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In this study, generalized differential quadrature andysis of eagtic/plastic buckling of skew thin platesis
presented. The governing equations are derived for the first time based on the incremental and
deformation theories of plagticity and classical plate theory (CPT). The eagtic/plastic behavior of platesis
described by the Ramberg-Osgood model. The ranges of plate geometriesare 0.5 £ alb £ 2.5 and 0.001 £
h/b £ 0.05 under uniaxial uniform compression or biaxial compression/tension. Generalized differential
quadrature (GDQ) discretization rules in association with an exact coordinate transformation are
simultaneoudy used to transform and discretize the equilibrium equations and the related boundary
conditions. The accuracy of the results are compared with previoudy published results. Finally, the effects
of agpect, loading and thickness ratios, skew angle, incremental and deformation theories and different
types of boundary conditions on the buckling coefficient are presented. Moreover, the effect of skew angle
and thickness ratio on the convergence and accuracy of the method are studied. Due to the lack of
published solutions for plastic buckling of skew thin plates and the high accuracy of the present approach,
the solutions obtained may serve as benchmark valuesfor further studies.
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1. INTRODUCTION

Skew plates are extensvely used in structures such as
bridges and aircraft wings. The dastic buckling of skew
plates has been studied by some researchers. However,
to the best of authors knowledge, the plastic buckling of
skew platesis not available in open literature.

The dastic buckling behavior of skew plates has
been investigated by Anderson [1] using the energy
technique. Durvasula [2, 3] applied Ritzmethod to study
the behavior of clamped and simply supported skew
plates. Fried and Schmitt [4], Mizusawa et a. [5-7],
used a finite element, lagrangian multiplier, finite strip
and Ritz methods to study the elastic buckling of skew
plates. Kitipornchai et a. [8] and Xiang et a. [9]
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investigated elagtic buckling behavior of thick plates by
using Ritz method. York [10] studied the buckling
solution of skew plate by applying the classica plate
theory. Huyton and York [11, Wang et . [12] and Wu
et al. [13] applied finite element (ABAQUS software),
differential quadrature and LSFD methods to study the
elagtic buckling of skew plates. Some researchers
studied the dagtic/plastic buckling of rectangular plate
based on the incremental and deformation theories of
plasticity. Durban [14] found out that the incremental
theory can predict more buckling load in comparison
with the deformation theory, and that the experimental
data have more congruence with deformation theory.
Durban and Zuckerman [15] carried out the
elagtic/plagtic buckling anaysis of rectangular plates
under uniaxial loading with the separation of variables
solution. Wang et al. [16, 17] and Chakrabarty [18]
investigated the elastic/plastic buckling of thin and thick
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plates based on deformation and incrementa theories by
use of separation of variables and Ritz method. They
came to the conclusion that the deformation theory
predicts less buckling stress factor, and as the thickness
and Ramberg-Osgood constant increase, the difference
between two theories increases. Tahmasebi-ngad and
Shanmugam [19] studied elagtic buckling behavior of
uniaxially loaded skew plates by using FEM. The
buckling coefficient generally increases with the skew
angle of the plate with gradual and moderate increase
for lower angles up to 30° and steep increase for larger
angles. Jaberzadeh et a. [20] anadlyzed the plastic
buckling of thin skew plates using the element-free
Galerkin method. They used Stowell theory for the
plastic buckling of skew plates with variable thickness.
They concluded that plastic critical stresses increased
with increasing thickness of the plate. Maarefdoust and
Kadkhodayan [21, 22] analyzed thin isotropic plate
subjected to free edges and uniform and linearly varying
in-plane loading using incremental and deformation
theories. Sincethe plastic buckling of skew plate has not
received much attention in the literature yet, as a first
attempt, the dastic/plastic buckling of skew thin plates
with nonlinear materia properties and subjected to
different boundary conditions is sudied. The
generalized differential quadrature method is applied to
discretize the nonlinear governing equation and the
related boundary conditions which are based on the
classical plate theory, and the results are compared with
known solutions in the literature. Finaly, the effect of
aspect, loading and thickness ratios, skew angle,
incremental and deformation theories and various
boundary conditions on the buckling coefficient on the
results are investigated.

2. GOVERNING DIFFERENTIAL EQUATION

Consider a skew thin plate of length a, oblique width b
and thickness h(Figure 1). The stress is applied
uniformly sy = s¢ and s« = -zs. The load rétio (z) is z
= 1 for biaxial compression/tension and z = -1 for the
equibiaxial compression.

