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A B S T R A C T  

 
 

In this study, generalized differential quadrature analysis of elastic/plastic buckling of skew thin plates is 
presented. The governing equations are derived for the first time based on the incremental and 
deformation theories of plasticity and classical plate theory (CPT). The elastic/plastic behavior of plates is 
described by the Ramberg-Osgood model. The ranges of plate geometries are 0.5 ≤ a/b ≤ 2.5 and 0.001 ≤ 
h/b ≤ 0.05 under uniaxial uniform compression or biaxial compression/tension. Generalized differential 
quadrature (GDQ) discretization rules in association with an exact coordinate transformation are 
simultaneously used to transform and discretize the equilibrium equations and the related boundary 
conditions. The accuracy of the results are compared with previously published results. Finally, the effects 
of aspect, loading and thickness ratios, skew angle, incremental and deformation theories and different 
types of boundary conditions on the buckling coefficient are presented. Moreover, the effect of skew angle 
and thickness ratio on the convergence and accuracy of the method are studied. Due to the lack of 
published solutions for plastic buckling of skew thin plates and the high accuracy of the present approach, 
the solutions obtained may serve as benchmark values for further studies. 
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1. INTRODUCTION1 
 
Skew plates are extensively used in structures such as 
bridges and aircraft wings. The elastic buckling of skew 
plates has been studied by some researchers. However, 
to the best of authors' knowledge, the plastic buckling of 
skew plates is not available in open literature.  

The elastic buckling behavior of skew plates has 
been investigated by Anderson [1] using the energy 
technique. Durvasula [2, 3] applied Ritzmethod to study 
the behavior of clamped and simply supported skew 
plates. Fried and Schmitt [4], Mizusawa et al. [5-7], 
used a finite element, lagrangian multiplier, finite strip 
and Ritz methods to study the elastic buckling of skew 
plates. Kitipornchai et al. [8] and Xiang et al. [9] 
                                                        
1* Coresponding Author’s Email: kadkhoda@um.ac.ir (M. 
Kadkhodayan ) 

investigated elastic buckling behavior of thick plates by 
using Ritz method. York [10] studied the buckling 
solution of skew plate by applying the classical plate 
theory. Huyton and York [11, Wang et al. [12] and Wu 
et al. [13] applied finite element (ABAQUS software), 
differential quadrature and LSFD methods to study the 
elastic buckling of skew plates. Some researchers 
studied the elastic/plastic buckling of rectangular plate 
based on the incremental and deformation theories of 
plasticity. Durban [14] found out that the incremental 
theory can predict more buckling load in comparison 
with the deformation theory, and that the experimental 
data have more congruence with deformation theory. 
Durban and Zuckerman [15] carried out the 
elastic/plastic buckling analysis of rectangular plates 
under uniaxial loading with the separation of variables 
solution. Wang et al. [16, 17] and Chakrabarty [18] 
investigated the elastic/plastic buckling of thin and thick 
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plates based on deformation and incremental theories by 
use of separation of variables and Ritz method. They 
came to the conclusion that the deformation theory 
predicts less buckling stress factor, and as the thickness 
and Ramberg-Osgood constant increase, the difference 
between two theories increases. Tahmasebi-nejad and 
Shanmugam [19] studied elastic buckling behavior of 
uniaxially loaded skew plates by using FEM. The 
buckling coefficient generally increases with the skew 
angle of the plate with gradual and moderate increase 
for lower angles up to 30° and steep increase for larger 
angles. Jaberzadeh et al. [20] analyzed the plastic 
buckling of thin skew plates using the element-free 
Galerkin method. They used Stowell theory for the 
plastic buckling of skew plates with variable thickness. 
They concluded that plastic critical stresses increased 
with increasing thickness of the plate. Maarefdoust and 
Kadkhodayan [21, 22] analyzed thin isotropic plate 
subjected to free edges and uniform and linearly varying 
in-plane loading using incremental and deformation 
theories. Since the plastic buckling of skew plate has not 
received much attention in the literature yet, as a first 
attempt, the elastic/plastic buckling of skew thin plates 
with nonlinear material properties and subjected to 
different boundary conditions is studied. The 
generalized differential quadrature method is applied to 
discretize the nonlinear governing equation and the 
related boundary conditions which are based on the 
classical plate theory, and the results are compared with 
known solutions in the literature. Finally, the effect of 
aspect, loading and thickness ratios, skew angle, 
incremental and deformation theories and various 
boundary conditions on the buckling coefficient on the 
results are investigated. 
 
