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A B S T R A C T  

   

In this paper, the impacts of the uncertainty of fuel heating value as well as the burner efficiency on 
performance functions of a turbofan engine are studied. The mean value and variance curves for thrust, 
thrust specific fuel consumption as well as propulsive, thermal and overall efficiencies are drawn and 
analyzed, considering the aforementioned uncertainties based on various Mach numbers at a number of 
flying altitudes in order to yield a more accurate prediction of values of performance functions. The 
results of this study can be of essential significance for an optimal and robust design of turbofan 
engines. This study is done employing Monte Carlo Simulation method which is a probabilistic 
analysis method. 

 
doi: 10.5829/idosi.ije.2014.27.07a.16 

 

NOMENCLATURE   

0a  Velocity of sound at inlet(m/s) π  Pressure ratio 

PC  Specific heat at constant pressure(kJ/kg K) τ  Temperature ratio 

F  Thrust(N) fπ  Density (kg/m3) 

0m&  Mass flow rate(kg/s) τ  Fan pressure ratio 

fm&  Mass fuel rate(kg/s) α  Bypass ratio 

0M  Flight Mach number e  Polytropic efficiency 

h  Flight altitude(Km) mHη  High pressure spool mechanical efficiency 

PRh  Heating value(kJ/kg) mLη  Low pressure spool mechanical efficiency 

R  Gas constant(J/kg/s) Subscripts  

0mF &  Specific thrust (N/kg/s) cH  High pressure compressor 

S  Thrust specific fuel consumption(mg/s)/N cL  Low pressure compressor 

4tT  Turbine inlet temperature(K) tH  High pressure turbine 
T  Temperature(K) tL  Low pressure turbine 

V  Velocity(m/s) f  Fan 
γ  Ratio of specific heats b  Burner 

Tη  Thermal efficiency n  Nozzle 

Pη  Propulsive efficiency fn  Fan nozzle 

oη  Overall efficiency d  Diffuser 
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1. INTRODUCTION 
 
Uncertainty refers to whatever we suffer the lack of 
information of and, in fact, results from our incomplete 
knowledge of a phenomenon. Since uncertainty rises 
from our incomplete knowledge which leaves us unable 
to talk about the certain occurrence of a phenomenon, 
we talk about the probability of its occurrence. 
Uncertainty and probability are terms which are 
frequently used together. There are quite a significant 
number of uncertainties in engineering problems. In 
engineering problems, in addition to our improper 
knowledge of the system including imprecise 
measurements of parameters and changes in parameters 
due to a number of reasons such as time and disturbance 
which in turn causes uncertainty, another factor causing 
uncertainty is the mathematical model employed for 
system analysis. This type of uncertainty might be due 
to the simplifications of the model. 

There are plenty of uncertainties in engineering 
problems. In vehicle design, there is a lack of proper 
information about the number of passengers and the 
weight the vehicle has to practically tolerate. The only 
thing we can do is to predict the occurrence within a 
range. The imposed load on the buildings is never 
precisely predictable and it is only possible to make 
estimations based on previous knowledge. There, also 
uncertainties in all parameters which are usually 
considered constant in designing process. A crucially 
important point to remember is that if a designed device 
exhibits a fully desirable and optimal performance 
within a certain space, it may fail to exhibit such 
optimal performance in case of uncertainty occurrence. 
In fact, this undesirable performance may cause a 
significant increase in the system risk. A number of 
such cases can be found in references [1] and [2]. 