In the Cartesian coordinates the rel ationship between
the stress rate and strain rate in the plates are as given
bel ow:
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where E is eastic modulus and parameters a, b, g, ¢, m
and d dependent on the pladticity theory employed. In
the present study, the incremental and deformation
theories of plagticity with the Prandtl-Reuss and the
Hencky congtitutive equations are used. The main
difference between these two is that the IT depends on

incremental plastic strain and DT depends on tota
strain. Based on the classical plate theory, the strain-
displacement relations can be expressed as:
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wheres, and g, are the normal srains, g, is the shear
strain and w is the transverse displacement. The
fundamental equation of incremental theory with
Prandtl-Reuss congtitutive equation is [15, 16]:
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where S is stress deviator tensor, T the tangent modulus

caculated through stress-strain curved and s, the
effective stress. The tangent modulus and effective

stress are calculated as follows [16]:
T=ds,/de, si=si-s,s, +s;+&], (4

wheree, is the tota effective strain. The parameters a,
b, g ¢, mdand G in this method are defined as
follows:[17]:
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Figure 1. The skew pl‘ate under in-plane | oading.
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The fundamental equation of deformation theory
with Hencky congtitutive equation is[15, 16]:
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where Sis the secant modulus cal culated through stress-
gtrain curves. The parameters a, b, g ¢, mand d are
calculated by employing Equation (5) and G in this
theory is defined asfollows [17]:
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The total potential energy (P ) functiona can be
expressed as.
P=U+V, (10)
where U is the drain energy functiona, and V is

potential energy. The strain energy functional can be
expressed as.
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The potentia energy for the plate subjected to uniform
in-plane compressive stress is given by:
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For skew thin plates, the material points of skew plates
in the physical domain can be exactly transformed into
the computational domain, using the following linear
transformation rules (see Figure 1):
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X =&+ nsnd, y = ncosh, (13)
wherex and h are natura coordinate variables of the

computational domain andq isthe skew angle.

Using Equations (10)-(13) and calculus of
variations, the Euler-Lagrange differential equations
associated with the minimization of the total potential
energy functional, the equilibrium equation of
elagtic/plagtic buckling of skew thin plate can be
derived.

3. GDQ DISCRETIZED FORM OF THE GOVERNING
EQUATIONS

The GDQ method has simple formulation, low
computational cost and high accuracy when used for the
analysis of the global behaviors of structural elements
such as buckling problem. This method was introduced
in 1971 by Bellman and Casti [23] as a hew technique
for numerically solving ordinary or partial equation. The
first widespread use of this technique in the field of
engineering problems was given by Bert and Malik
[24]. The important components of the GDQ
approximation are the weighting coefficients and the
choice of grid spacing.

The benefit of accessing a new and exact solution
with the least analysis burdon in comparison with others
numerical solutions like finite element and boundary
element gradually revedls the efficiency of this method.
This method can solve higher order differential
equations with selecting few grid spacing. Its other
characteristics are simple application and programming
and high convergence rate. The major advantage of the
GDQ method is that much less computer memory is
needed when compared to the finite element method.
The digtributions of grid spacing of Chebyshev—Gauss-
Lobatto (C-G-L) have the best convergence and highest
accuracy [25, 26]. In this study, the following relations
are used:

X, = 1 (1— cos

1p) L i=12....,N,.
(14
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The GDQ discretization rules can be used to
discretize the spatial derivatives in the computational
domain. After these steps the GDQ discretized form of
the equilibrium a each grid point (i, j) with i =
2,3,....Ny-1 and j = 2,3,...,Ny-1 can be obtained. Here
are the GDQ discretized form of the transverse the
equilibrium equation of eastic/plastic buckling of skew
thin plate:
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Now, the GDQ analyses of general boundary conditions
are devel oped.
-Simply supported edges
forx=0,x=a

le =wy; =0,

aa CPw, +b(tan2qa CPw . - 2secq tanq

im Yy im Yy

(16)
’aC C.(E Wy +$cqaCf§W.n) 0.
m=1 k=1 n=1
i=L..0N,, =1
-Clamped edges
forx=0,x=a
w,; =w, ; =0, j=1...., N,.
(17)
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Assume that s, = -zS¢, Sy = S¢c and t,,= 0. It is easily
seen that the final egquations of matrices, Equations (15-
17), area set of nonlinear eigen value equations with the
size of (N,)* (N,)°. Equation (15) yields the buckling
coefficient (the lowest eigen value) by solving the
generalized following eigen value problem:

[ ] = 2222 [ o], (19

where M and N are matrices derived from the governing
Equation(15). Now, the non-dimensiona buckling
coefficient, K can be defined as:

