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A B S T R A C T  

   

Tensile stress-strain curve is of high importance in mechanics of materials particularly in numerical 
simulations of material deformations. The curve is usually obtained by experiment, but is limited by 
the necking phenomenon. Engineering stress-strain curve is converted to true stress-strain curve 
through simple formulas. The conversion, however, is correct up the point of necking. From this point 
on, the curve should be corrected taking account of stress triaxiality. Over the past several decades, a 
number of methods such as Bridgeman correction technique have been proposed. In this investigation a 
new technique based on strain energy in introduced. Strain energy is assumed to be equal to the 
external work in tensile test. The energy method is compared with different approaches such as 
Bridgeman-Leroy, Bridgeman, Davidenkov, Siebel and optimization aided numerical simulation. The 
results indicate that the energy method prediction is very close to numerical simulation, but at the same 
time it does not differ too significantly from the other approaches studied in this investigation.  
 

doi: 10.5829/idosi.ije.2014.27.08b.15 

 
 

NOMENCLATURE     
a Diameter of neck section σ , σ ,σθ  Longitudinal, radial, tangential stresses σ   Equivalent/corrected stress 
R Curvature radius dε   Equivalent strain W  External work 
CF Correction factor dε , dε , dεθ  Longitudinal, radial, tangential strains U   Elastic strain energy 
ε   Necking strain U   Plastic strain energy r = f(z)  Neck profile function 
σ   Necking stress H  Head loss energy K, n Power law material model parameter 
ε  True strain u  Strain energy density OBJ(x, y) Objective function 
σ  True stress W     External work done from start point to final u , u   Displacement in the r and z direction  S  Engineering stress U     Strain energy from start to final point A   Initial area e  Engineering strain U    Strain energy in un-neck part of specimen V   Initial volume 
ε    Average longitudinal strain  U   Strain energy in neck part of specimen V    Un-neck volume of specimen L   Initial length  u     Strain energy density from start to necking L   Final length A   Final area u      Strain energy density of element   

 
1. INTRODUCTION1 

 
True stress-strain curve represents the yield surface of a 
material and is an essential requirement in the theory of 
plasticity, particularly in simulations of large non-linear 
plastic deformations. True stress-strain curve (TSS) is 
obtained from engineering stress-strain curve (ESS) 
which in turn is computed from load-displacement 
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normally obtained from tensile test. The conversion of 
ESS to TSS, however, holds only up to the onset of 
necking where stress becomes triaxial and the resulting 
curve should be corrected to take account of stress 
triaxiality. The correction of stress-strain curves after 
necking has been the subject of many investigations 
over the past several decades. Some of the 
investigations are very complicated and not applicable 
in practice. On the contrary, some of the investigations 
are so simplified and yield only approximate correction.   

 

 

mailto:gh_majzoobi@basu.ac.ir


G. H. Majzoobi and F. Fariba / IJE TRANSACTIONS B: Application  Vol. 27, No. 8, (August 2014)  1287-1296               1288 
   

It seems that the first investigation was performed by 
Bridgeman [1] who presented a comprehensive analysis 
of stress and strain in neck area and proposed a 
correction factor (CF), based on neck geometry, as 
follows:   =   1 +       (1 +    )   ,   =   .σ      (1) 

In this correction method, the ratio R/a plays an 
important role in computing the correction factor. R and 
a are the radii of the neck curvature and the narrowest 
neck section, respectively. This ratio must be computed 
during tensile tests at some time intervals. This is a 
tedious and time consuming task which is accompanied 
by approximations which arise from simplifying 
assumptions made by Bridgeman in his theory. Later, 
Davidenkov and Spiridonova [2] and Siebel and 
Schwaigere [3] separately proposed different relations 
for correction factors as follows: 

1
1 ( / 2 )

CF
a R

 
=  + 

(Davidenkov),  

11
1 ( / 4 )

CF
a R

 
=  + 

(Siebel) 
(2) 

The correction factors proposed by Bridgeman, 
Davidenkov and Siebel are known as classic relations. 
One of the main difficulties associated with the classic 
relations is the measurement of radius of curvature of 
the neck during tensile test. In 1981 Leroy [4] proposed 
a relation for calculation of the neck curvature radius. 
The relation is expressed in terms of the current strain,  , and the strain at the onset of necking,   , as follows:   = 1.1(ε − ε )  (3) 