Regarding the study of uncertainties, Papadrakakis 
employed robust design methods in order to achieve an 
optimal multi-objective design for a six-story building 
[3]. The elasticity module, imposed loads, and 
geometrical dimensions of parameters were 
probabilistic uncertainties. The two functions of weight 
of structure in certain space, and the variance of the 
system’s response to the uncertainties in the parameters 
of the system were chosen for optimization. In 2005, 
Papadrakakis employed probabilistic analysis for 
building design and three-dimensional truss [4]. He also 
used probabilistic analysis to yield an optimal design of 
a three-dimensional truss tower with the height of 128 
meters and a square base area of 17.07 m2 [5]. In 2008, 
Kumar used probabilistic analysis for the optimal design 
of compressor blade [6]. The design variable in that 
study was blade profile and the target functions were 
minimization of mean and variance of compressor 
pressure loss. Imprecision in manufacturing the blade 
was considered the probabilistic uncertainty. It has also 

been shown in this study that the optimal points 
achieved through certain analysis of a system with 
uncertainties may not be trusted. In 2009, Lalonde 
studied the capabilities of Multi-objective optimization 
algorithms in solving problems with uncertainty [7]. 

The performance functions of turbofan engines are 
investigated in many references [8-13] in which the 
effects of uncertainties were not considered. 

In this paper, the impacts of the uncertainty of fuel 
heating value as well as the burner efficiency in a 
turbofan engine are studied in order to yield a more 
accurate prediction of values of performance functions. 
This study is done employing Monte Carlo Simulation 
method which is a probabilistic analysis method. In 
order to resist uncertainties, the design model should be 
in such way that makes the system robust against the 
uncertainties. 

 
 

2. TURBOFAN ENGINE 
 

 Figure 1 illustrates a turbofan engine. Turbines and 
compressors are divided into Low Pressure and High 
Pressure sections. The High Pressure turbine turns the 
High Pressure compressor via High Pressure spool, and 
the Low Pressure turbine turns the Low Pressure 
compressor via Low pressure spool. The mass flow 
passing through the engine core and fan are Cm& and 

Fm&
respectively. The ratio of mass flow through fan to mass 
flow through engine core is introduced as bypass ratio 
and is shown by α. The Sea-Level static conditions are 
considered as the design point conditions for gas turbine 
variables [8-9]. The assumed condition in turbofan 
engine is the one in which the inlets at High-Pressure 
turbine as well as Low-Pressure turbine experience 
choking. Also, the nozzle section areas are considered 
constant at the inlet of High-Pressure and Low-Pressure 
turbines. This type of turbines is known as Fixed Area 
Turbine (FAT). 
 
 

Figure 1. Turbofan engine [8]. 
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This assumption is valid within a wide performance 
range of gas turbine engines [8, 10]. Also, based on the 
assumptions of reference [8], the pressure ratios of 
combustion chamber, exit nozzle, and bypass exit 
nozzle as well as other components efficiencies such as 
compressor and turbine do not deviate from design point 
values. Effects of turbine cooling and leakage are 
neglected. Also, the turbine power is not used to run the 
side components. Gas in the both upstream and 
downstream of combustion chamber is also considered 
perfectly . The inlet flight Mach number and flight 
altitude are the independent input variables. The most 
important output parameters which are considered as 
performance functions in the turbofan engine are thrust, 
thrust specific fuel consumption, and propulsive, 
efficiency, and overall efficiency [10-12]. The 
aforementioned functions in turbofan engine come in 
the form of Equations (1) to (6) (8-9): 
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The engine reference values (the design point 
conditions) at sea level and at zero Mach number are as 
follows: 
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The compressor pressure ratio is limited at 32. Also, 
the maximum exit temperatures of combustion chamber 
and high pressure compressor are 1890 and 920 oK 
respectively. In this case, bypass ratio, fan and 
compressor pressure ratio, combustion chamber and 
compressor exit temperature ratios, and the corrected 
mass flow passing through compressor and fan are 
controlled by the engine controller. The performance 

functions of such a turbofan engine have been 
thoroughly studied in [13].  