_schp?
p°D
where D = Eh%12(1-u?) is the flexural rigidity. After

discretizing the equilibrium equation and the boundary
conditions, one obtains a nonlinear generalized eigen

19)

value equation. Since parameters a, b, g ¢, mand d
depend on the unknown load, the direct iteration
procedure is used for obtaining the solution to nonlinear
eigen value Equation (14). A computer program
EBISTP (Elagtic/plagic Buckling of Isotropic Skew
Thin Plates) is developed based on the above mentioned
formulation to generate eastic/plastic buckling
coefficient of plate According to aforementioned, a
complete algorithm for the dastic/plastic buckling of
skew thin plate combined with the consistent GDQ
method can be obtained, Figure2.

4. MECHANICAL PROPERTIES OF MATERIAL

The material used in this study is AL 7075-T6. Here the
Ramberg-Osgood dastic/plastic stress-strain  relation-
shipisused as[15]:

e__e+k8§_°

20
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wheree is the total strain and n and k are material
parameters. The tangent and secant moduli used in the
equation are calculated as follows [15]:
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The characteristics of this material is obtained by means
of Equation (20), E = 72.4 MPa, Ramberg-Osgood
parameters n = 10.9, k = 3.94x10?* and Poisson’s ratio
n=0.32 [15]. Figure 3 shows the Ramberg-Osgood
dress-strain  relation for the material AL 7075-T6
described by Equation (20).

5. RESULTS AND DISCUSSIONS

In this section, firstly, the grid spacing problem and
convergence rate studies are carried out. In Table 1, the
results for different number of grid points at various
thickness ratios and skew angles are shown. Converged
results are obtained using thirteen grid points (Nx = N, =
13). Notice that nine grid points is sufficient to obtain
results with acceptable accuracy. In all cases, the fast
rate of convergence of the method is quite evident. With
increasing the thickness ratio and skew angle, the
convergence results take place in more grid spacing
(Table 2).In order to validate the presented formulation
and the efficiency of the method in analyzing the
elagtic/plastic buckling of skew thin plate, the results for
skew plates with different skew angle and boundary
condition are shown in Table 3. It is seen that in al
cases the results are in very good agreement with those
of the other methods and have a closer agreement with
those of Kitipornchai et al. [8] and Wu et al. [13]. A



1281 M. Maarefdoust and M. Kadkhodayan/I1JE TRANSACTIONS B: Application Vol. 27, No. 8, (August 2014) 1277-1286

comparison between these results and experimental data
for rectangular plates under uniaxial compression are
presented in Figure 4. It is seen that the results attained
by deformation theory are close to the experimenta
ones. Now, some parametric studies are carried out for
the elastic/plastic buckling of skew thin plates.

5.1. Effect of Aspect Ratio on the Buckling
Coefficient The influences of aspect ratio (a/b) in
uniaxial compression loading on buckling coefficient
for different thickness ratios and both incremental and
deformation theories are presented in Figure 5. The
results are prepared for the three thickness ratios and
three boundary conditions atq = 30°. It is seen that by
increasing the thickness ratio, the differences between
the results obtained by the incremental and deformation
theories increase. In addition, the maximum variation of
buckling coefficient occurs at0.5 £a/bE 1.5. The
buckling coefficient decreases as the plate thickness
ratio increases. It is clear that for the same plate
thickness and aspect ratio, the boundary condition plays
an important role on the buckling coefficient of plates.
The buckling coefficient increases with increasing the
clamped boundary condition, Figures 5a and 5c.
Moreover, the effects of different loading types on the
discrepancy between IT and DT results can be observed.
In equibiaxial loading, the agreement between IT and
DT resultsis more than that of uniaxia loading, Figures
5 and 6. In equibiaxia loading, the buckling coefficient
decreases monotonically with increasng the aspect
ratio.

5. 2. Effect of Skew Angle on the Buckling
Coefficient The effect of skew angle (g°) on the
buckling coefficient of skew thin plates for uniaxial and
equibiaxia loadings are shown in Figures 7 and 8. It is
seen that the effect is more significant when the
thickness ratio decreases. Generally, by increasing the
skew angle the buckling coefficient increases. It can be
seen that increasing the clamped boundary conditions at
the edges and increasing the skew angle, increases the
discrepancy between IT and DT results, Figures 7 and 8.
In addition, the minimum discrepancy between IT and
DT results occurs in equibiaxial loading, Figure 8. In
the same condition, the buckling coefficient of
equibiaxia loading is lower than that of uniaxial one

and the difference decreases when the thickness ratio
increases.