Leroy et al. [4] have shown that for a wide range of 
metals, the approximation due to the use of Equation (3) 
for computing the ratio R/a is less than 25%. By 
appearance of finite element method in mechanical 
engineering, researcher employed finite element codes 
and programming to model the necking phenomenon. 
Finite element capabilities enabled the researchers to 
correct the stress-strain curves and investigate stress and 
strain distributions in the neck area. Niddleman [5] used 
finite element method for modeling the necking 
phenomenon based on boundary problems and 
plasticity. In 1998 Brunig [6] analyzed cylindrical 
specimens under tension using large deformation finite 
element analysis. Niordson and Redanz [7] modeled 
necking in a thin rectangular plate using the strain 
gradient plasticity theory already introduced by Fleck 
and Hutchinson [8]. Their model is based on the delay 
between maximum load and the onset of necking. Koc 
and Stok [9] analyzed stress distribution in neck area 
using Abaqus software and introduced the inverse 
method for correction of stress-strain curve. He also, 
optimized the difference between load-displacement 
curves from test and numerical simulation for stress-

strain curve correction. Tang and Lee [10] analyzed 
necking in a bar under simple tension using a coupled 
strain hardened and damage models. He studied the 
effect of damage model on the necking phenomenon. 
Since necking is inherently a consequence of damage 
(void growth and coalescence), coupling of material 
model with damage model can significantly improve the 
correction techniques.  Ling [11] introduced a special 
function for describing the relation between stress and 
strain after necking. He obtained the function by 
numerical simulation using Abaqus. His analysis was 
based on optimization of the difference between 
experimental and numerical load-displacement curves. 
A number of creative correction techniques have been 
proposed by researchers such as Mirone [12]. His 
method is applicable to a wide range of metals. Mirone 
[12] presented some criteria independent of the type of 
material and introduced relations for stress-strain 
correction. Coppieters et al. [13] presented an 
alternative method to identify the post-necking 
hardening behavior of sheet metal. His method is based 
on the minimization of the difference between the 
internal and external work in the necking zone during a 
tensile test. Eduardo [15] presented an experimental-
numerical methodology to derive the elastic and 
hardening parameters which characterize the material 
response. Yang and Cheng [16] introduced a damage 
mechanics based model to describe the progressive 
deterioration of materials prior to initiation of macro 
cracks. Majzoobi et al. [17, 18] identified the constants 
of Johnson–Cook, power law and Zerilli–Armstrong 
models in tension and compression using a combined 
experimental/ numerical/ optimization approach. The 
models take account of correction indirectly and there is 
no need for computing the correction factor directly. 
Gromada et al. [19] analyzed and estimated the 
accuracy of the well-known classical formulae for 
correction stress-strain curve. 

In this work, a new technique based on strain 
energy, called energy method, is introduced. The 
method is formulated using elementary plasticity. The 
corrected stress-strain curve obtained from energy 
method is compared with those obtained from the 
classic methods such as Bridgeman, Davidenkov, Siebel 
and Bridgemen-Leroy approaches. The method is also 
evaluated by numerical simulation of tensile test using 
Abaqus software. The profile of the neck is determined 
from each simulation. Genetic algorithm is employed to 
minimize the difference between the experimental and 
numerical neck profiles. The main objective in this 
investigation is to introduce the feasibility, basics and 
capability of energy method. Therefore, some 
simplifications are made into the method. The corrected 
stress-strain (CSS) curve is assumed to be constructed 
of two segments. The first segment follows a power law 
curve,  =    , which begins from the origin and 
extends to the point of necking onset. In fact, the first 
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segment corresponds to only uniform deformations. The 
second segment is assumed to be linear,  =   +  , 
begining from the point of necking onset and 
terminating at the point of fracture. The values of K and 
n are determined from a simple curve fitting to true 
stress-strain curve. The correction of stress-strain curve 
should in fact be applied to the line segment. Therefore, 
constants A and B are identified through energy and 
classic methods mentioned above. These trends can be 
applied to a considerable number of metals stress-strain 
curve. Nevertheless, as will be explained in the next 
sections, there is no limit for the kind of stress-strain 
trend used in energy method.  
 