 
 

3. PROBABILITY DENSITY FUNCTION (PDF) 
 

Density functions are mostly used by engineers to 
describe physical systems. If ( )xfX  is the probability 
density function which is used to describe the probable 
distribution of a random variable such as X, the 
probability of occurrence of the process X will be 
between the two values of a and b which is equal to the 
integral of the area covered by density function between 
the points of a and b. The probability density function is 
of the following characteristics: 
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(7) 

The probability density function provides a simple 
description of the related probabilities of a random 
variable. In Equation (7), ( )bXaP ≤≤  is the probability 
of occurrence of a condition in which the random 
variable X is of a value between a and b. according to 
Equations (7.1) and (7.2), this probability always has a 
value between 0 and 1 ( )( )10 ≤≤≤≤ bXaP . During a 
random process, the value of probability density 
function for Xs which do not occur is zero [14]. 

 
 

4. CUMULATIVE DISTRIBUTION FUNCTION (CDF) 
 

Another method for showing the related probabilities of 
random variable is to use cumulative distribution 
function ( )( )xFX . This function is defined as follows: 

( ) ( ) ( ) .∫
∞−

=≤=
x

X duufxXPxF  (8) 

Figure 2 illustrates the curves for cumulative 
distribution function and probability density function for 
the random variable X. 

It is possible to assign a number of cumulative 
distribution functions to a random variable including 
homogenous, linear, Gaussian, and beta distributions. 
This assignment is done based on the characteristics of 
the design variable. The homogenous distribution 
function is used for variables with certain upper and 
lower limits (certain range) and the equal probability of 
occurrence within the range. For a homogenous 
distribution, cumulative distribution function is written 
as follows: 
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where c and d are upper and lower limits respectively. 
For a number of variables, Gaussian distribution might 
be a good estimate of probability their occurrence. A 
Gaussian cumulative distribution function is shown as 
follows: 
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where μ and σ  are mean and variance of the 
probabilistic variable x. Gaussian distribution function 
is symmetric about the value of mean. Beta distribution 
function is defined as follows: 
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where B(a, b) is beta function and a and b are shaping 
coefficients. The shape of cumulative function is 
dependent on a and b, and varies accordingly. 
 
 
5. MEAN AND VARIANCE 

 
There are two quantities normally used to define the 
probabilistic distribution of a random variable such as 
X. Mean is the value of mode or median of probabilistic 
distribution and variance is the scatteredness or 
changeability in distribution [14]. If we assume that X is 
a random variable with the probabilistic density 
function ( )xfX , then the mean of X is shown by µ or 
E[X], and is defined as follows: 
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Variance X which is shown by 2σ or [ ]XV is equal to 
the following: 
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For discrete cases of these equations, the above 
integrals are shown as follows: 
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where ix  is the ith sample and N is the number of total 

samples. For continuous systems, the Equations (12) 
and (13) have to be solved; this is impossible to do due 
to the complexity of the integrals. Therefore, numerical 
simulation methods are employed to yield estimations. 
One of the most frequently used methods is the Monte 
Carlo method [15-17]. Employing this method, the 
integrals of the Equations (12) and (13) are estimated by 
Equations (14) and (15). 

 
 
 

6. MONTE CARLO METHOD 
 

Simply put, Monte Carlo method is a numerical 
simulation method using random sampling from the 
uncertain parameters space. This method is based on a 
random generation of numbers between zero and one. 
Once the random generation of numbers between zero 
and one has been done, random samples of uncertain 
parameters are generated based on their cumulative 
distribution, and then the system is simulated as per 
each randomly generated sample. Subsequently, it will 
be possible to calculate the probability of each 
occurrence using numerical methods. In Monte Carlo 
method, sample is an n-dimensional vector like

( )n21 x,,x,xX …= where n is the number of uncertain 
parameters. Figure 3 illustrates the simulation process 
for the parameters x1 and x2 using random generation 
of numbers and desired distribution. As it can be seen, 
first, a series of random numbers belonging to the range 

[ ]1,0∈nl (in this example n=2) is generated. Each of 
these numbers represents the probability of occurrence 
of the considered uncertain parameter. Then, the value 
of each parameter is calculated using its cumulative 
distribution function, and the vector of uncertain 
parameters is formed. 
 
 
 

 
Figure 2. Probability Density Function & Cumulative 
Distribution Function. 
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Figure 3. Monte Carlo simulation. 