Set initial conditions
(opis 2 small value)

Compute Ramberg Osgood parameters using
Eqgs. (3-9) and (20.21)i for IT or DT

Compute the weighting coefficients
(e, ¢, ¢ and ¢*'from GDQ method]

I

Set goveming equation, Eqq15) and boundary
conditions, Eas. (16-17)

{

Caleulate the [M] and [N] matrices and lowest
cigenvalue, Eq.(1)

‘ Calculate o, from Eq. (18), ;= Lo and oy = o ‘

l

Check the convergence of the calculations, ie. the
errors are aceeptably small if (|{o;-o7y 0/ <10)

| Ts the convergence criterion satisfied? }L.
Mo

gy =(-9oy +¢a, 0=¢<D)

Stop

Figure 2. Flow chart of the solution strategy.
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Figure 3. The stress— strain curve for AL 7075-T6.
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Figure 4. Comparison of buckling coefficient obtained by IT
and DT with test results (Al 7075-T6, q = 0).

TABLE 1.Convergence rete of the results for skew plate

Nx= Nh
B.C q h/b 7 9 11 13 15

eSS uriaia 4o 0.001 10.7156 10.4612 10,4309 10.4520 10.4520
0.05 34388 34038 3.3935 3.3912 3.3912

. 0.001 6.9759 6.8548 6.8547 6.8547 6.8547

CCCC biaxial 80 0.05 2.9047 2.8949 2.8948 2.8948 2.8948
SCSC uriasia - 0.001 8.2687 8.3750 8.3537 8.3546 8.3546
0.05 3.2095 3.2089 3.2074 3.2071 3.2071
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TABLE 2.Convergence rate of buckling ratio of SCSC skew plate under uniaxial loading (Wb = 0.02).
Nx= Nh
q 7 9 11 13 15 17
15° 49792 49758 49751 49751 49751 49751
30° 5.9401 5.9399 5.9394 5.9394 5.9394 5.9394
45° 8.9842 8.9350 8.9084 8.9047 8.9047 8.9047
60° 14.1204 13.8649 13.7654 13.7586 13.7586 13.7586

TABLE 3.Comparison of elastic buckling coefficient of SSSS and CCCC skew plate under uniaxial loading (a/b = 1, h/b = 0.001).

9
B.C Sour ces M ethod 0 15 30 45
Anderson [1] Energy e e 6.74 11.46
Duruasula[3] Ritz method 4,0000 4.4801 6.4106 12.3
Fried and Schmitt [4] FEM 40000 @ - 5.9093 10.2
Mizusawa et a. [5] Lagrangian-multiplier 4.0000 4.3397 5.6106 8.64
SSSS Kitipornchai et al.[8] Ritz method 4.0000 4.3937 5.9217 10.104
Huyton and Y ork [11] FEM 40000 - 5.85 9.67
Wang et al. [12] DQ 40000 @ - 5.83 9.39
Wuetdl. [13] LSFD 4,0000 4.3924 5.8611 9.7164
Kennedy and Prabhakara[27] Doubl e-Fourier 4,0000 4.33 5.53 8.47
Present study GDQ 4.0000 4.4343 5.9880 10.4520
Duruasula[2] Galerkin 10.08 10.87 13.58 20.44
Huyton and Y ork [11] FEM e 10.8 135 20.1
York [10] Lagrangian-multipler 10.07 10.85 13.58 20.21
Wang et al. [12] DQ 10.07 10.83 13.54 20.10
cece Wu et al. [13] LSFD 10.0735 10.8325 13.535 20.0974
Guest [28] Lagrangian-multiplier ~~ —e- e 13.53 20.7
Wittrick [29] Rayleégh-Ritz e e 13.64 21.64
Reddy and Palaninathan [30] FEM e 10.76 13.64 20.62
Tham and Sezto [31] SplineFiniteStrip - 10.84 13.60 20.60
Present study GDQ 10.073 10.8325 13.5356 20.0974
1o 4=30) ; @=30) (30)
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Figure 5. Variation of buckling coefficient with aspect ratio for various thickness ratios and boundary conditions and subjected to uniaxial

compression loading.
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Figure 6. Variation of buckling coefficient with aspect ratio for various thickness ratios and boundary conditions and subjected to

equibiaxial compression loading.
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Figure 7. Variation of buckling coefficient with skew angle for various thickness ratios and boundary conditions and subjected to

uniaxial compression loading.
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Figure 8. Variation of buckling coefficient withskew angle for various thickness ratios and boundary conditions and subjected to

equibiaxial compression loading.

