Xt = (0 _ [ J]'l(F(X(I) )+ F(X,(CM) )), (15)
X =X [T F()

(16)

Here, as the Newton—Raphson method, inversion of the
Jacobian matrix J is done only once in each iteration.
Function F isaso up dated twice.

5. SIXTEENTH-ORDER NEWTONIAN METHOD FOR
SOLVING NON-LINEAR EQUATIONS

Sixteenth-order Newtonian method agorithm  for

solving an on-linear equation was presented by Li et al.
[20].

f(X(‘))
©= 3O
T o)
202 yo 20 (x)-F(y©) F(y9)
21 (x5 (y©) T6)
wn = 0. f(2Z9)
KD = 70 fé:z(‘))_ a7

2f (z©)- £ (z9- 1 (z2V)/ 1 €2V))
2f (2O)-5f (2O - £ (2D) /1 2D))
L f@EO-1@EW)/ fe9))
f q;z(t))
This method is presented for an on-linear equation and
can be used to improve the performance of the Hardy-
Cross method.

6. APPLICATION OF HIGHER-ORDER METHODS IN
HARDY-CROSS EQUATIONS

As mentioned, the Hardy-Cross algorithm is a very
simple method for hydraulic analysis of water supply
networks. In this method there is no need to solve linear
equation systems at each iteration. However, problems
of convergence, dependence on initia guess, and the
lack of a systematic structure, made this approach give
place to the other agorithms after the entrance of
computers. In this section a matrix form for the Hardy-
Cross method is provided for the first time, and the
convergence problems are fixed using higher-order
methods. Thus the Hardy—Cross method turns to a very
powerful algorithm for the analysis of water supply
networks. The Hardy—Cross loop method is combined
using the algorithm (15) and (16) to improve the
convergence process. Thismethod is called HCQ1.

M 1 = M 31D1([1)
©- oW &M, 0
yv=Q%-M e
&M, g (18)

M, = M, A diag (")
&M ,+ M, 0

Q(‘*l): Q(‘)_Mlag v
e 1 %]

In the above equation, the matrix A¢ isthe matrix Al

which is updated using variabley .If you use the
algorithm (17), the sixteenth-order Hardy-Cross method
is obtained. This method is called HCQ3. In the above
equation, A¢) and D¢’ are matrixes AV and D) which

are updated by variables of z") . Matrix A is updated

by variablex!. It should be noted that the division

operator in these algorithms(e.g. M, ) includes one to
Ml

one dividing of matrix elements.
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M 1 = M 31D]QL)

M, = M,Aldiag (Q")
&M, 0

y(‘):(;)(‘)_|\/|13(;’\/|2+
eVii g

M, =M, Ad diag (v)

&M, (2M,-M )/ (2M,-5M ;)6
13 ¢ M +

e 1 2
M,=M,Dg) (19
M, =M, Agdiag (z(‘))

20 = yO

oM, o
“IML 5
M, =M 31Afl}ﬁ‘)diag(xm)

QY = X(|)_M13§M5(2M5—M5)/(2M5—5M5)t:_5
MA 2

x®O = 20 M

TABLE LlInformation of water supply network related to
numerical example 1

Node

Pipenumber  Q (I/9) R number (I?s) H(m)
1 800 15625 0 <1000 100
2 200 50 1 100 99
3 100 100 2 200 98
4 400 125 3 300 o7
5 200 75 4 400 9
6 100 200
7 100 100

TABLE 2. The residua of energy equation in network |oops
(meter) for numerical example 2

7. 1. Numerical Examplel Consider the loop
network in Figure 2 having 5 nodes and 7 pipes
[21].The pipe resistance coefficient R and with drawal
discharge in each node g are shown in Table 1. Node
zero is a gorage reservoir with ahead of 100 m which
enters a discharge of 1,000 liters per second into the
network. After the hydraulic analysis, the final values of
the pipes’ discharges Q and heads H are also listed in
Table 1. The equation of head loss is obtained based on
the Darcy-Weisbach equation. Hardy-Cross method and
itsthird and sixteenth-order versions are used to analyze
the network. The dimensionless parameter of remaining
norm isused for the comparison of algorithms:

() 3 ()

|el= mex|s| = meaxl—
X

(20)

According to the algorithm in Section 3, the variable
initial guess is obtained by linearization of energy loss
equations. In Figure 3, the variable initial guess is
displayed along with the final solution. According to the
figure, the variable initial guessisvery closeto the final
solution and is suitable for embarking on a careful
andysis. When the accuracy of the solutions is not
important, this initial guess can be taken as the fina
solution.

TABLE 3. The residuad of energy equation in network |oops
(meter) for numerical example 2 with proposed initial guess

L oop Energy L oop Energy

number equation number equation
1 -1.39E-16 6 -8.88E-16

2 0.00E+00 7 -2.22E-16

3 0.00E+00 8 0.00E+00

4 -2.22E-15 9 -2.19E-15

5 -2.22E-15 10 -9.85E-16

11 -1.78E-15

L oop Energy L oop Energy
number equation number equation
1 -0.3479686 6 -1.6929067
2 3.9919509 7 2.84489
3 -0.8672334 8 1.1994404
4 3.6113804 9 -8.3988539
5 -1.7529815 10 -0.6786989
11 -4.2989381

i 1000 Vs

400 Vs

4 300 Vs 3

Figure 2. Schematic representation of the three-looped pipe
network [21]
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\ /\ -~ Proposed Initial Guess
) \ / \
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0.1 N

Discharge (cubic meter per second)

0

1 2 3 4 5 6 7
Node Number

Figure 3.Comparison of proposed initial guess with final
solution
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Figure 4. Convergence of different Hardy-Crass agorithms
for numerical example 1

In Figure 4 the convergence trend of different
algorithms is displayed. The Hardy—Cross method
reaches a convergence with the precision of 10716 after
about 55 iterations. The third-order method HCQ1 has a
steeper dope compared with the Hardy—Cross method
and reaches a convergence with the precision of zero at
the 27" iteration. The 16™-order method HCQ3, with the
maximum dope, converges faster than the other
methods. It is worth to note that at each iteration in this
method we have only a few scalar divisions and the
linear system of equation is not solved. Among the three
recent agorithms, the methods of HCQ3 and HCQ1
respectively, have a better performance because they
have the lowest computational cost and an appropriate
convergence slope.

7. 2. Numerical Example 2 In this example, water
supply network of the town of Farhadgard, near the city
of Mashhad, is analyzed. The water supply network
with 66 pipes, 57 nodes, and twovalves, with a loss
coefficient of 10 is displayed in Figure 5. The
mentioned valves arein Al and A2 areas.

The network onlyhas are servoir with a head of 510
m. Since pipes are not crossing over each other and
spread over the surfacewe can simply determine the
relation between pipes and loops in the matrix M 3.

In this section, three methods of Hardy-Cross, third-
order Hardy-Cross and 16™-order Hardy-Cross, with
variable initial guess are used in network analysis. In
Figure 6 the convergence trend is displayed based on
the residual norm and number of it erations. Hardy-
Cross, third-order and 16™-order methods converge at
200, 120 and 65 iterations, respectively. The residua
norm in all three methodsis 10716, Residua of energy
equations are illustrated in Tables 2. Solutions are
highly accurate, at each iteration of the 16"-order
method there is no need to solve the linear system of
equations and the computationa cost isvery small.

In Figure 7, the variable initial discharge is
compared with the pipes’ final discharge. The solutions
ae veay closeln Table 3 the residual of energy
equations of each loop are given for variable initia
guess. Continuity egquations are well established but the
energy equations are less accurate. When accuracyis of
low importance, we can consider the initial discharge as
the final solution, with a good approximation, by
solving thelinear system of equations only once.