 
2. THEORY OF ENERGY METHOD 
 
Engineering stress-strain curve obtained from load-
displacement curve can be converted to true stress-strain 
diagram through the relations [11]: σ = S(1 + e)ε = Ln(1 + e)  (4) 

in which e,  , S and    denote engineering strain, true 
strain, engineering stress and true stress, respectively.  
Equations (4) hold up to the point of necking. True 
strain can also be computed from the relation [12]: ε  = Ln     = Ln    = 2Ln     (5) 

in which A, L and D are cross sectional area, length and 
diameter, respectively. The diameter, D, of the specimen 
must be determined from tensile test using a speed 
camera along with some graphical manipulation known 
as image processing. This technique is used to determine 
the diameter of specimen which in turn is used for 
calculation of stress and strain (strain is calculated from 
Equation (5) and stress is computed from P/A).  In this 
technique, some marks are printed on the specimen 
before deformation. The marks are displaced during 
deformation. The displacement of the marks is recorded 
using a camera with 30 fps (frames per second). Also, 
the diameter, profile and length of the specimen’s neck 
are measured from the recorded images of the specimen 
versus time. The diameter is used for calculation of true 
stress and strain and the neck profile is used for 
calculation of R which is needed for computing 
correction factor in Bridgeman and some other methods. 
The subscripts 0 and f also denote the initial and final 
values of the dimensions, respectively. The stress-strain 
curve obtained using Equations (4) and (5) must be 
corrected after the point of necking. As a matter of fact, 
stress triaxiality at neck area necessitates the stress-
strain diagram to be corrected. Effective stress and 
strain for an axisymmetric analysis which is the case for 
tension of a cylindrical specimen are given by [11]:   =  √ [(  −   ) + (  −   ) + (  −   ) ] /   (6) 

dε = √  [(dε − dε ) + (dε − dε )  +  (   −    ) ] /   (7) 

where r, z and  , are radial, longitudinal and tangential 
directions of the stress and strain components, 
respectively. From the volume constancy in plastic 
deformation we have [11]: dε + dε + dε = 0  (8) 

In axisymmetric deformation we can write: dε = −2dε = −2dε   (9) 

Substituting Equation (9) in Equation (7), we get:    =      (10) 

The corrected stress-strain curve can be presented in 
different forms. In some cases, it is displayed only in 
graphical form. However, in most cases, the corrected 
curve is described by empirical equations such as 
Holomon, Ludwick constitutive equations, etc. It can be 
assumed that for a conservative system (neglecting the 
effects of friction and hysteresis) the external work 
which is the area under the load-displacement curve is 
equal to the internal energy which is related to the area 
under the stress-strain curve. This assumption can be 
expressed as follows:  =   +  +   (11) 

in which  is the external work, H the loss of energy 
due to friction, etc. and    and    are elastic and plastic 
strain energy, respectively. If the effect of strain energy 
which is small compared to plastic energy and the loss 
of energy are neglected, then we will have:  =   =    (12) 

where, the external work can be expressed by [13]:   = ∫ .    (13) 

P and   represent the load and displacement in tensile 
test, respectively. For more accuracy, extensometer is 
used for measuring the elongation of the specimen. On 
the other hand, strain energy per unit volume is defined 
by [14]: u = ∫σ  dε    (14) 

For an axisymmetric tensile specimen, Equation (14) 
can be rewritten as: u = ∫(σ dε + σ dε + σ dε )  (15) 
Using Equation (9) we can write: u = ∫(σ dε − 0.5σ dε − 0.5σ dε ) = ∫  σ −  (σ + σ ) dε   (16) 

From the elementary plasticity we have[11]: dε =       σ −   (σ + σ )   (17) 

combining Equations (10), (16) and (17), yields: 
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u = ∫       dε  dε = ∫ σ dε   (18) 

This equation implies that the area under the effective 
stress-strain curve is equal to the strain energy density 
in a tensile cylindrical specimen. The equation is the 
basis for the current investigation. The equality of the 
areas under engineering and true strain curve which 
extends to the point of necking can be proved by 
differentiating from Equation (4) as follows: dε =      … . . σdε = S(1 + e).      = Sde  (19) 

Therefore, we can write: ∫ σdε = ∫ S de    ε 
ε       ε ≤ ε   (20) 

From Equations (12), (20) and (18) one can write:     = ∫ Sde    = ∫ σdεε 
ε ε ≤ ε   (21) 

Equation (20) does not hold after necking. The reason is 
that each point in neck area experiences different stress 
and strain. Therefore, a different equation is required for 
describing the relation between engineering and true 
stress-strain curves after necking. This is accomplished 
using energy method in this work. The maximum stress 
and strain occurs in the neck area. However, the stress 
and strain experienced by other points located on 
different sections lie exactly on the same stress-strain 
curve. Therefore, for determining the strain energy of 
specimen the following equation must be used: U = ∫ u. dV = ∫ ∫ σ dε . dV  (22) 

For computing the energy from Equation (22) we need 
to have the stress distribution within specimen. This is a 
difficult task. Here, a new approach is proposed for 
computing the strain energy as follows: W   = U     (23) 

where     and      are the external work and the 
strain energy of the specimen, from start till final point 
respectively. Strain energy can be written as: U   = ∫ ∫ σ dε . dV      (24) 

We can divide the strain energy of specimen into two 
parts. Part one is the strain energy in the un-necked 
region where deformation is uniform. Part two 
corresponds to the strain energy in the neck region. We 
can write: U   = U  + U   (25) 

where       is the strain energy in the un-necked part 
and    is strain energy in the neck region of the 
specimen. We have:    =     .     (26) 

where     is the strain energy density from 0 to the 
necking onset. 