 
 

 
Figure 4. Probability Density Function for burner efficiency. 

 
 
 
  

7. STUDY OF THE UNCERTAINTIES OF TURBOFAN 
ENGINES USING MONTE CARLO SIMULATION 
 
The aim of this section is to study the impact of changes 
in uncertain parameters on the functional graphs of the 
system. Among the existing constant parameters in 
turbofan engines, the impacts of changes in the burner 
efficiency as well as the heating value of fuel are 
studied. The assumption of burner efficiency 
uncertainty is due to a relative decrease in this 
efficiency as a result of the combustion process in the 
engine. Furthermore, since the quality of the fuel 
production is subject to change in different parts of the 
world, the heating value of the fuel cannot be constant. 
Thus, it would be valid to assume this quantity as an 

uncertain parameter. The other constant parameters 
mentioned in section 2 are certain due to careful 
maintenance of the aircraft. The next step is to yield the 
curves of probability density function (PDF) as well as 
cumulative distribution function (CDF) according to 
what has been mentioned in sections 4 and 5. Then, the 
variance and mean of performance functions are 
calculated for various samples generated by cumulative 
distribution function and the correspondent curves are 
drawn. A detailed account of this process will follow. 
  
 
7. 1. Probability Density Function and 
Cumulative Distribution Function of Uncertain 
Parameters      As it was mentioned earlier, burner 
efficiency and fuel heating value are chosen as uncertain 
parameters. Now, according to what has been presented 
in section 4 in terms of Equations (7), it is possible to 
yield Probability Density Function of the above-
mentioned parameters. First, burner efficiency is 
studied. Assuming that combustion chamber efficiency 
decreases from 99% to 96% through a linear 
distribution, the area under PDF forms a triangle. 
According to Equation (7.2), it is possible to determine 
the height of the triangle (in Figure 4). 
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Now, according to Equation (8), Cumulative 
Distribution Function is achieved as follows: 
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When analyzing fuel heating value, it is assumed 
that this parameter is of a Gaussian distribution within 
the range of kgkJ41800  to kgkJ43800  with the 
maximum value of F(x) in kgkJ42800 . Gaussian 
distribution which is presented in Equation (10) yields a 
desirable distribution having 42800=µ  and 224=σ . 
Figure 6 illustrates this distribution. 

In order to achieve Cumulative Distribution 
Function, Matlab norminv operation is employed. This 
operation with the structure of X=norminv (P, mu, 
sigma) will take X=norminv (P,42800,224) for the 
mentioned problem. This operation generates values 
between kgkJ41800  and kgkJ43800  per each 
random number between 0 and 1 assigned to P. Figure 7 
illustrates the Cumulative Distribution Function for fuel 

PDF for burner efficiency
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heating value. The interesting point in this curve is that 
due to the high slope of the curve for x values near 

kgkJ42800 , a large portion of the randomly generated 
numbers between 0 and 1, for instance between 0.3 and 
0.8, take values near kgkJ42800 . Now, as the 
Cumulative Distribution Function curve for uncertain 
parameters has been achieved, it will be possible to 
determine the values of these parameters through 
generating random numbers between 0 and 1. 
 
 
7. 2. The Uncertainties Impact on Performance 
Functions…   .Figures 8 through 17 illustrate means 
and variances of performance functions including thrust, 
specific fuel consumption, thermal, thrust, and overall 
efficiencies based on various Mach numbers and flight 
altitudes. These curves are drawn based on N random 
points of each uncertain parameter. For instance, in 
N=150, 150 random points between zero and one are 
generated, and then the values of burner efficiencies are 
achieved based on its CDF curve from Figure 5. 

