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A B S T R A C T  
 
  

In cross docking strategy, arrived products are immediately classified, sorted and organized with 
respect to their destination. Among all the problems related to this strategy, the vehicle routing 
problem (VRP) is very important and of special attention in modern technology. This paper addresses 
the particular type of VRP, called VRPCDTW, considering a time limitation for each customer/retailer. 
This problem is known as NP-hard problem. Two meta-heuristic algorithms based on the Tabu search 
(TS) algorithm and variable neighborhood search (VNS) are proposed for its solution. These 
algorithms are designed for real-world cases and can be generalized to the more complex models such 
as those which deliveries can be specified in a split form. The proposed TS algorithm also offers a 
candidate list strategy which has no limitation for the number of nodes and vehicles. A computational 
experiment is performed to verify our presented algorithms. Through computational experiments, it is 
indicated that the proposed TS algorithm performs better than VNS algorithm in both aspects of the 
total cost and computation time. 
 

doi: 10.5829/idosi.ije.2014.27.07a.13 
 

 
1. INTRODUCTION1 
 
Over the recent years, many companies confronted with 
more complicated and various customer demands. Thus, 
many companies are trying to achieve high level of 
agility, flexibility and reliability for various demands 
[1]. In the real world, the production procedure consists 
of purchasing raw material from suppliers, producing or 
manufacturing, storing and delivering the final product 
to customers. These systems that start by suppliers and 
end by customers are called supply chain systems [2]. In 
such systems, operations of a single company 
necessarily make no improvement in customer’s 
satisfaction, because its operations may have interacting 
effects or even adverse effects on other companies in 
the supply chain system [1]. For this reason, nowadays, 
supply chain management is one of the most attractive 
issues in operational management. Apte and 
Viswanathan [3] express that over 30% of goods price is 
incurred in distribution process. Thus, the efficient 
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solution on inventory control and distribution 
management is a vital success factor for companies [4].  
In addition, distribution and control of the flow of 
inventory is one of the major concepts in supply chain 
management [2]. Typically, five distinct distribution 
strategies are utilized in the supply chain management. 
First, strategy is direct shipment in which items are 
directly shipped from suppliers to the retail stores 
without going through distribution centers. Milk run is 
the second distribution strategy. A milk run is a route in 
which a vehicle/truck delivers product from a single 
supplier to multiple retailers [5]. Third strategy is 
known as hub and spoke (H&S). H&S network involves 
a series of nodes (hubs), connected by arcs (spokes) that 
represent viable transportation alternatives between two 
nodes [5]. Pool distribution is the forth strategy. Pool 
distribution is the distribution of orders to numerous 
destination points within a particular geographic region. 
In this strategy, instead of shipping direct from origin 
supplier to retailer, orders are directly shipped to the 
regional terminals and then shipped to the retail stores 
[5]. Cross-docking is the fifth distribution strategy that 
recently has been regarded [6].  
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1. 1. Cross-docking     Apte and Viswanathan [7] 
introduced cross-docking as one of the most strategic 
and technologic innovations in the supply chain 
management. In this system, cross docks/distribution 
centers function as inventory coordination points rather 
than as inventory storage points [6]. In the cross-
docking, all deliverable products arrive to the cross 
dock and are immediately categorized, sorted and 
organized according to their destinations and customers' 
demand. Then, these products are moved to respective 
destinations, without storing in the cross dock. In other 
words, in the cross-docking systems, a few stocks are 
handled in temporary storage [8]. In this strategy, 
products usually are stored less than 12 hours at the 
cross dock ([3, 9]), sometime less than an hour [10]. 
Figure 1 illustrates the flow of material in the cross 
docking. 

Cross-docking includes two key processes that are 
depicted in Figure 1. The pickup process is the 
product/material flow from supplier to the cross dock 
and the delivery process is the product/material flow 
from cross dock to customer. The key issues in the 
pickup and delivery processes are the simultaneous 
arrival at the cross dock and consolidation, respectively. 
The purpose of consolidation is to categorize and to sort 
the products at the cross dock with respect to their 
destinations. Regarding to the consolidation process, 
some of vehicles have to unload their entire burden 
completely and reload another product(s). Also, some of 
the vehicles have to unload partial of their products and 
reload another product(s) and some of the vehicles 
which have extra capacity, are only loaded with the new 
product(s). The purpose of simultaneous arrival to the 
cross dock is to reduce the waiting time of vehicles. If 
vehicles of the pickup fleet could not arrive at the cross-
dock simultaneously, then the consolidation process has 
been postponed. Thereby, it might increase the waiting 
time and the inventory level at the cross dock [2]. 

 
 

1. 2. Literature Review and Research Motivation  
Recently, many studies treated various issues of cross-
docking from different viewpoints. These investigations 
can be divided into two categories: studies that focus on 
(1) physical aspects of cross docking and (2) operational 
aspects of cross-docking.  

Most of the first-category studies describe the cross-
docking concept and its advantages [11-13], physical 
design of cross dock in cross-docking [3, 14-18], and 
optimal location of cross dock [19-21]. On the other 
hand, most of the investigations related to the second-
category focused on the trucks scheduling in cross-
docking system [8, 22-31]. In addition, over the last 30 
years or so, the classical VRP has attended strongly in 
the literature. The classical VRP involves the service of 
a set of customers with known demands by a fleet of 
vehicles from a single distribution center [2]. 

Figure 1. The concept of cross-docking [1]. 
 