 
2. GOVERNING DIFFERENTIAL EQUATION 
 
Consider a skew thin plate of length a, oblique width b 
and thickness h(Figure 1). The stress is applied 
uniformly σy = σc and σx = -ζσc. The load ratio (ζ) is ζ 
= 1 for biaxial compression/tension and ζ = -1 for the 
equibiaxial compression. 

In the Cartesian coordinates the relationship between 
the stress rate and strain rate in the plates are as given 
below: 
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where E is elastic modulus and parameters α, β, γ, χ, µ 
and δ dependent on the plasticity theory employed. In 
the present study, the incremental and deformation 
theories of plasticity with the Prandtl-Reuss and the 
Hencky constitutive equations are used. The main 
difference between these two is that the IT depends on 

incremental plastic strain and DT depends on total 
strain. Based on the classical plate theory, the strain-
displacement relations can be expressed as: 
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whereεx and εy are the normal strains, γxy is the shear 
strain and w is the transverse displacement. The 
fundamental equation of incremental theory with 
Prandtl-Reuss constitutive equation is [15, 16]: 
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where ijS is stress deviator tensor, T the tangent modulus 

calculated through stress-strain curved and σe the 
effective stress. The tangent modulus and effective 
stress are calculated as follows [16]: 

,3,/ 2222
xyyyxxeee ddT τσσσσσεσ ++−==  (4) 

whereεe is the total effective strain. The parameters α, 
β, γ, χ, µ, δ and G in this method are defined as 
follows:[17]: 
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Figure 1. The skew plate under in-plane loading. 
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The fundamental equation of deformation theory 
with Hencky constitutive equation is [15, 16]: 
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where S is the secant modulus calculated through stress-
strain curves. The parameters α, β, γ, χ, µ and δ are 
calculated by employing Equation (5) and G in this 
theory is defined as follows [17]:  
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The total potential energy ( Π ) functional can be 
expressed as: 

,VU +=Π  (10) 
where U is the strain energy functional, and V is 
potential energy. The strain energy functional can be 
expressed as: 
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The potential energy for the plate subjected to uniform 
in-plane compressive stress is given by: 
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For skew thin plates, the material points of skew plates 
in the physical domain can be exactly transformed into 
the computational domain, using the following linear 
transformation rules (see Figure 1): 

ηcosθ,yηsinθ,ξx =+=  (13) 
whereξ and η are natural coordinate variables of the 

computational domain andθ is the skew angle. 
Using Equations (10)-(13) and calculus of 

variations, the Euler-Lagrange differential equations 
associated with the minimization of the total potential 
energy functional, the equilibrium equation of 
elastic/plastic buckling of skew thin plate can be 
derived.  
 
 
3. GDQ DISCRETIZED FORM OF THE GOVERNING 
EQUATIONS  
 
The GDQ method has simple formulation, low 
computational cost and high accuracy when used for the 
analysis of the global behaviors of structural elements 
such as buckling problem. This method was introduced 
in 1971 by Bellman and Casti [23] as a new technique 
for numerically solving ordinary or partial equation. The 
first widespread use of this technique in the field of 
engineering problems was given by Bert and Malik 
[24]. The important components of the GDQ 
approximation are the weighting coefficients and the 
choice of grid spacing. 