 
Figure 1. The energy of a disk type element in neck area 
 
 
In order to compute the energy equation from tensile 

test in neck region (  ), an infinitesimal cylindrical 
element is considered in the neck region as shown in the 
figure  . A key point is that equivalent stress in neck 
section is the same over the entire area of the section. 
This is one of the assumptions in Bridgeman method 
with the maximum error of around 0.5 percent [19]. 
This assumption has been used by some other 
researchers such as Eduardo and Celentano [15] as well 
and is considered in the numerical results presented in 
this work too. Therefore, each element can be 
considered as a solid disk with constant equivalent 
stress. For this element in neck region, the total strain 
energy can be written as: dU =  ∫ σ dε     . dV = u    . dV  (27) 
where    is equivalent strain corresponding to the 
element. Also,      is the strain energy density of the 
element that equals to area under strain-stress curve till 
the point of the element fracture strain. This is shown in 
Figure 1. The volume of the element can be expressed 
as follows:  V = π. r . dz  (28) 
where r is the radius of the element and can be 
expressed by r=f(z). By substituting Equation (28) into 
Equation(27), strain energy density of the element can 
be determined as follows: dU = u    .π. {f(z)} . dz  (29) 
Therefore, the total strain energy for specimen can be 
written as:   = ∫    = 2 ∫  ∫            /  .  . { ( )} .    (30) 

where    is the neck length of specimen which is 
determined using image data obtained from tensile test. 
By substituting the strain energy from Equation (30) and 
Equation (26) into Equation (25),we get: U   = u   V  + 2 ∫  ∫ σ dε       /  π{f(z)} .    (31) 

Equation (31) gives the total strain energy of specimen. 
This equation can be written in different form as 
follows: 
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∫ σ dε    = ∫ σ dε    + ∫ σ dε = u   + ∫ σ dε           (32) 

The second term in Equation (31),can be written: ∫  ∫            /    = ∫      + ∫               /    (33) 

We can write: ∫ u   . dV = u   .∫ dV =  /    /    u   . V   (34) 

where,    is the neck volume of specimen. By 
substituting Equation (34) into Equation (33), and using 
Equation (31) with volume constancy principal in 
plastic deformation we obtain: U   = u   . V + 2 ∫  ∫ σ dε        /  .π. {f(z)} . dz  (35) 

Having determined the strain energy of the specimen, 
we can write the energy balance equation for a 
cylindrical specimen in tensile test as follows: W   = ∫ P. dδ   = U   = u   . V +2 ∫  ∫ σ dε        /  .π. {f(z)} . dz  

(36) 

This equation can be used for computing the corrected 
stress-strain curve. For this purpose, Equation (36) must 
be solved by a numerical method. We assume a linear 
relation between stress and strain after necking (as 
stated before) and a second order polynomial for the 
profile of neck as follows:   =    +    (37)  =     +    +     (38) 
These assumptions are quite optional and the method 
presented here, can accommodate any other trends for 
stress-strain curve and neck profile. By substituting for   and r from Equations (37) and (38) into Equation (36) 
we get: ∫ P. dδ   = u   V + 2 ∫       ε  − ε    +      B(εe−εN) +  π C1z2 + C2z + C3 2 dz  

(39) 

By rearranging Equation (39) in terms of A and B, we 
obtain: Aπ  ∫   ε  − ε   (C z + C z + C ) dz        +2Bπ  ∫ [(ε − ε ). (C z + C z + C ) dz]          = ∫ P. dδ   − u   . V   

(40) 

On the other hand, the stress-strain relation after 
necking can be written for the point of necking onset. 
Therefore, we can write:   =    +   (41) 
From the simultaneous solution of Equations (40) and 
(41), the values of A and B can be determined. 
 