 

The main objective of the problem is to design a set 
of routes starting and ending at the distribution 
center/depot such that all customers are serviced and the 
total cost of the set of routes is minimized [32]. Some of 
the most recent VRP papers, such as those have been 
published by Lin et al. [33], Cheng and Wang [34], 
Catay [32], Mirabi et al. [35] and Zachariadis  and 
Kiranoudis [36]. Mosheiov [37] considered the pickup 
and delivery problems as a VRP problem and proposed 
the two heuristic algorithms to find a good solution to 
minimize transportation cost and maximize the 
efficiency of vehicles. VRP with time windows 
(VRPTW) can be very helpful encountering with cross-
docking problems [1], because one the core issue in 
such problems is the simultaneous arrival at the cross 
dock. In general, time window models can be divided to 
three categories: 

VRP with hard time window (VRPHTW): In such 
models, vehicles have to service customers in the 
specific time interval and any violation from the service 
time window HWV  is not admissible for customer i , 
whatsoever. 

VRP with soft time window (VRPSTW): In such 
models, vehicles are allowed to service customers 
before and after the earliest and latest time window 
bounds, respectively. If any violation occurs from the 
service time window ],[ ii ba , by introducing appropriate 
penalties, measure of customer’s non-satisfaction is 
reflected [38]. 

VRP with hard and soft time window (VRPHSTW): 
Such models are combination of the two mentioned 
models. Time window in these models include a hard 
and a soft interval. Hard interval cannot be violated and 
soft interval can be violated [38]. 

Comparatively, a few number of research projects 
considered both cross-docking and VRP simultaneously. 
Earlier, Lee et al. [1] proposed a tabu search algorithm 
(TS) to determine the number of vehicles and the 
optimal vehicle routing schedule at a cross-dock to 
minimize the sum of transportation cost and fixed cost 
of vehicles. Liao et al. [2] developed new TS algorithm 
and compared its performance with Lee et al.’s TS [1]. 
Dondo et al. [39] presented a hybrid multi-echelon 
multi-item distribution network that contained multi-
echelon vehicle routing problem with cross-docking in 
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supply chain management by minimizing total 
transportation cost. Hasani-Goodarzi and Tavakkoli-
Moghaddam [40] considered a split vehicle routing 
problem (SVRP) with capacity constraint for multi-
product cross-docks. Mousavi and Tavakkoli-
Moghaddam [41] presented a two-stage mixed-integer 
programming (MIP) model for the location of cross-
docking centers and vehicle routing scheduling 
problems with multiple cross-docking centers due to 
potential applications in the distribution networks. To 
the best of our knowledge, there have been a few papers 
that take both cross-docking and time scheduling with 
time windows into consideration simultaneously. Ma et 
al. [42] proposed a new shipment consolidation and 
transportation problem in cross-docking distribution 
networks by considering setup cost and time window 
constraint. Ma et al. [42] considered direct rout 
(supplier-to-retailer) as well as indirect rout (supplier-
to-cross dock and cross dock-to-retailer). Ma et al. [42] 
also assumed that products can be stored at the cross-
dock for relatively long times. Dondo and Cerdá [43] 
introduced a sweep heuristic for the VRPCD that 
determines pickup/delivery routes and schedules 
simultaneously with the truck scheduling at the 
terminal. Dondo and Cerdá [43] assumed that the 
pickup/delivery nodes should be visited within specific 
hard time windows. Unlike Ma et al. [42] and Dondo 
and Cerdá [43], this paper considers the multi-
commodity consolidation and soft time windows for 
each delivery node. In this paper, it is assumed that all 
deliverable products are moved to respective destination 
without storing in the cross-dock. It is also assumed that 
direct shipping from the suppliers to retailers is not 
allowed. In this paper, the primary motivation is to 
present two algorithms for the solution of the above-
described complex model of cross docking strategy. 

This paper is organized as follows: section 2 
presents the model assumptions and formulation. 
Section 3 describes the tabu search and variable 
neighborhood search algorithms for VRPCDTW and 
presents the steps of the algorithms. Section 4 compares 
the performance of the proposed algorithm. Finally, 
section 5 concludes the paper and presents the future 
research. 

 
 

2. MODEL ASSUMPTIONS AND FORMULATION 
 

The problem considered in this study, namely 
VRPCDTW, is VRP cross-docking with time window. 
The problem formulation is based on the following 
assumptions: 

• This problem is goods transportation from a set 
of suppliers to a set of corresponding 
customers/retailers through a cross-dock. Direct 
shipping from the suppliers to retailers is not 
allowed. 

• A soft time window is considered for each 
customer. 

• A set of identical vehicles is used to transport 
goods from supplies to retailers. 

• Consolidation process must be accomplished at 
the cross dock. 

• The whole process must be completed in the 
planning horizon. 

• Each supplier or retailer can only picked up or 
delivered once. Each location (pick up/delivery 
node) cannot be visited by the same vehicle more 
than once. 

• No intermediate storage in the cross-dock is 
allowed. 

• There are no pre-defined vehicles for some 
suppliers and retailers. 