The benefit of accessing a new and exact solution 
with the least analysis burdon in comparison with others 
numerical solutions like finite element and boundary 
element gradually reveals the efficiency of this method. 
This method can solve higher order differential 
equations with selecting few grid spacing. Its other 
characteristics are simple application and programming 
and high convergence rate. The major advantage of the 
GDQ method is that much less computer memory is 
needed when compared to the finite element method. 
The distributions of grid spacing of Chebyshev–Gauss–
Lobatto (C-G-L) have the best convergence and highest 
accuracy [25, 26]. In this study, the following relations 
are used: 
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The GDQ discretization rules can be used to 
discretize the spatial derivatives in the computational 
domain. After these steps the GDQ discretized form of 
the equilibrium at each grid point (i, j) with i = 
2,3,…,Nξ-1 and j = 2,3,…,Nη-1 can be obtained. Here 
are the GDQ discretized form of the transverse the 
equilibrium equation of elastic/plastic buckling of skew 
thin plate: 
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Now, the GDQ analyses of general boundary conditions 
are developed. 
-Simply supported edges  
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-Clamped edges  
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Assume that σx = -ζσc, σy = σc and τxy= 0. It is easily 
seen that the final equations of matrices, Equations (15-
17), are a set of nonlinear eigen value equations with the 
size of (Nx)2×(Ny)2. Equation (15) yields the buckling 
coefficient (the lowest eigen value) by solving the 
generalized following eigen value problem: 
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where M and N are matrices derived from the governing 
Equation(15). Now, the non-dimensional buckling 
coefficient, K can be defined as: 

,2

2

D
hbK c

π
σ

=  (19) 

where D = Eh3/12(1-υ2) is the flexural rigidity. After 
discretizing the equilibrium equation and the boundary 
conditions, one obtains a nonlinear generalized eigen 

value equation. Since parameters α, β, γ, χ, µ and δ 
depend on the unknown load, the direct iteration 
procedure is used for obtaining the solution to nonlinear 
eigen value Equation (14). A computer program 
EBISTP (Elastic/plastic Buckling of Isotropic Skew 
Thin Plates) is developed based on the above mentioned 
formulation to generate elastic/plastic buckling 
coefficient of plate. According to aforementioned, a 
complete algorithm for the elastic/plastic buckling of 
skew thin plate combined with the consistent GDQ 
method can be obtained, Figure2.  
 
 
4. MECHANICAL PROPERTIES OF MATERIAL 
 
The material used in this study is AL 7075-T6. Here the 
Ramberg-Osgood elastic/plastic stress-strain relation- 
ship is used as [15]: 
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whereε is the total strain and n and k are material 
parameters. The tangent and secant moduli used in the 
equation are calculated as follows [15]:  

11

1,1
−−







+=






+=

n
e

n
e

E
k

S
E

E
nk

T
E σσ  (21) 

The characteristics of this material is obtained by means 
of Equation (20), E = 72.4 MPa, Ramberg-Osgood 
parameters n = 10.9, k = 3.94×1021 and Poisson’s ratio 
ν=0.32 [15]. Figure 3 shows the Ramberg-Osgood 
stress–strain relation for the material AL 7075-T6 
described by Equation (20). 
 
 
5. RESULTS AND DISCUSSIONS 
 
In this section, firstly, the grid spacing problem and 
convergence rate studies are carried out. In Table 1, the 
results for different number of grid points at various 
thickness ratios and skew angles are shown. Converged 
results are obtained using thirteen grid points (Nξ = Nη = 
13). Notice that nine grid points is sufficient to obtain 
results with acceptable accuracy. In all cases, the fast 
rate of convergence of the method is quite evident. With 
increasing the thickness ratio and skew angle, the 
convergence results take place in more grid spacing 
(Table 2).In order to validate the presented formulation 
and the efficiency of the method in analyzing the 
elastic/plastic buckling of skew thin plate, the results for 
skew plates with different skew angle and boundary 
condition are shown in Table 3. It is seen that in all 
cases the results are in very good agreement with those 
of the other methods and have a closer agreement with 
those of Kitipornchai et al. [8] and Wu et al. [13]. A 
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comparison between these results and experimental data 
for rectangular plates under uniaxial compression are 
presented in Figure 4. It is seen that the results attained 
by deformation theory are close to the experimental 
ones. Now, some parametric studies are carried out for 
the elastic/plastic buckling of skew thin plates. 
 