3. TENSILE TEST AND SPECIMEN 
 
Tensile tests were conducted on a 60 tons Instron testing 
machine. Specimens were made of steel st304 prepared 

according to the standard ASTM-E8 [20]. The dog bone 
type specimens had a gauge length of 55 mm and a 
diameter of 9.86 mm. The tensile tests were carried out 
at 5 mm/min at room temperature. A DCR-HC32E 
handy cam with 30 frames per second was used to 
capture the deformation of specimens before and after 
necking. From the recorded images, the dimensions and 
profile of the neck were measured. The resolutions of 
the images were enhanced using graphical software and 
the required data were extracted using point detection 
software named as Gate Data and Digitizer. Typical 
deformation of marked specimens is illustrated in 
Figure 2. The load-displacement and stress strain curves 
of the specimen are shown in Figures 3 and 4, 
respectively. The engineering stress-strain curve, the 
true stress-strain diagram obtained using Equation (4) 
and the true stress-strain curve extracted from image 
processing (strain is calculated from Equation (5) and 
stress is computed from P/A) are illustrated in Figure 4. 
As the figure suggests, the two types of the true stress-
strain curves are quite different after necking. In order 
to validate the image processing used in this work, the 
smallest neck area was measured from the images taken 
by camera and was calculated using the relation[11]:  =   ( )    (42) 
The results are illustrated in Figure 5. As the figure 
suggests, the results of both methods nearly coincide up 
to the point of necking. After necking, the two methods 
yield different predictions due to invalidity of Equation 
(42) after necking. This validates the image processing 
technique used in this work on one hand and confirms 
the invalidity of Equation (4) for computing true stress 
and strain after necking on the other hand. From a curve 
fitting to the true stress-strain curve and using a 
piecewise function defined by a power law followed by 
a line, we can easily obtain:    =     ≤   ,    = 1948  ,    = 0.46 =   +   >   ,    = 1287    = 767   (43) 

 
 

 
Figure 2. Two sequences of a tensile test 

 

 
Figure 3. The load-displacement curve of the specimen 
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Figure 4. Stress-strain curves obtained using different 
approaches  
 

 
Figure 5. Variation of neck cross sectional area versus time 

 
TABLE 1. Three dimensions measured through image 
processing 

The length of 
neck region 

(mm) 

Diameter of 
unnecked region 

(mm) 

Diameter of 
neck (mm) Time (s) 

No neck 9.86 9.86 start 
No neck 9.36 9.36 60 s 
No neck 9 9 120 s 
No neck 8.55 8.55 210 s 
No neck 8.09 8.09 320 s 

10.7 8.18 7.64 360 s 
12.7 8.18 7.27 370 s 
13.6 8.18 6.36 380 s 
20.91 8 6.14 Fracture 

 
The stress-strain curve obtained using Equation (43) 
coincides exactly with that shown in Figure 4. This 
illustrates the accuracy of the constants obtained from 
curve fitting. However, the true stress-strain shown in 
Figure 4 is not usable after necking and should be 
corrected taking account of stress triaxiality after 
necking. Three dimensions were measured from image 
processing at different times. These were: smallest neck 
diameter (a), diameter of specimen in uniform 
deformation zone (r) and the length of neck area (LN).  
These dimensions will be used for numerical 
simulations and also for energy method which is the main 
subject of this work. The results are given in Table 1. 

  
  

4. INPLEMENTATION OF ENERGY METHOD 
 
The calculation of strain energy could be performed in 
two steps, before and after necking. The following 
information is needed for energy calculation: 

1- The load-displacement curve which is obtained from 
tensile test. 

2- The initial length and volume of specimen, L0, V0. 
3- The smallest neck diameter, a, the final length of 

specimen, Lf, the neck length, LN. 
4- The strain at the onset of necking, εN, which can be 

obtained from true stress-strain curve shown in 
Figure 4. 

5- The constants of profile relation given by Equation 
(38). The constants are determined by fitting the 
experimental neck profile to a 2nd order polynomial. 
This profile is not needed for the method of dividing 
the neck area into disk type elements. By writing a 
simple algorithm, the energy can be computed. The 
algorithm follows the procedure as described in the 
following sections. 

 
4. 1. Before Necking      In this case, the stress and 
strain are uniformly distributed in the specimen. 
Therefore, using a trapezoidal rule, true stress for a 
known strain can be computed from the relation: [(  −   ) × 0.5(  +   )] = [(  −   ) ×      ]  (44) 
where,       is the corrected true stress.Using this 
procedure we end up with a stress-strain curve which 
was already obtained in section 3 and was shown in 
Figure 4. The resulting stress-strain curve is exactly 
similar to true stress-strain illustrated in Figure 4.  
 