The main objectives are to determine the number of 
vehicles and the best routes and schedules to minimize 
the sum of transportation cost, vehicle operation cost 
and time window violation cost. The notations (sets, 
parameters and decision variables) and mathematical 
formulation are as follows.  It should be noted that some 
of the used notations in the proposed model, are similar 
to that of Wen et al. [10]: 
P : set of nodes in the pickup process 
D : set of nodes in the delivery process 
0 : cross dock index 
n : number of suppliers/retailers 
NV : number of available vehicles 
Q : capacity of the vehicle(pallet) 
A: the fixed time for loading, unloading and reloading 

at the cross-dock and each node 
B : the time for loading, unloading and reloading a 
pallet at the cross-dock and each node 

ijtc : transportation cost from node i to node j  

νo : operation cost of vehicle ν . It should be noted that 
all of the vehicles have an identical operation cost. 

ijt : travel time between node i  and j  

ip : number of pallets loading in pickup node i  

id : number of pallets unloading in delivery node i  
ν
iDT : departure time of vehicle ν from node i  
νAT : arrival time of vehicle ν  at the cross dock 

ν
iS : service start time of vehicle ν  at node i  

iyeν : amount of start time earliness of vehicle ν at 
node i  

iylν : amount of start time lateness of vehicle ν at node 
i  

eP : unit penalty cost for earliness 

lP : unit penalty cost for lateness 
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ie : lower bound of hard time window at node i  

il : upper bound of hard time window at node i  

iLB : lower bound of soft time window at node i  

iUB : upper bound of soft time window at node i  
M : very big number 
T : time horizon 
 
Decision variables: 

ν
ijx : if the vehicle ν move from the node i  to the node 

j , 1, otherwise,0. ( Pji ∈, or D ) 
ν
iu : if the vehicle ν unload the goods i  at the cross 

dock,1, otherwise,0. ( Pi ∈ ) 
ν
ir : if the vehicle ν load the goods i  at the cross 

dock,1, otherwise,0. ( Pi ∈ ) 
νtu : the time at which vehicle ν finishes unloading at 

the cross dock 
νtr : the time at which vehicle ν starts reloading at the 

cross dock 

iv : the time at which goods i is unloaded at the cross 
dock 
 
Mathematical model: 
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The objective function of this problem is expressed 

by Equation (1). It is tried to minimize the sum of 
transportation cost, operation cost of vehicles and, 
earliness and lateness of vehicles cost. Equations (2) 
and (3) show that one vehicle has to arrive at and leave 
one node. Equations (4) and (5) show that one vehicle 
has to leave the cross dock from one node and arrive at 
one node at the cross dock. Equation (6) expresses the 
consecutive movement of vehicles. Equation (7) shows 
that the number of vehicles that leave the cross-dock 
must be less than the number of available vehicles, NV.  
Equations (8) and (9) express that the quantity of loaded 
products in a certain vehicle cannot exceed the 
maximum capacity of the vehicle in the pickup and 
delivery processes, respectively. Equations (10) and 
(11) express that the departure time of a vehicle from 
node, j ,  is determined by the sum of the departure time 
of a vehicle from previous node , i , the length of a visit 
(sum of the fixed time and variable time for loading, 
unloading and reloading), and the time to move. 



1117                         M. B. Fakhrzad and A. Sadri Esfahani / IJE TRANSACTIONS A: Basics  Vol. 27, No. 7, (July 2014) 1113-1126 

Equilibrium equation is shown in Equation (12). In 
Equation (13), the sum of the total length of the visit to 
each node and total transportation time must be less 
than the planning horizon, T . The arrival time at a 
cross-dock is represented by Equation (14). The 
constraint for simultaneous arrival to a cross-dock is 
given in Equation (15). Equation (16) determines the 
service start time for each node. The constraint for soft 
time windows is represented in Equation (17). 
Equations (18) and (19) determine the amount of 
earliness and lateness of a start time. This fact that a 
vehicle, ν  should unload or reload product, i , depends 
on its pickup and delivery routes is expressed by 
Equation (20). Equation (21) shows the linkage between 
the pickup and delivery process in the consolidation 
decisions at the cross dock. Equation (22) indicates that 
a vehicle cannot start reloading until it finishes 
unloading. Equations (23) and (24) express the time at 
which vehicle, ν finishes unloading and starts reloading  
at a cross dock.  

 
 

3. META-HEURISTICS FOR THE VRPCDTW 
 

Since VRPCDTW is considered as a NP-hard problem 
[1], an efficient meta-heuristic method is needed to 
achieve a good solution in a reasonable amount of time. 
TS was successfully applied to solve the various types 
of VRP [1, 2, 44, 45]. VNS was also successfully 
applied to solve the multi depot routing problem [46] 
and scheduling the trucks in cross-docking systems [26]. 
In this paper, two meta-heuristics algorithms based on 
TS and VNS are presented to solve the VRPCDTW. 
Sections 3.1 and 3.2 are devoted to the TS-based and 
VNS-based algorithms, respectively. 
 
3. 1. A TS-based Meta-heuristic for the VRPCDTW 
TS is an iterative local search algorithm, which cycling 
back to previously visited solution is prevented by the 
use of memories. TS was originally developed by 
Glover [47]. Some of the basic components of TS 
method are: initial solution, neighborhood structure, 
stopping criteria, tabu list and aspiration criteria. TS, at 
each iteration, explores the solution space and tries to 
make the best possible moves from the current solution 
x to the best solution x′ in its neighborhood )(xN , 
even if the move may deteriorate the objective function 
value. A tabu mechanism is put in place to prevent the 
process from cycling over a sequence of solutions. TS 
exploits tabu list to prevent cycling and local optima. 
Some attributes of the past solutions are registered and 
any solution possessing these attributes may not be 
considered.  Temporarily are also declared tabu forθ  
iterations (it is called tabu tenure). However, tabu 
moves can be overridden if the aspiration criterion is 

satisfied. Here, a TS-based heuristic to solve the 
VRPCDTW is developed. 