5.1. Effect of Aspect Ratio on the Buckling 
Coefficient     The influences of aspect ratio (a/b) in 
uniaxial compression loading on buckling coefficient 
for different thickness ratios and both incremental and 
deformation theories are presented in Figure 5. The 
results are prepared for the three thickness ratios and 
three boundary conditions atθ = 30°. It is seen that by 
increasing the thickness ratio, the differences between 
the results obtained by the incremental and deformation 
theories increase. In addition, the maximum variation of 
buckling coefficient occurs at0.5 ≤a/b≤ 1.5. The 
buckling coefficient decreases as the plate thickness 
ratio increases. It is clear that for the same plate 
thickness and aspect ratio, the boundary condition plays 
an important role on the buckling coefficient of plates. 
The buckling coefficient increases with increasing the 
clamped boundary condition, Figures 5a and 5c.  
Moreover, the effects of different loading types on the 
discrepancy between IT and DT results can be observed. 
In equibiaxial loading, the agreement between IT and 
DT results is more than that of uniaxial loading, Figures 
5 and 6. In equibiaxial loading, the buckling coefficient 
decreases monotonically with increasing the aspect 
ratio. 

 
5. 2. Effect of Skew Angle on the Buckling 
Coefficient     The effect of skew angle (θ°) on the 
buckling coefficient of skew thin plates for uniaxial and 
equibiaxial loadings are shown in Figures 7 and 8. It is 
seen that the effect is more significant when the 
thickness ratio decreases. Generally, by increasing the 
skew angle the buckling coefficient increases. It can be 
seen that increasing the clamped boundary conditions at 
the edges and increasing the skew angle, increases the 
discrepancy between IT and DT results, Figures 7 and 8. 
In addition, the minimum discrepancy between IT and 
DT results occurs in equibiaxial loading, Figure 8. In 
the same condition, the buckling coefficient of 
equibiaxial loading is lower than that of uniaxial one 

and the difference decreases when the thickness ratio 
increases.  
 
 

 
Figure 2. Flow chart of the solution strategy. 

 
 

 
Figure 3. The stress – strain curve for AL 7075-T6. 

 
 

 
Figure 4. Comparison of buckling coefficient obtained by IT 
and DT with test results (Al 7075-T6, θ = 0). 
 

 
 

TABLE 1.Convergence rate of the results for skew plate 
Nξ= Nη 

h/b θ B.C 15 13 11 9 7 
10.4520 10.4520 10.4309 10.4612 10.7156 0.001 

45° SSSS uniaxial 
3.3912 3.3912 3.3935 3.4038 3.4388 0.05 
6.8547 6.8547 6.8547 6.8548 6.9759 0.001 

30° CCCC biaxial 
2.8948 2.8948 2.8948 2.8949 2.9047 0.05 
8.3546 8.3546 8.3537 8.3750 8.2687 0.001 

15° SCSC uniaxial 
3.2071 3.2071 3.2074 3.2089 3.2095 0.05 
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TABLE 2.Convergence rate of buckling ratio of SCSC skew plate under uniaxial loading (h/b = 0.02). 
Nξ= Nη 

θ 17 15 13 11 9 7 
4.9751 4.9751 4.9751 4.9751 4.9758 4.9792 15° 
5.9394 5.9394 5.9394 5.9394 5.9399 5.9401 30° 
8.9047 8.9047 8.9047 8.9084 8.9350 8.9842 45° 
13.7586 13.7586 13.7586 13.7654 13.8649 14.1204 60° 

  
 