4. 2. After Necking     In the first type of energy 
method, the profile of the neck exactly before fracture is 
needed. The profile can be obtained using a projector. 
Assuming a second order polynomial for defining the 
experimental neck profile we can write:  = 0.011  + 0.2 + 3.06  (45) 
The neck profile obtained from image processing and 
Equation (45) are compared in Figure 6. As the figure 
suggests, Equation (45) accurately represents the neck 
profile. Therefore, this equation can be used with 
confidence for application of energy method. The 
volume of neck area calculated using Equation (45) and 
the experimental profile using image processing are 
compared in Table 2. As it is seen, the difference is so 
small and negligible. Variation of external work versus 
displacement and the external energy versus strain are 
depicted in Figures 7 and 8, respectively. 
 

 
Figure 6. Comparison between the neck profiles from image 
processing and Equation (45) 
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Figure 7. Variation of external work versus displacement 

 

 
Figure 8. Variation of external energy versus strain  

 
TABLE 2. Comparison between the measured and the 
computed neck volumes  
Initial volume of specimen (mm3) 4317.5 
The volume of uniform region after fracture (mm3) 3374 
The neck volume computed from the above two 
measurements (mm3) 943.5 

The neck volume computed from the proposed neck 
profile (mm3) 912.34 

Error in volumes % 3.3031 
 
 
It is assumed that after the onset of necking, 
deformation accumulates only in neck area. In order to 
express Equation (40) in terms of the constant A and B, 
it must be integrated using a numerical method. The 
procedure of the method can be summarized as follows: 
I. The strain at necking onset, εN, and its corresponding 
stress are obtained from Figure 4. Substituting these 
parameters in Equation (41) we can write: 1363 = 0.46 +    (46) 
The energy density,     , is measured from area under 
true stress-strain curve extending from origin up to the 
onset of necking. The strain energy due to uniform 
deformation is obtained from     =     .   . The 
energy of uniform deformation for the test conducted in 
this work, is obtained 1.84 kJ and its density u   =426.4 MJ/  .This is the total strain energy of the total 
volume of specimen before necking. 
II. The total external work from the beginning till 
fracture, is measured from load –displacement curve, or 
from Figure 7 as: ∫  .      = 1986810 . 
III. The constants of profile equation are determined as 
Equation 45. 
In this method, for integrating Equation (40), neck 
region is divided to n=100 disks with equal length, ∆ =0.1. The region begins from  = 0 and extends to 

 =    = 10.45    . The coordinate z for each diskis 
calculated by  = ∆ +     .After calculation of z, the 
radius of disk can be computed from Equation (45). 
IV. Longitudinal strain,   , for each disk is calculated as 
follows:   =        ,   =   = −2    (47) 

where r is the average radius of the disk that is 
calculated in step ii and r0 is the initial radius of 
specimen. It is to be mentioned that longitudinal and 
effective strains are equal (see Equation (10)).The 
computed equivalent strain is then substituted in 
Equation (40). After substituting the computed 
parameters, εN and u   (from step i),   (from stepiv), r 
(from step iii) and the external work (from step ii) into 
Equation (40) and integrating, the equation reduces to: 40.378 + 113.853 = 145828(48) 
V. Equations (46) and (48) are solved to give the values 
of the constants A and B: 
A= 779.617 and B=1004.378. 

 
5. VALIDATION OF ENERGY METHOD 
 
The constants A and B are determined using several 
approaches. Optimization aided numerical simulation, 
Bridgeman-Leroy method and Bridgeman, Davidenkov 
and Siebel approaches are used for validation of energy 
method. 
 
5. 1. Numerical Simulations      Numerical simulation 
is used for validation of energy method. For this, the 
constants A and B are computed through simulation of 
tensile test and necking. In this approach, A and B are 
determined in a way that the experimental and 
numerical profiles of neck coincide. In order to do this, 
Genetic algorithm is employed to minimize the 
difference between the two profiles. Numerical 
simulations are performed using Abaqus software. 
Because of symmetry, only ¼ of the specimen is 
modeled. The model consists of 840 elements of the 
type CAX4R. This number of elements corresponds to 
the convergence of the results. The numerical model, its 
boundary conditions and a typical deformation after 
necking are shown in Figure 9.  The lower surface of the 
specimen (z=0) is constrained against movement in z-
direction(  = 0). The specimen is loaded by applying 
a displacement of   = 155   in z direction which 
simulates exactly the position control loading in the 
tensile tests. An objective function is defined as follows 
[18]: OBJ(x, y) = a + a x + a y + a xy + a x + a y +a x y   (49) 