 
3. 1. 1. Initial Solution      Similar to the other local 
search algorithms, TS is an iterative procedure that 
starts from an initial solution. This solution is the 
starting point for subsequence exploration in the 
solution space. Here, an initial solution scheme for 
VRPCDTW is introduced. 

 
Pickup process:  
1) Calculate the minimum number of vehicles. 

∑= QpNV i /min
 

2) Sequence vehicles in descending order of the 
remaining space. In the stage of initialization, all of the 
vehicles are available at the cross dock. They are empty 
and sort according to their index. 

min
,...,, 21 NVSSS  

3)  Determine all possible routes that the first vehicle 
can be moved in the sequence of step 2. Calculate the 
ratio of transportation cost to the minimum 
transportation cost between the determined routes. 
Generate the candidate list of routes that their calculated 
ratios are less thanα . Select a route and its related node 
randomly from the candidate list. 
4) Replicate the steps 2 and 3 until all nodes are 
assigned. If the remaining capacity of a vehicle is less 
than the supply of node i , select next vehicle in the 
sequence of step 2. If no vehicle was found, add one 
additional vehicle to the set of vehicles. 

 
Delivery process 
1) Calculate the remaining time for delivery process,.  
td=T-tp   where, dt  is the remaining time for delivery 

process, T is the time horizon and pt  is the completion 
time of the pickup process. 
2)  All vehicles travel to the corresponding customer 
without any consolidation. For example, if the first 
vehicle is made pickups in the nodes 1, 2 and 4, thus, 
shipment of this vehicle must be delivered to the 
customers 1, 2 and 4. 

 
3. 1. 2. Objective Function Evaluation        The 
proposed TS algorithm is based on that of Cordeau et al. 
[48], in which the infeasible solutions are allowed 
during the search. 

According to the initial solution scheme, the time 
horizon and time windows may be violated. In addition, 
these violations can be occurred during the search 
process. Thus, a penalized objective function )(sf is 
considered to evaluate each solution generated from the 
neighborhood of the current solution. The presented 
objective function evaluation procedure is based on that 
of Wen et al. [10]. It is defined as follows: 
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where, )(sf  is the objective function in the algorithm 
iterations, )(sc  is the original objective function 
defined in (1), TV , HWV and SWVare the violation 
measures for delivery process remaining time, hard time 
windows and soft time windows, respectively. If the 
solution is feasible for these three constraints, TV ,
HWV and SWVare equal to 0. α  and β  are the 
penalty coefficients for the time horizon and hard time 
windows violation, respectively. In order to satisfy the 
soft time windows, a big penalty coefficient ( M ) is 
considered for SWV . TV , HWV and, SWVare defined 
as follows: 
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where ),0max()( xx =+ . 
It should be noted that the initial solution is designed 

in such a manner that the vehicles capacity have no 
violation. However, during the search algorithm, vehicle 
capacity may be violated. Therefore, a penalty 
coefficient for the capacity violation measure is 
considered. According to the above discussion, )(sf is 
modified as follows: 

( ) ( ) ( ) ( )
. ( ) ( )

f s c s TV s HWV s
M SWV s CV s

α β
γ

= + + +
+

 (31) 

where, CV and γ are the capacity violation measure and 
its penalty coefficient, respectively. 

 
3. 1. 3. Neighborhood Structure        Neighborhood 
structure is the transformation mechanism that applies 
on the current solution to generate candidate solution. 
Insertion and exchange are the most simple and famous 
mechanisms to generate neighboring solution in the 
heuristic algorithms. Recently, *2 opt−  and CROSS 
mechanisms have generated good solutions. In the 
insertion mechanism, one node i  removes from its 
original vehicle k  and re-inserts to another vehicle k′ . 
However, in the exchange mechanism, two nodes 
belonging to the two vehicles are swapped. opt−2  
operator is applied in this paper. One vehicle is selected 

randomly and then two routes whose transportation cost 
between two nodes is more than the other nodes are 
found. These two selected routes are exchanged with the 
two corresponding routes in another randomly selected 
vehicle. If there are not any corresponding routes in the 
two randomly selected vehicles, then, the sequence of 
the two routes is changed in the first selected vehicle. 

 
3. 1. 4. Candidate List Strategy        For a given 
solution, x , it is computationally too expensive to 
explore its whole neighborhoods. Thus, in the proposed 
algorithm, instead of examining all neighborhoods, )(xN
, a candidate list consisting of vehicles which have the 
most number of nodes is examined. For example, if the 
number of vehicles is more than a certain number (i.e. 5 
vehicles), the known percent of vehicles (i.e. 50%) 
which have the most number of nodes are examined. 

 
3. 1. 5. Tabu Status and Tabu List        One of the 
TS’s objectives is to encourage the exploration of parts 
of the solution space that have not been visited 
previously [45]. The complete solutions are not kept in 
the tabu list. The attributive memory is used for the tabu 
list, and the e-attributes of an accepted move are stored 
[49]. For opt−2  operator, the tabu status of the 
solution is defined by the vertex pair (i, j). These two 
vertices are stored in the tabu list, and any solution 
possessing these attributes may not be considered and 
temporarily declare the tabu for θ  iterations. In this 
paper, two tabu lists are defined for both pickup and 
delivery processes. Each tabu list is an nn× matrix, 
where element ),( kiTABU j  specifies the tabu status of 
arc (i,k) in 

jTABU . If 0),( ≤kiTABU j
, arc (i,k) is not a 

tabu; otherwise tabu. 
 