Likewise, by generating another 150 random points, 
150 equivalents of fuel heating value are achieved from 
Figure 7. Mean and variance of performance functions 
have been achieved for 50, 100, 150, and 200 points, as 
mentioned above. As well, these curves have been 
drawn for the nominal values of the uncertain 
parameters. Figure 8 illustrates the mean of thrust for 
various Mach numbers at different altitudes. As it can 
be seen, at all altitudes, the nominal values and the 
values achieved through N different points match each 
other. Figure 9 illustrates thrust variance. As it can be 
seen, as altitude increases variance significantly 
decreases and nearly reaches zero at 15 km. Variance 
increases as the Mach number increases at various 
altitudes. This increase reaches a significant point at h= 
5Km. Also, at a certain altitude, as N increases variance 
increases accordingly. Through analyzing Figures 8 and 
9, it might be concluded that the assumed uncertainties 
do not affect thrust and this function is robust against 
uncertainties. Figures 10 and 11 illustrate mean and 
variance of thrust specific fuel consumption. As it can 
be seen in Figure 10, the values of thrust specific fuel 
consumption calculated for N different points where N 
is 50, 100, 150, and 200 matches each other, and the 
values derived from this curve are slightly higher than 
values derived from that of nominal values at a certain 
Mach number. This can be observed at different 
altitudes. As it can be seen in Figure 11, as the altitude 
increases, an overall decrease in variance is observed, 
and as Mach number increases, variance decreases. At a 
certain altitude (for instance h=0 km), as N increases 
variance also increases. Through general analysis of 
Figures 10 and 11, the impacts of uncertainties on thrust 
specific fuel consumption are observable. Figures 12 
and 13 illustrate the impacts of uncertainties on thermal 

efficiency. As it can be seen, at zero altitude, the mean 
values of thermal efficiency for N different points of 50, 
100, 150, and 200 match each other. 

 
 
 

 
Figure 5. Cumulative Distribution Function for burner 
efficiency. 
 
 
 

 
Figure 6. Probability Density Function for fuel heating value. 

 
 
 

 
Figure 7. Cumulative Distribution Function for fuel heating 
value 
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This curve exhibits only a slight difference from that 
of nominal values. This difference shows its maximum 
at zero Mach number and decreases as the Mach 
number increases. Also, as it can be seen in Figure 13, 
the values of variance at altitudes of 5, 10, and 15 match 
each other. Variance increases as the number of samples 
(N) increases. However, since the values of variance of 
this function are very low, it would be safe enough to 
assume this function to be robust against uncertainties 
considering Figures 12 and 13.  

Figures 14 and 15 illustrate variance and mean of 
propulsive efficiency. As it can be seen in Figure 14, the 
values derived from N different points of uncertain 
parameters and nominal values match entirely. Also, 
Figure 15 depicts that propulsive efficiency is of 
insignificant range and may safely be considered as 
robust against uncertainties.  

Figures 16 and 17 illustrate mean and variance of 
overall efficiency. Similar to what mentioned about 
Figure 12, the values of mean derived from N different 
point match each other and achieved curve exhibits an 
insignificant difference with that of nominal values. 
Further, as it can be seen in Figure 17, the variance of 
overall efficiency which reaches its maximum within 
the range of 0.6 to 0.7 Mach numbers is of an 
insignificant value. Therefore, based on the analysis of 
these two figures, overall efficiency may be safely 
assumed as robust against uncertainties.  

The curves of mean and variance of performance 
functions are of crucial importance in robust and 
optimal design of turbofan engines. In robust 
optimization, if the purpose is to minimize (maximize) 
an objective function, the mean value is minimized 
(maximized) and the value of variance is minimized 
(minimized) [18].  

 
 
 

 
 

Figure 8. Mean value of Thrust for N points of each 
uncertainty ( )bPRh η, , considering nominal values of these 
parameters. 

 
Figure9. Variance of Thrust for N points of each uncertain 
parameter ( )bPRh η, . 

 
 
 

 

Figure10. Mean value of Thrust specific fuel consumption for 
N points of each uncertainty ( )bPRh η, , considering nominal 
values of these parameters. 

 
 
 

 
Figure11. Variance of Thrust specific fuel consumption for N 
points of each uncertain parameter ( )bPRh η, . 