where, x and y denote the unknowns A and B, 
respectively. On the other hand, objective function is 
also defined by: OBJ =  (d  − d  ) + (d  − d  ) + (d  − d  )   (50) 
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in which the subscripts e and n denote the experimental 
and numerical values of neck diameter. Three points on 
the neck are designated for the optimization process as 
shown in Figure 10. The points are located 5 mm apart 
with respect to the narrowest neck section. The 
experimental three neck diameters are measured through 
image processing technique. The numerical diameters 
are calculated for 7 different sets of A and B values as 
given in Table 3. The objective function is computed 
from Equation (50) and is substituted in Equation (49). 
The linear system of resulting seven equations is solved 
for the seven coefficients of Equation (50). The results 
are given in Table 4. The equation is then optimized 
using Genetic algorithm. The optimum values for A and 
B are obtained as A=807 and B=965. 
 
 

 
Figure 9. The boundary conditions and a typical deformation 
after necking 
 
 

 
Figure 10. The designated points on the neck area for 
optimization purpose 
 
 
TABLE 3. Seven different sets of A and B and their 
corresponding di’s 
Item A B 

MODEING TEST 
d1 d2 d3 d1 d2 d3 

1 1045 864 6.98 7.4 7.6 6.1 6.6 8.1 
2 870 938 4.8 7.34 8 6.1 6.6 8.1 
3 1203 798 6.06 7.2 7.92 6.1 6.6 8.1 
4 1100 841 7.52 7.8 8 6.1 6.6 8.1 
5 905 923 4.97 7.32 8.08 6.1 6.6 8.1 
6 607 1050 7.71 7.8 7.72 6.1 6.6 8.1 
7 703.5 1009 7.75 7.96 8 6.1 6.6 8.1 

 
 

TABLE 4. The constants of Equation 49  
a7 a6 a5 a4 a3 a2 a1 
0 -0.0798 0.0147 0 135.642 -32.535 -40413.38 

  
Figure 11. The experimental and computed profiles of neck of 
tested specimen 
 

 
Figure 12. Variation of the ratio R/a versus time 

  
 

5. 2. Bridgeman-Leroy Method     In this method, the 
radius of neck curvature and the correction factor are 
obtained through the Equations (1) and (3). As: A=758 
and B=1000.  
 
5. 3. Bridgeman, Davidenkov and Siebel(B-D-S) 
Approaches      In B-D-S models, the correction factor 
is a function of R/a in which R is the curvature radius of 
the neck. The neck profile is described by a second 
order polynomial. In this approach we can write:   =       =         (51) 

The profile of the specimen exactly before fracture, 
tested in this work and the second order polynomial 
describing the profile are shown in Figure 11. 
Therefore, for Bridgeman method we have:   =       =  .            =  .        =  .       (52) 
The R/a ratio is required for computing the correction 
factor in Bridgeman and some other methods. This 
parameter is conventionally measured from the fracture 
specimens. The two segments of the fractures specimens 
are put together and the radius curvature is measured 
using a projector which magnifies the neck region for 
more accurate profile and curvature measurements. 
However, using image processing technique the values 
of a and R are measured at different times in this work. 
At the necking onset, curvature and consequently the 
ration R/a are obviously very large but at the point of 
fracture the ratio reaches its minimum.  Variation of the 
ratio R/a versus time is shown in Figure 12.  
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Figure 13. Corrected stress-strain curves obtained using 
different techniques  
 
TABLE 5. The values of strain energy and the external work  
Item Energy (KJ) 
External work 1.98681 
Total strain energy of specimen 

1.84098 
before necking 
Strain energy of neck region 0.14583 
Total strain energy of specimen 1.98681 
% Error -0.00016 

 
TABLE 6. The values of A and B obtained using different 
approaches and their errors respect to numerical method.  

  Energy  Nume 
Bridg.- 

Bridg. David Sieb. 
Leroy 

A 
(Mpa) 

779.6 
(3.4%) 

807 758 
(6%) 

799 
(0.8%) 

755.6 
(6.5%) 

702.6 
(13%) 

B 
(Mpa) 

1004.4 
(4%) 965 

1000 
(3.6%) 

995.4 
(3.1%) 

1015.3 
(5.1%) 

1039.6 
(7.6%) 

Frac. 
Stress  
(Mpa) 

1784 
(0.6%) 1772 1758 

(0.8%) 
1794.3 
(1.2%) 

1771 
(0.1%) 

1742.3 
(1.7%) 

 
 
The curvature radius is the same for all the three 
methods. The values of A and B for each method is 
provided in Table 5. 
 