TABLE 3.Comparison of elastic buckling coefficient of SSSS and CCCC skew plate under uniaxial loading (a/b = 1, h/b = 0.001). 
θ° 

Method Sources B.C 45 30 15 0 
11.46 6.74 ----- ----- Energy Anderson [1] 

SSSS 

12.3 6.4106 4.4801 4.0000 Ritz method Duruasula [3] 
10.2 5.9093 ----- 4.0000 FEM Fried and Schmitt [4] 
8.64 5.6106 4.3397 4.0000 Lagrangian-multiplier Mizusawa et al. [5] 

10.104 5.9217 4.3937 4.0000 Ritz method Kitipornchai et al.[8] 
9.67 5.85 ----- 4.0000 FEM Huyton and York [11] 
9.39 5.83 ----- 4.0000 DQ Wang et al. [12] 

9.7164 5.8611 4.3924 4.0000 LSFD Wu et al. [13] 
8.47 5.53 4.33 4.0000 Double-Fourier Kennedy and Prabhakara [27] 

10.4520 5.9880 4.4343 4.0000 GDQ Present study 
20.44 13.58 10.87 10.08 Galerkin Duruasula [2] 

CCCC 

20.1 13.5 10.8 ----- FEM Huyton and York [11] 
20.21 13.58 10.85 10.07 Lagrangian-multipler York [10] 
20.10 13.54 10.83 10.07 DQ Wang et al. [12] 

20.0974 13.535 10.8325 10.0735 LSFD Wu et al. [13] 
20.7 13.53 ----- ----- Lagrangian-multiplier Guest [28] 

21.64 13.64 ----- ----- Rayleigh-Ritz Wittrick [29] 
20.62 13.64 10.76 ----- FEM Reddy and Palaninathan [30] 
20.60 13.60 10.84 ----- Spline Finite Strip Tham and Sezto [31] 

20.0974 13.5356 10.8325 10.073 GDQ Present study 
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Variation of buckling coefficient with aspect ratio for various thickness ratios and boundary conditions and subjected to uniaxial 
compression loading. 
 
 

 
(a) (b) 

 
(c) 

Figure 6. Variation of buckling coefficient with aspect ratio for various thickness ratios and boundary conditions and subjected to 
equibiaxial compression loading. 

0.5 1.0 1.5 2.0 2.5
1

2

3

4

5

6

7

8

9

10

11

a/b

K

 

 

(θ =30°)

h/b=0.001, IT-DT

h/b=0.02, IT-DTh/b=0.05, IT

h/b=0.05, DT

σ c S
S
S

S

θ

0.5 1.0 1.5 2.0 2.5
3

4

5

6

7

8

9

10

11

12

13

a/b

K

h/b=0.001, IT-DT

h/b=0.02, IT

h/b=0.05, IT

h/b=0.05, DT

σ c
S

θ

S
C
C

(θ=30°)

h/b=0.02, DT

0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

30

a/b

K

h/b=0.001, IT-DT

h/b=0.02, IT

h/b=0.05, IT
h/b=0.05, DT

σ c C
C
C

C

θ

h/b=0.02, DT

(θ=30°)

0.5 1.0 1.5 2.0 2.5
1

2

3

4

5

6

7

a/b

K

h/b=0.001, IT-DT

h/b=0.02, IT-DT

h/b=0.05, IT

h/b=0.05, DT

σ c
S
S

θ

S S

σ c
(θ=30°)

0.5 1.0 1.5 2.0 2.5
2

3

4

5

6

7

8

a/b

K

σ c
C
C

θ

S

(θ=30°)

h/b=0.001, IT-DT

h/b=0.02, IT-DT

h/b=0.05, IT

h/b=0.05, DT

S

σ c

0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

10

12

14

16

18

20

22

a/b

K

h/b=0.001, IT-DT

h/b=0.02, IT

h/b=0.05, ITh/b=0.05, DT

σ c C
C
C

C

θ

h/b=0.02, IT

(θ=30°)σ c



1283              M. Maarefdoust and M. Kadkhodayan/IJE TRANSACTIONS B: Application  Vol. 27, No. 8, (August 2014)  1277-1286 

 
(a) (b) 

 
(c) 

Figure 7. Variation of buckling coefficient with skew angle for various thickness ratios and boundary conditions and subjected to 
uniaxial compression loading. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Variation of buckling coefficient withskew angle for various thickness ratios and boundary conditions and subjected to 
equibiaxial compression loading. 
 