3. 1. 6. Aspiration Criterion        In the TS algorithm, 
tabus may prohibit attractive moves, even when there is 
no danger of cycling. Hence, it is necessary to use 
algorithmic devices to allow one to revoke tabus. These 
are called aspiration criterion. In this paper, similar to 
the almost all of the TS implementation, most 
commonly aspiration criterion is used. In this aspiration 
criterion, a tabu move can be overridden if it has less 
objective value than the best solution found so far. 

 
3. 1. 7. Stopping Criterion         In this paper, when 
the maximum iteration bound determined by the user is 
reached, the search is stopped. The iteration number is 
calculated by the following formula: 

)11(
F

NVE −+×
 

(32) 

where, E and F are parameters and NV is the number 
of vehicles. Hence, the number of iterations increases 
with NV . 
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3. 1. 8. Proposed Algorithm Steps     Before 
describing the algorithm flow and presenting the 
flowchart of the algorithm, some parameters are 
introduced in the following: 

Pcn : current number of the generated candidate 
solutions, in the pickup side; 

Dcn : current number of the generated candidate 
solutions, in the delivery side; 

maxn : maximum number of the candidate moves; 

PA : set of candidate solutions in the pickup process; 

DA : set of candidate solutions in the delivery process; 
count : counter of iterations; 
NUI : current number of iterations without 
improvement; 

maxiteration : maximum number of algorithm iterations; 

maxNUI : maximum number of iterations allowed without 
improvement; 

*x : the best-found solution; 
η : adjusting coefficient for the penalty coefficients; 

 
Step 1  Initialization 
1.1) Generate an initial solution ( x ) based on 

3.1.1. 
1.2) Set the algorithm parameters, α , β , γ , η , 

maxNUI  , tabu tenure(θ ), φ=),( kiTABU , E , F ,
1=count ,  and 0=NUI . Calculate maxiteration  based on 

(32).  
1.3) set: xx ←*  and )()( * xfxf ← . 
Step 2 Generate the admissible solution in the pickup 
side  
Set 1=

Pcn  and φ=PA .  

2.1) If
maxnn

Pc ≥ , go to step 3. 
2.2) Based on section 3.1.4, determine the vehicle 
candidate list for generating the neighborhoods. Apply 
predetermined neighbor-generating method described in 
section 3.3. A solution 

Pcnx  is generated from the 

neighborhood )(xN of x  and added to the candidate 
solution. Set,

 PcnPP xAA ∪← , 1+←
PP cc nn and go to 

step 2. 
 

Step 3 Select the best move in the pickup side 
amongst PA  
Evaluate all the solutions in PA according to section 
3.2. Put all non-tabu solution in )(xN′ , set 1=i ,

 
initialbest xx

P
= , )()( initialbest xfxf

P
= . Put all tabu 

solutions in )(xN ′′ . 

3.1) If maxni > , go to step 4. 
3.2) If )()( xNxNxi ′′′∈ ∪  and )()( Pbesti xfxf ≤ ,  
set: iPbest xx ← , 1+← ii and go to step 3.1. 

 
Step 4 Generate the admissible solution in the 
delivery side  
Set 1=

Dcn and φ=DA . 

4.1) If
maxnn

Dc ≥ , go to step 5. 
4.2) Based on section 3.1.4, determine the vehicle 
candidate list from the solution obtained in step 3, for 
generating the neighborhoods. Apply exchange operator 
according to section 3.3. A solution 

Dcnx  is generated 

from the neighborhood )(xN of x  and added to the 
candidate solution. Set:

 DcnDD xAA ∪← , 

1+←
DD cc nn and go to step 4.1. 

 
Step 5 Select the best move in the delivery side 
amongst DA  
Evaluate all solutions in DA according to section 3.1.2. 
Put all non-tabu solution in )(xN′ , set 1=i , 

Pbestbest xx = , )()(
Pbestbest xfxf = . Put all tabu 

solutions in )(xN ′′ . 
5.1) If maxni > , go to step 6. 
5.2) If )()( xNxNxi ′′′∈ ∪  and )()( besti xfxf ≤ ,  set: 

ibest xx ← . 1+← ii and go to step 5.1. 

 
Step 6  Update the statistical information 
If )()( bestxfxf

i
≥ , set 1+← NUINUI and go to 

step 1. Otherwise: set bestxx ←*  and )()( *
bestxfxf ← . 

 
Step 7  Update the memory structure 
Update the tabu list according to *x . Set 

1),(),( +← kiTABUkiTABU j , 2,1=j  where the indices 
1 and 2  demonstrate the pickup and delivery processes, 
respectively. 

 
Step 8  Update the penalty coefficients 
If the current solution is feasible with respect to each 
items of the objective functions (TV , HWV , SWV  and 
CV ), the value of the corresponding penalty coefficient 
is divided by η+1 ; otherwise, it is multiplied by η+1 . 
Set 1+← countcount .  

 

Step 9  Stopping 
If maxiterationcount <  and maxNUINUI < , go to step 2; 
otherwise show the best x solution. 



M. B. Fakhrzad and A. Sadri Esfahani / IJE TRANSACTIONS A: Basics  Vol. 27, No. 7, (July 2014) 1113-1126                       1120 
   

The flowchart of the proposed algorithm is given in 
Figure 2. In addition, the pseudo code of the TS 
algorithm is given below. 
1. Begin 
2.  Generate an initial solution. 
3. Set the initial solution as the current and also the 

best solution. 
4. Generate an empty list for keeping the frequency of 

the solution changes in the pickup side. 
5. Generate an empty list for keeping the frequency of 

the solution changes in the delivery side. 
6. While stopping criterion is not met do 
7. For 1

pcn = to max 1n =  

Search the neighborhood of the current solution in the 
pickup side. 
current solution neighborhood of thecurrent solution←  . 