0

50000

100000

150000

200000

250000

300000

0 0.2 0.4 0.6 0.8 1

Mach number

M
ea

n 
V

al
ue

 o
f T

hr
us

t
 (N

)

N
om

in
al

 V
al

ue
 &

 
N

=5
0,

10
0,

15
0,

20
0

h=0 km

h=5 km

h=10 km

h=15 km

-50

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1

Mach number

Va
ria

nc
e o

f T
hr

us
t

(N
)

h=
10

 
km

N=50,100,
150,200

N=50,100
,150,200

h=
5 

km

h=
0 

km

N=50,100,
150,200

h=
15

 
km

N=50,100,150,200

9

11

13

15

17

19

21

0 0.2 0.4 0.6 0.8 1

Mach number

M
ea

n 
V

al
ue

 o
f T

hr
us

t s
pe

ci
fic

 fu
el

 c
on

su
m

pt
io

n 
[(m

g/
se

c)
/N

]

Nominal Value

N=50,100
,150,200

h=0 km
h=5 km

h=10 km
h=15 km

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 0.2 0.4 0.6 0.8 1
Mach number

  V
ar

ia
nc

e o
f T

hr
us

t s
pe

ci
fic

 fu
el

 c
on

su
m

pt
io

n 
[(m

g/
se

c)
/N

]

N=200

N=150

N=100

N=50



M.Gorji et al. / IJE TRANSACTIONS A: Basics  Vol. 27, No. 7, (July 2014)  1139-1148                                             1146 
   

 

  
Figure 12. Mean value of Thermal efficiency for N points of 
each uncertainty ( )bPRh η, , considering nominal values of these 
parameters. 
 
 

Figure 15. Variance of Propulsive efficiency for N points of 
each uncertain parameter ( )bPRh η, . 
 
 

  

Figure 13. Variance of Thermal efficiency for N points of each 
uncertain parameter ( )bPRh η, . 
 
 

Figure 16. Mean value of Overall efficiency for N points of each 
uncertainty ( )bPRh η, , considering nominal values of these 
parameters. 
 
 

  
Figure 14. Mean value of propulsive efficiency for N points of 
each uncertainty  ( )bPRh η,  considering nominal values of these 
parameters. 

Figure 17. Variance of Overall efficiency for N points of each 
uncertain parameter ( )bPRh η, . 
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8. CONCLUSION 
 
In this paper, the impacts of uncertainties of burner 
efficiency as well as fuel heating value on performance 
functions of turbofan engine have been studied 
employing Monte Carlo sampling method, and the 
results have been drawn as curves based on inlet Mach 
number  and various flight altitudes. It has been shown 
that the uncertainties do not exhibit significant impacts 
on thrust as well as thermal, propulsive and overall 
efficiencies and the mentioned functions are robust to 
the uncertainties. Further, the impacts of uncertainties 
on specific fuel consumption have been studied. This 
study can be of high importance for yielding a robust 
optimal design of turbofan engines. 
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  چکیده
 
در این مقاله اثرات نامعینی ارزش حرارتی سوخت و راندمان اتاق احتراق برروي توابع عملکردي موتور توربوفن بررسی می

هاي رانش، حرارتی و کلی با در نظر واریانس براي توابع رانش، مصرف ویژه سوخت و راندمان هاي میانگین ومنحنی .شود
با بررسی  .گیردتحلیل قرار می مورد هاي مختلف پروازي رسم ودر ارتفاع هاي یاد شده بر حسب سرعت پروازگرفتن نامعینی

نتایج این بررسی براي طراحی بهینه و . بینی نمودپیش ترتوابع هدف مورد نظر را به صورت دقیق توان مقادیراثرات نامعینی می
سازي مونت ها در موتور توربوفن توسط روش شبیهاین نامعینی بررسی اثر. باشدضروري می مقاوم موتورهاي توربوفن بسیار

 .هاي تحلیل احتمالاتی استکارلو صورت خواهد گرفت که از روش
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