 
5. 3. Effect of Thickness Ratio on the Buckling 
Coefficient      With increasing the thickness ratio, (h/b) 
the buckling coefficient decreases in uniaxial and 
equibiaxial compression loadings when IT or DT is used 
(Figure 9). Moreover, the agreements between the 
results obtained by IT and DT for equibiaxial 
compression loading are more than those of uniaxial 
ones, Figure 9. It is interesting to note that by increasing 
the thickness ratio (h/b≥ 0.025), the differences 
between the elastic and plastic buckling coefficients in 
uniaxial and equibiaxial loadings increase. In all cases, 
the discrepancy between the IT and DT results is more 
in uniaxial compression than that of equibiaxial loading 
(Figures 9 and 10). In addition, the deformation theory 
predicts lower buckling coefficient compared to 
incremental theory and the discrepancy between IT and 
DT increases with increasing thickness ratio, skew angle 
and clamped boundary condition(Figure 10). Moreover, 
it is seen that the effects of skew angle on the buckling 
coefficient with increasing thickness ratio in plates 
under biaxial compression are less than those of the 
uniaxial compression. 
 
5. 4. Effect of Loading ratio on the Buckling 
Coefficient    The variations of the buckling coefficient 
against the loading ratio, ζ, thickness ratio and IT and 
DT theories are shown in Figure 11 for SSSS skew 
plates. When h/b = 0.03, ζ≤ 0.2 there is a good 
congruence between two theories of plasticity. 
However, for h/b = 0.05 there is no agreement between 

them, and also with increasing the loading ratio, the 
differences for biaxial tension/compression loading 
increase in the range of 0 <ζ≤ 1.5. Moreover, the 
difference between IT and DT results increases with 
increasing the thickness ratio(Figure 11).  
 
5. 5. Analysis of Plastic Buckling Mode Shapes    
Figure 12 shows the shape contours of the buckled plate 
in each mode for various aspect ratios and boundary 
conditions under uniaxial and equibiaxial compression 
loadings. In uniaxial loading the number of half-sine 
waves in the buckling mode shape increases as the 
aspect ratio increases (Figure 5). The locations of kinks 
at the aspect ratios of coincident buckling modes are not 
the same for different plate thicknesses. For DT results 
subjected to uniaxial compression, however, the 
buckling coefficients decrease slightly when the 
thickness and aspect ratios increase in various boundary 
conditions. Despite the existence of mode shape shift in 
this case, it is hard to distinguish the shift points (Figure 
5).For equibiaxial compression, the buckling coefficient 
decreases monotonically as the aspect ratio increases, 
Figure 6. In some case, the graph is smooth which is 
due to unchanged buckling mode and no mode shape 
shift is observed, Figure 6. These kinks locations 
depend on the plasticity theories used. For example, the 
buckling mode comprises one half sine waves for IT 
while the plate buckles the shape of two half sine waves 
for DT in SCSC skew plate by equibiaxial loading and 
h/b = 0.05, a/b = 2 and θ = 45°(Figure 12). 
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(a) 

 
(b) 

Figure 9. Variation of buckling coefficient with thickness 
ratio for various boundary conditions and subjected to 
uniaxial and equibiaxial compression loading, (θ = 30°). 
 
 

 
(a) 

 
(b) 

Figure 10. Variation of buckling coefficient with thickness 
ratio for various boundary conditions and skew angles 
subjected to uniaxial and equibiaxial compression 
loadings. 