Then update the tabu list. 
8. If 

current solutionobjective function bestsolutionobjective function<

then 
9. best solution current solution←  
10. Endif 
11. Endfor 
12. current solution best solution←  
13. For 1

dcn = to max 1n =  

Search the neighborhood of the current solution in the 
delivery side. 
current solution neighborhood of thecurrent solution←  . 

Then, update the tabu list. 
14. If 
current solutionobjective function best solutionobjective function<

best solution current solution←  
15. Endif 
16. Endfor 
17. Endwhile 
18. End 
 
3. 2. A VNS-Based Meta-heuristic for the 
VRPCDTW         VNS is a new meta-heuristic for 
solving the combinatorial and global optimization 
problems that proposes systematic changes of the 
neighborhood structure during the search. VNS 
originally proposed by Hansen and Mladenovic [50]. 
Basic idea of the VNS is a systematic changing of 
neighborhood both within a descent phase to find a local 
optimum and within a perturbation phase to get out of 
the corresponding valley [51]. VNS explores close and 
then increasingly far neighborhoods of the best known 

solution in a probabilistic way. In other word, VNS 
applies a local search procedure repeatedly to get from 
neighboring solutions to local optima [51]. Because of 
relying on very few parameters, such as stopping 
criterion and number of neighborhoods, VNS is very 
easy to implement. A very comprehensive study about 
VNS can be found in Hansen and Mladenovic [50, 52]. 
Here, a VNS-based heuristic to solve the VRPCDTW is 
developed. 

 
3. 2. 1. Initial Solution        Similar to the other meta-
heuristic algorithm, an initial feasible solution is 
necessary to start VNS procedure. In this paper, initial 
solution scheme described in TS algorithm is applied, as 
initial solution.  

 
3. 2. 2. Neighborhood Structures       In almost all of 
the meta-heuristic algorithms, one or more 
neighborhood structures is utilized as a means of 
defining admissible moves to transition from one 
solution to another solution. Because of the good 
performance, opt−2  operator is applied in this paper. 
One vehicle is randomly selected and then two routes 
whose transportation cost between two nodes is more 
than the other nodes are found. These two selected 
routes are exchanged with the two corresponding routes 
in another randomly selected vehicle. If there are not 
any corresponding routes in the two randomly selected 
vehicles, then, the sequence of the two routes is changed 
in the first selected vehicle.  
 
3. 2. 3. Shake Procedure    The shake procedure 
generates a x ′ at random from neighborhood of x , i.e. 

( )x N x′∈ . 
 
3. 2. 4. Stopping Criterion     In this paper, the 
stopping criterion is determined by the maximum 
number of iterations between two improvements. In this 
paper, the iteration number is calculated by formula 
(32). 

 
3. 2. 5. Proposed Algorithm Procedure 
 

Step 1  Initialization 
1.1) Generate an initial solution ( x ) based on 
3.1.1. 
1.2)  Determine the neighborhood structure. In this 
paper, 2 (.)optN − . 

1.3) Set the algorithm parameters, α , β , γ , E , F ,

1=count . Calculate maxiteration  based on formula 
(32).  
1.4) set: xx ←*  and )()( * xfxf ← . 
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initia lxx ←*

1=
Pcn

Pcnx

Pcnx

maxnn
Pc >

Pcnx PP cnbest xx ← 1+=
PP cc nn

PP cnbest prevxx ←

1=
Dcn

Dcnx

Dcnx

Dcnx

maxnn
Dc >

Dcnbest xx ← 1+=
DD cc nn

prevxx
Pbest ←

1+= NUINUImaxNUINUI >

1+= countcount
maxitera tion

count >

 
Figure 2. Flowchart of the proposed algorithm. 

 
 
Step 2 shake and local search in pickup and delivery 
sides 
 2.1)  Shake routine in the pickup side. Find a random 
solution 2 ( )optx N x−′∈ . 
 2.2)  Local search in the pickup side. Apply 
neighborhood structure on x ′  to find a solution pickupx . 
2.3) Shake routine in the delivery side. Find a random 
solution 2 ( )optx N x−′′∈ . 
2.4) Local search in the delivery side. Apply 
neighborhood structure on x ′′  to find a solution deliveryx . 

 2.5)  If )()( *xfxf pickup <  then *
pickupx x← . If 

)()( *xfxf delivery < then *
deliveryx x← . 

 Set: 1+← countcount .  
 

Step 3 stopping 
 If maxiterationcount < then *x x←  and go to 2.1, 

else show *x .  
The pseudo code of the VNS algorithm is as follows: 
1. Begin 

2.  Generate an initial solution ( x ). 
3.  Set the initial solution as the best solution ( *x ). 
4.  While stopping criterion is not met do 
5. Repeat the following steps 
6. *xx ←  
7. Shake routine in the pickup side. Find a random 
solution 2 ( )optx N x−′∈ . 