5. 3. Effect of Thickness Ratio on the Buckling
Coefficient  With increasing the thickness ratio, (h/b)
the buckling coefficient decreases in uniaxial and
equibiaxial compression loadingswhen IT or DT isused
(Figure 9). Moreover, the agreements between the
results obtained by IT and DT for equibiaxial
compression loading are more than those of uniaxia
ones, Figure 9. It isinteresting to note that by increasing
the thickness ratio (h/b® 0.025), the differences
between the eastic and plastic buckling coefficients in
uniaxia and equibiaxial loadings increase. In al cases,
the discrepancy between the IT and DT results is more
in uniaxial compression than that of equibiaxial loading
(Figures 9 and 10). In addition, the deformation theory
predicts lower buckling coefficient compared to
incremental theory and the discrepancy between IT and
DT increases with increasing thicknessratio, skew angle
and clamped boundary condition(Figure 10). Moreover,
it is seen that the effects of skew angle on the buckling
coefficient with increasing thickness ratio in plates
under biaxial compression are less than those of the
uniaxial compression.

5. 4. Effect of Loading ratio on the Buckling
Coefficient The variations of the buckling coefficient
againgt the loading ratio, z, thickness ratio and IT and
DT theories are shown in Figure 11 for SSSS skew
plates. When Wb = 0.03, z£ 0.2 there is a good
congruence between two theories of plagticity.
However, for h/b = 0.05 there is no agreement between

them, and aso with increasing the loading ratio, the
differences for biaxia tenson/compression loading
increase in the range of 0 <z£ 1.5. Moreover, the
difference between IT and DT results increases with
increasing the thickness ratio(Figure 11).

5. 5. Analysis of Plastic Buckling Mode Shapes
Figure 12 shows the shape contours of the buckled plate
in each mode for various aspect ratios and boundary
conditions under uniaxial and equibiaxial compression
loadings. In uniaxial loading the number of half-sine
waves in the buckling mode shape increases as the
aspect ratio increases (Figure 5). The locations of kinks
at the aspect ratios of coincident buckling modes are not
the same for different plate thicknesses. For DT results
subjected to uniaxial compression, however, the
buckling coefficients decrease dightly when the
thickness and aspect ratios increase in various boundary
conditions. Despite the existence of mode shape shift in
this case, it ishard to distinguish the shift points (Figure
5).For equibiaxial compression, the buckling coefficient
decreases monotonically as the aspect ratio increases,
Figure 6. In some case, the graph is smooth which is
due to unchanged buckling mode and no mode shape
shift is observed, Figure 6. These kinks locations
depend on the plasticity theories used. For example, the
buckling mode comprises one half sine waves for IT
while the plate buckles the shape of two half sine waves
for DT in SCSC skew plate by equibiaxia loading and
h/b = 0.05, a/lb =2 and q = 45°(Figure 12).
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6. CONCLUSION

In the present paper, the equilibrium and stability
equations of dastic/plagtic buckling of skew thin plates
are derived. Derivations are based on the classical plate
theory and incremental and deformation theories of
plagticity. The generdlized differential quadrature
method as an efficient and accurate numerical method is
employed to discretize the geometrically and physically
nonlinear differential  equations and the related
boundary conditions. After demonstrating the fast rate
of convergence and accuracy of the method, parametric
study is performed to represent the effect of aspect,
thickness and loading ratios, skew angle, incremental
and deformation theories and various boundary
conditions on theresults. The followings are concluded:

- Buckling coefficient increases with the increase of
skew angleq.

- The discrepancy between IT and DT results decreases
in equibiaxial compression loading.

- Theinfluence of skew angleishigher in IT than DT.

- Variations of plastic buckling mode shapes obtained
for uniaxial loading for various aspect ratios are
generally greater than those of biaxia loading.

- The discrepancy between IT and DT results increases
with the increase of thickness of plate, while it
increases with the increase of loading ratio in biaxial
compression/tension.

- Buckling coefficients obtained by deformation theory
generally do not show significant changes with
increasing aspect ratio and plate thickness.

- The discrepancy between the two theories of plasticity
increases with the increase of skew angle in various
boundary conditions.

- By increasing the skew angle and decreasing the
thickness ratio, the convergence rate decreases and the
program run time increases.

- The results indicate that GDQ method can yield very
accurate results for al cases considered. It was also
found that the convergence rate of GDQ method is
excdlent.

Most buckling coefficients of skew thin plates are

believed to be novel and could be used for testing other

newly developing methods or even analytical numerical
data.
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