. 

 
(a) 

 
(b) 

Figure 11. Comparison of buckling coefficient obtained by incremental and deformation theories for simply supported skew plates 
for various loading ratios (a) h/b = 0.03, (b) h/b = 0.05. 
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Figure 12. Buckling mode shapes of skew plates under uniaxial and biaxial compression loadings and various boundary conditions, 
(h/b = 0.05, θ = 45°). 
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6. CONCLUSION 
 
In the present paper, the equilibrium and stability 
equations of elastic/plastic buckling of skew thin plates 
are derived. Derivations are based on the classical plate 
theory and incremental and deformation theories of 
plasticity. The generalized differential quadrature 
method as an efficient and accurate numerical method is 
employed to discretize the geometrically and physically 
nonlinear differential equations and the related 
boundary conditions. After demonstrating the fast rate 
of convergence and accuracy of the method, parametric 
study is performed to represent the effect of aspect, 
thickness and loading ratios, skew angle, incremental 
and deformation theories and various boundary 
conditions on the results. The followings are concluded:  
• Buckling coefficient increases with the increase of 

skew angle θ. 
• The discrepancy between IT and DT results decreases 

in equibiaxial compression loading. 
• The influence of skew angle is higher in IT than DT. 
• Variations of plastic buckling mode shapes obtained 

for uniaxial loading for various aspect ratios are 
generally greater than those of biaxial loading. 

• The discrepancy between IT and DT results increases 
with the increase of thickness of plate, while it 
increases with the increase of loading ratio in biaxial 
compression/tension. 

• Buckling coefficients obtained by deformation theory 
generally do not show significant changes with 
increasing aspect ratio and plate thickness. 

• The discrepancy between the two theories of plasticity 
increases with the increase of skew angle in various 
boundary conditions. 

• By increasing the skew angle and decreasing the 
thickness ratio, the convergence rate decreases and the 
program run time increases. 

• The results indicate that GDQ method can yield very 
accurate results for all cases considered. It was also 
found that the convergence rate of GDQ method is 
excellent. 

Most buckling coefficients of skew thin plates are 
believed to be novel and could be used for testing other 
newly developing methods or even analytical numerical 
data. 
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  چکیده
  

 
نازك اریب مورد بحث قرار گرفته  صفحاتپلاستیک - در این مقاله تحلیل یک چهارم تفاضلی تعمیم یافته کمانش الاستیک

وسیلۀ تئوري پلاستیسیته ه پلاستیک صفحات نازك مورب براي اولین بار ب–معادلات حاکم بر کمانش الاستیک. است
وسیله مدل رامبرگ ه پلاستیک صفحه ب–رفتار الاستیک. است شدهشکل و نموي و تئوري صفحات کلاسیک استخراج  تغییر

شود و هندسه مورد نظر  فشاري دومحوري وارد می/ بار به صورت فشاري محوري یا کششی. سازي شده است ازگود مدل
05.0/001.0صفحه  ≤≤ bh  5.2/5.0و ≤≤ ba معادلات استخراجی در سیستم دکارتی به سیستم اریب . باشد می

. استشده مقایسه  پیشینانتقال داده شده و در سیستم یک چهارم تفاضلی تعمیم یافته نوشته و نتایج حاصل با کارهاي 
و تئوري نموي و شرایط مرزي  اثرات نسبت ابعادي، زاویه اریب، ضریب ضخامت صفحه، ضریب بار، تئوري تغییرشکل
اثر زاویه اریب و ضریب  ،همچنین. مختلف بر تعیین ضریب کمانشی بررسی شده و نتایج حاصل ارائه گردیده است

که نتایج کمانش پلاستیک صفحات  با توجه به این. ضخامت بر همگرایی و صحت روش مورد استفاده، سنجیده شده است
  . توانند براي کارهاي آیندگان مورد استفاده قرار گیرند باشند می ت و صحت خوبی میدست آمده داراي دقه نازك اریب ب
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