5. 4. External Work and Strain Energy     The values 
of external work and the total strain energy 
corresponding to the neck and uniform areas of the 
deformed specimen are compared in Table 5. The total 
energy has been computed from energy method and the 
external work has been calculated from the load-
displacement curve. As the table suggests the difference 
between the computed strain energy and the external 
work is absolutely small and quite negligible. This 
could be regarded as a benchmark for evaluating the 
accuracy of the method adopted in this investigation. 
 
6. DISCUSSION 
 
The values of A and B obtained using different 
approaches described in this work and their 
corresponding corrected stress-strain curves are 
provided in Table 6 and shown in Figure 13, 
respectively. It is hard to say which method gives the 

best accuracy particularly when the results for the 
proposed method, Bridgeman and Bridgeman-Leory are 
very close. If we take the optimization method as a 
benchmark, it can be observed from Table 6 that best 
agreement is obtained for energy method and 
Bridgeman approach. We compared the differences of 
the quantities with respect to their corresponding 
numerical values given in the 3rd row of Table 6. The 
differences are given in parenthesis in the same table. 
The methods can now be compared more clearly with 
each other. The first interesting point is that the 
differences(except one case for Siebel) are well below 
10%. As the results indicate and as far as A and B are 
concerned, Siebel gives the worst results and the 
proposed model and Birdgeman provide the best results, 
although differentiation between the proposed model 
and Bridgeman is difficult. We think that the dominant 
parameters in defining the corrected stress-strain curve 
are A and B and fracture strain is less important. The 
reason is that fracture strain is obtained from the 
fractured specimen. When the two parts of the broken 
specimens are put together to measure the neck section, 
the two parts usually don’t match exactly and therefore, 
the fractured neck diameter is always accompanied by 
some errors. As a result, we can conclude that the 
performances of the proposed model and Bridgeman 
model are close. It is a fact that all researchers have 
made some simplifications in their correction models. 
However, we may argue that optimization aided 
numerical simulations provide the most accurate 
prediction, because it provides the best agreement with 
the experiment for the neck profile. Having accepted 
this as the benchmark for assessing the accuracy of the 
models, we can see that the good agreement is obtained 
for the energy method discussed in this work. 
 
7. CONCLUSIONS 
 
From the results of this investigation, the following 
conclusions may be derived: 1: Energy method 
presented in this work, can be used with confident for 
correction of stress-strain curves. The method makes 
use of the principal of equality of strain energy and the 
external work for conservative systems. 2. In this work 
and for the sake of simplicity, stress-strain curve has 
assumed to follow a power law trend before the onset of 
necking and a linear trend after necking. However, the 
method is not limited by the type of trend of stress-
strain curve and can adopt any trend describing the 
stress-strain relation. 3. The method uses neck profile 
exactly before fracture and engineering stress-strain 
curve for obtaining the corrected true stress-strain curve. 
The profile is described by a second order polynomial. 
The method, however, can use other polynomials as 
neck profile. 4. The degree of correction enforced by 
energy method is not far from those predicted by other 
methods studied in this investigation.  
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  چکیده
  

ها عموماً از  این منحنی. ها از اهمیت فراوانی برخوردارند کرنش در مکانیک مواد و به ویژه در شبیه سازي-منحنی هاي تنش
کرنش مهندسی با -منحنی تنش. باشند آیند که به خاطر پدیده گلوئی شدن محدود می طریق آزمایش کشش به دست می

اما، این تبدیل تا نقطه آغاز گلوئی شدن . گردند کرنش حقیقی تبدیل می- اي به منحنی تنش ز روابط بسیار سادهاستفاده ا
هاي گذشته  دههطی . زیرا از این نقطه به بعد باید سه بعدي شدن تنش را در این تبدیل مد نظر قرار داد، معتبر است
در این تحقیق، یک روش جدید بر . اند شدهکرنش پیشنهاد -هاي تنش هائی مانند روش بریجمن براي تصحیح منحنی روش

در این روش، فرض بر آن است که انرژي کرنشی برابر کار خارجی انجام شده . شود اساس انرژي کرنشی معرفی می
 سازي به لئوري، بریجمن، دیویدنکو، سییبل و شبیه-هاي ارائه شده قبلی مانند روش بریجمن روش جدید با روش. باشد می

بینی روش انرژي بسیار نزدیک به  نتایج به دست آمده حکایت از آن دارد که پیش. شده استسازي مقایسه  کمک بهینه
هاي مورد مقایسه  اي با دیگر روش باشد اما در عین حال، تفاوت قابل ملاحظه سازي می سازي به کمک بهینه روش شبیه
 .باشد هر  دو می ،تخت و گرد هاي این روش قابل کاربرد براي نمونه. ندارد
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