8. Local search in the pickup side. Apply neighborhood 
structure on x ′  to find a solution pickupx . 

9. Shake routine in the delivery side. Find a random 
solution 2 ( )optx N x−′′∈ . 

10. Local search in the delivery side. Apply 
neighborhood structure on x′′  to find a solution deliveryx . 

11. If  )()( *xfxf pickup < then 

12. *
pickupx x←  

13. Break 
14. If  )()( *xfxf delivery < then 
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15. *
deliveryx x←  

16. Break 
17. Endif 
18. Endif 
19. Endwhile 

End 
 
 
 

4. COMPUTATIONAL EXPREMENTS 
 

The aim of this section is to compare the performance of 
the two proposed algorithms described in section 3. It 
should be noted that, to verify and validate the 
mathematical model, several small size test problems 
were solved by the Lingo 8 software and optimal results 
were obtained. Optimal results of the four instances are 
presented in Table 2. 

To evaluate the performance of the proposed 
algorithms, a computational study is carried out.  For 
this purpose, the proposed algorithms are coded by 
using Visual Basic programming language. In the 
implemented programs, route of each vehicle is 
determined as well as respective costs, such as 
transportation cost, operation cost and earliness and 
lateness cost. The performances of the proposed 
algorithms are verified by comparing the obtained 
results from TS and VNS with the lower bound solution. 
The lower bound solution is developed by relaxing the 
constraints (17)-(19) that related to the time windows. 
To have a fair comparison both algorithms were 
executed on a special laptop. Due to lack of benchmark 
problems in the literature, randomly generated problems 
are considered.  The approach of this paper to randomly 
design of the time windows is similar to Xiangyong et 
al. [45] approach as follows: The hard time window is 
determined by randomly generated      and time 
width   , ie., [  ,   ]=     −     ,     +      .      is 
an integer randomly generated from interval [0 +   ,   −    − ( +    )] for each node  ∈  , where    =    .Time width    is an integer uniformly 
generated from the range [10, 30]. The soft time 
window is specified by [   ,   ]=   −     ,   +     . Following Lee et al. [1] other parameter values 
are as follows: capacity of the vehicle (pallet) 70=Q , 
travel time between node i  and j ,

(20,200)ijt uniform≡ , transportation cost from node 

i to node j  , (48,480)ijtc uniform≡ , number of 
pallets loading in pickup node i  and number of pallets 
unloading in delivery node i  , , (5,50)i ip d uniform≡ . 
Also, operation cost of vehicle ν ,oν , unit penalty cost 
for earliness , eP , unit penalty cost for lateness , lP , the 
fixed time for loading, unloading and reloading at the 
cross-dock and each node , A , and the time for loading, 
unloading and reloading a pallet at the cross-dock and 
each node , B , are specified by 100, 5, 5, 10 min and 1 
min, respectively. In this paper, the approach of the 
parameters setting is similar to response surface 
methodology (RSM). For this purpose, critical factors of 
the TS algorithm that are statistically significant in 
aspects of performance and CPU time have been 
identified. Critical factors of the TS algorithm based on 
Vahdani and Zandieh [26] are maximum iteration (

maxiteration ), maximum number of iterations allowed  
without improvement (

maxNUI ), maximum number of 
the candidate moves (

maxn ) and tabu tenure (θ ). 
According to the determined neighborhood structure, 
the critical factor of the VNS algorithm is maxiteration . 
By preliminary experiments, parameters of the proposed 
algorithms have been tuned, with which the algorithm 
had a relatively better performance and CPU time. 
Parameter setting is presented in Table 1. 

Total cost comparison results of the two proposed 
algorithms versus Lingo results for the sample instances 
are provided in Table 2. The time horizon T is supposed 
to be 600 min. 

Comparison results show that while using the Lingo 
software, the solution time is exponentially increased by 
increasing the number of nodes, whereas the proposed 
algorithms can solve the problem in much less time. 
Table 2 also shows that the presented algorithms can 
generate near optimal solution for the sample problems. 
Therefore, these algorithms can efficiently solve large 
size problems in the logical time. Comparative results of 
total costs and computation times of the TS and VNS 
algorithms as well as the lower bound solution for 
randomly generated large size instances are provided in 
Table 3 and Table 4, respectively. It should be noted 
that the value of each instance was reported from the 
average of 10 repetitions. Percentage gap between the 
total costs of the two presented algorithms and lower 
bound solution is calculated according to the following 
formula (I).  

 
 
 
 

cos cos
cos 100tota l t of the proposed a lgor ithm tota l t of the lower bound solution

tota l t of the lower bound solutionGa p −= ×  (I) 
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TABLE 1. Parameter setting 
Parameter Definition Value for TS Value for VNS 

α  penalty coefficients for the time horizon violation 100 100 
β  penalty coefficients for hard time windows  violation 100 100 
γ  penalty coefficient for capacity violation 50 50 
η  adjusting coefficient for penalty coefficients 2 - 

E parameter for maxiteration based on formula (32) 60 80 

F parameter for maxiteration based on formula (32) 3 2 

maxNUI  maximum number of iterations allowed without improvement n3  - 

maxn  maximum number of the candidate moves 50 - 

θ  tabu tenure 2
maxiteration  

- 

 
 

TABLE 2. Total cost comparison results of the proposed algorithms versus Lingo 
Problem No. of available 

vehicles 
No. of nodes in each sides 
(pickup and delivery) 

TS result VNS result Lingo 
Total 
cost 

cpu time 
(s) 

Total 
cost 

cpu 
time (s) Total cost cpu time (s) 

VRPCDTW 1 5 5 2583.3 45 2590 48 2501 32 
VRPCDTW 2 5 6 2936.75 61 3020 60 2899 48 
VRPCDTW 3 5 7 3145.86 65 3266.9 69 3046.32 1180 
VRPCDTW 4 5 8 4257.9 150 4320 151 3998.38 26000 
 