7. 3. Numerical Example 3 Consider two regular
loop networks with NxN nodes (as shown in Figure8) in
which N (number of nodes in each row or column) is
equal to 10 and 25, and the volume of calculations
highly increases with the increase of N.

s 3).‘19;‘ P

Figure 5. Water suppiy network of the city of Farhadgard
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Figure 6. Convergence of different Hardy-Crass agorithms
for numerical example 2
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Discharge (cuble meter per second)

Node Number

Figure 7. Comparison of proposed initial guess with final

solution

Figure 8. An NxN pipe network

TABLE 4. Comparison of convergence time of different
algorithms for numerical example 3

10x10 25x25
algorithm Time N_umb(_ar of Time N_umb(_ar of
() iteration () iteration
Newton-
Raphson Q 0.08 5 2.991 6
Newton-
Raphson 0.03 5 0.609 6
Q-H (GGA)
Newton-
Raphson AQ 0.02 5 0.588 6
Hardy-Cross 0.04 335 0.594 2213
HCQ3 0.04 83 0.158 122

The nodal demand in each node and the pipe
resistance coefficient, R, in each pipes has been selected
using random numbers. The minimum R equals 4.63
and the maximum R is 996. The minimum nodal
demand equals 0.0023 and the maximum noda demand
i$0.996 cubic meters per second. The hydraulic analysis
of this network is performed by the Newton—Raphson in
equation Q, global gradient algorithm (GGA), Newton—
Raphson in equations AQ, Hardy-Cross and 16™-order
Hardy-Cross methods. The method of Newton-Raphson
in equations Q or the improved method of linear theory
which was presented by Wood is currently being used in
KYPIPE software. The global gradient algorithm is in
fact the method of Newton-Raphson in equations Q-H
used in the EPANET software. The method of Newton-
Raphson in equations AQ presented by Epp and Fowler
includes the simultaneous modification of discharge in

the loops of networks. The agorithm of variable initial
guess has been used in each of the methods. The
stopping criterion in all methods is fulfilled when the
resdual norm reaches tol0~%¢. In Table 4, the
convergence timesin different methods are given for the
two networks. In 10x10 network, all methods converge
in less than a tenth of a second. The minimum
convergence time belongs to the Newton-Raphson
method in equations AQ and the maximum convergence
time is observed in the Newton-Raphson method in
equations Q. The convergence timein 25 x 25 network
increases due tothe increased number of unknowns.
With the increase in the coefficients matrix size in
Newton—-Raphson methods, computational cost of
inversion  operation aso increases.  Minimum
convergence time belongs to the 16"™-order Hardy-Cross
method, since it does not need to solve the linear system
of equations. The number of iterations in Newton—
Raphson method is less than Hardy-Crossmethod, but
the Hardy-Cross method have a much less
computational cost in each iteration. Thus, considering
the time and volume of calculations, the 16™-order
Hardy-Cross method has the best performance.

8. CONCLUSIONS

In the present paper, Hardy-Cross method was
reviewed, examined and displayed in matrix form.
Disadvantage of Hardy-Cross method is the requirement
of establishing continuity equations at the beginning of
the analysis, such that the selection of improper initial
guess dows down the convergence trend and in some
cases divergence occurs. A method for sdlecting the
initial guess was proposed to overcome this
disadvantage. The solutions obtained from the variable
initial guess areso close to the final solution and the
continuity equations are satisfied. The use of this
methodat the beginning reduces the number of
convergence iterations in Hardy—Cross method. This
method was combined with third-order and 16"™-order
algorithms to speed up the analysis. The combined
algorithms converged to solution with fewer iterations.
Solving three examples indicated that the convergence
time of 16™-order Hardy-Crossmethod is less than
Newtonian analysis methods. In this method, there is no
need to solve linear system of equations at each
iteration.
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