 

TABLE 3. Total cost obtained by TS algorithm for the large size problems (T=600 min) 

Problem No. of available 
vehicles 

No. of nodes in each sides 
(pickup and delivery) 

Lower bound solution TS result 
Gap (%) 

Total cost Total cost cpu time (s) 
VRPCDTW5 10 15 7277 8364 100 14.94 
VRPCDTW 6 10 20 8834 10036 210 13.61 
VRPCDTW 7 20 25 12035 13299 275 10.50 
VRPCDTW 8 20 30 12480 14437 486 15.68 
VRPCDTW 9 30 40 15980 18907 840 18.32 
VRPCDTW 10 30 50 19750 25003 1022 26.60 
VRPCDTW 11 50 60 36551 40167 2306 9.89 
VRPCDTW 12 50 70 49383 60225 3126 21.95 
VRPCDTW 13 60 80 65511 78930 3840 20.48 
VRPCDTW 14 60 90 89127 100128 4209 12.34 
     Average gap (%) 16.43 

 
 

TABLE 4. Total cost obtained by VNS algorithm for the large size problems (T=600 min) 
Problem No. of available 

vehicles 
No. of nodes in each sides 
(pickup and delivery) 

Lower bound solution TS result 
Gap (%) 

Total cost Total cost cpu time (s) 
VRPCDTW5 10 15 6327 9053 121 43.09 
VRPCDTW 6 10 20 7474 10101 234 35.15 
VRPCDTW 7 20 25 11229 14573 290 29.78 
VRPCDTW 8 20 30 13590 15986 503 17.63 
VRPCDTW 9 30 40 15963 19716 886 23.51 
VRPCDTW 10 30 50 18768 25353 1120 35.09 
VRPCDTW 11 50 60 39496 42931 2583 8.70 
VRPCDTW 12 50 70 53282 61243 3220 14.94 
VRPCDTW 13 60 80 60859 80074 3920 31.57 
VRPCDTW 14 60 90 80800 101005 4602 25.01 

     Average gap (%) 26.45 
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As depicted in Table 3, the average gap between the 
total costs of the TS solution and lower bound solution 
is 16.43% that is desirable. In addition, Table 4 shows 
that the average gap between the total costs of the VNS 
solution and lower bound solution is 26.45%. As a 
result, computational experiments indicate that the 
proposed TS algorithm performs better than VNS 
algorithm in aspect of the total cost. 

 
 

5. CONCLUSION AND FUTURE RESEARCH 
 
This paper presented a new model, namely VRPCDTW, 
integrating cross-docking with VRPTW. Since this 
problem is categorized as a NP-hard problem, two meta-
heuristic algorithms based on the TS and VNS were 
proposed for its solution. The proposed algorithms were 
shown to have the adequate flexibility while 
encountering with the real-world cases. A 
computational experiment was carried out to compare 
the performance of the proposed algorithms. 
Experimental results showed that the proposed 
algorithms were capable of solving the large size 
problems in the logical time. Because of presenting a 
candidate list strategy, computational experiments 
indicated that the proposed TS algorithm performs 
better than VNS algorithm in both aspects of the total 
cost and computation time. Future research can be 
suggested in a few directions. It is interesting to solve 
the proposed model by new meta-heuristic algorithms 
and compare their results with the results of the 
proposed algorithms. Another extension is to consider 
the fuzzy time window in the both sides of the cross-
dock (pickup and delivery sides). Future research can be 
considered the multiple cross-docks, capacity constraint 
at the cross-dock, direct shipment and non-identical 
vehicles. 
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  چکیده
  

 
هاي در این راهبرد، محموله. شوددر سالهاي اخیر، بارگیري همزمان به عنوان یک استراتژي مهم توزیع در نظر گرفته می

این راهبرد به عنوان . شوندسازي و سازماندهی میبندي، مرتبورودي بلافاصله بر اساس مقصد و تقاضاي مشتریان طبقه
رویکرد در زمینه مدیریت موجودي و مدیریت توزیع جهت کاهش موجودي و بهبود پاسخگویی به مشتري مورد یک 

از اهمیت خاصی ) VRP(از میان مسائل مرتبط با این راهبرد توزیع، مسأله مسیریابی وسیله نقلیه . توجه قرار گرفته است
پردازد بطوریکه براي دریافت محموله می VRPCDTWم به نا VRPاین مقاله به بررسی حالت خاصی از . برخوردار است

است دو الگوریتم  NP-hardاز آنجا که این مسأله جزء مسائل . شودتوسط مشتري، محدودیت زمانی در نظر گرفته می
الگوریتمهاي پیشنهادي . شودفراابتکاري بر پایه جستجوي ممنوع و جستجوي همسایگی متغیر براي حل آن پیشنهاد می

الگوریتم . باشدمسائل دنیاي واقعی طراحی شده است و به مسائل دیگر از جمله تفکیک محموله نیز قابل تعمیم می براي
در پایان یک . گیردها و تعداد وسایل نقلیه در نظر نمیجستجوي ممنوع پیشنهادي هیچ محدودیتی بر روي تعداد گره

نتایج آزمایش عددي نشان داد که الگوریتم جستجوي  .گردده میآزمایش عددي براي اعتبار الگوریتمهاي پیشنهادي ارائ
 .دهدممنوع عملکرد بهتري را از نظر هزینه کل و زمان محاسبات از خود نشان می
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