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A B S T R A C T  

   

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation 
system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and 
cavitator input is our aim. The pitch rate of the supercavitation with respect to fin angle is found as a 
non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control of such 
non-minimum phase in a specific time interval and improving the speed response with respect to fin 
control reaction is still an open problem. To overcome the problem a feed-forward control is proposed 
to apply on the cavitator as a control in the feed-forward configuration. The idea of this paper is to 
provide a certain signal for the cavitator in order to improve the tracking performance in presence of 
uncertainty using iterative learning control. Moreover, this paper proposes a new method based on 
parameter-optimal iterative learning control to solve a perfect tracking problem of systems for 
indefinite (not sign-definite) system. This technique provides an updating control law through applying 
adaptive Lyapunov gain for monotonic zero convergence of tracking error in sense of 2-norm. The 
simulation results verify performance and robustness of the proposed modification of iterative learning 
control in comparison with classical controller of the supercavitating vehicle. 

 
doi: 10.5829/idosi.ije.2014.27.07a.08 

 

 
1. INTRODUCTION1 
 
Velocity of underwater vehicles is extremely 
constrained by friction. But, in rigid conditions, super 
cavitation can separate liquid flow through the gas 
emanating from nose and thus decrease the drag 
between the vehicle and the liquid. Thus, the possibility 
of obtaining high velocities is provided for the vehicle 
and the cavity number is calculated using the following 
equation [1]. 

0
2 .

2
cP P

V
σ

ρ
−

=  (1) 

where 0P  is static pressure contrary to liquid flow, cP  
pressure of cavity, ρ  liquid density and V  vehicle 
velocity. At high velocities, real supercavitation 
phenomenon will occur; but, at low velocities, another 
mechanism is needed to produce this phenomenon. 
Producing this phenomenon at high velocities 
                                                        
1*Corresponding Author Email: a.ranjbar@nit.ac.ir (A. Ranjbar) 

considerably changes dynamics of the vehicle because 
contact with the confining liquid only exists in the nose 
(of the cavitator) and on each of the control surfaces [2]. 
Control surfaces are the fins that produce lift and 
moment forces necessary for the control and are 
symmetrically placed. A series of these fins is used for 
affecting longitudinal dynamics and are called elevators. 
Another fin called radar is used for affecting latitudinal 
dynamics. Coupling between these two dynamics is 
usually thought to be negligible [3]. However, non-
minimum phase behavior of vehicle exists in pitch or 
yaw channel using fin inputs. 

The lift force generated by fins helps to provide 
better band width and more limit disturbances. On the 
one hand, the adequate force needed for controlling 
underwater vehicle cannot be provided solely from 
supercavitation phenomenon, and lift and fin moment 
forces are also necessary; therefore, control fins are 
needed for the vehicle. On the other hand, the non-
minimum phase behavior of vehicle exists in the pitch 
(or yaw) rate of fin inputs, which leads to slow reaction 
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of the system to the fin input and limits efficiency [4]. 
Disturbance mortality is slight and limited in this 
situation which will limit tracking. To compensate for 
this situation, a cavitator can be used, which provides 
enough force for feed-forward control in order to 
compensate for the slow reaction of fin's non-minimum 
phase behavior in the output [5]. 

The existence of a cavitator in supercavitating 
vehicles supplies the feed-forward force necessary for 
compensating the non-minimum phase behavior of the 
vehicle, which can be an advantage for supercavitating 
vehicles over other non-supercavitating underwater 
ones; this advantage is the control necessary for solving 
the problem of  non-minimum phase behavior of the 
system. The exact amount of this control can be 
calculated using iterative learning control (ILC) which 
will provide a new space for solving the problem of 
calculating feed-forward control in order to compensate 
for the slow reaction. This technique is widely used in 
different applications such as those listed by [4-6]. The 
modified ILC is used to control supercavitating vehicle 
for the first time. ILC is an efficient controlling tool for 
improving transient state and efficacy of tracking in 
systems. The systems which work within ILC 
framework act repetitively by nature. Using ILC is not 
limited to this case, but includes all the cases in which 
repetition can help to obtain the desired dynamic of 
even a part of the system dynamics (see [7, 8]). So, 
repetition may depend on time, state, trajectory, etc. or 
their combination. On the other hand, in different 
studies, repetition has different concepts such as trials 
[9], passes [10] or iterations [11]. Although control 
theory provides many designing tools for improving 
response of dynamic system, given the un-modeled 
dynamics or parametric uncertainties, which occur 
during the operation of a real system, or lack of 
appropriate designing techniques, obtaining the desired 
performance is usually challenging [12]. Thus, it will 
not be easy to obtain perfect tracking using control 
theory. ILC is a new complement for control areas 
which may be useful in solving some conventional 
feedback design problems (like adaptive, robust, PID 
and other controllers) [13]. On the other hand, it has 
been proven that ILC is very effective for controlling 
non-minimum phase systems because of using non-
causal filters. In the conventional control theory, if the 
system is non-minimum phase, perfect tracking will not 
be possible using causal filters [14-16]. 

In the ILC algorithm, as the number of iterations is 
increased, tracking error would decrease in a given time 
interval. Iterative learning control is a functional 
approach for improving efficiency of tracking and 
transient response, in which the control input in the 
current iteration is calculated through inputs and 
tracking errors in past iterations. In fact, the main 
viewpoint of iterative learning control is that it uses 

information of past trials. This trend is done for 
improving control efficiency so that tracking error 
decreases in subsequent iterations.  

Some of the primary studies in this regard can be 
seen in [17, 18]. In 2003, Owens and Feng for the first 
time invented a new optimal method for obtaining the 
input that had many advantages over conventional ILC 
methods including simple designing and other 
considerations of scientific implementation [19] and 
[20]. Nevertheless, making perfect tracking 
(convergence of tracking error to zero) largely depends 
on plant transfer function G . If the sign-definite 
condition is not satisfied in the system (sign-definite 
means 0TG G+ >  or 0TG G+ < , G  is a matrix of 
Markov parameters), then convergence of error to zero 
(as a norm) does not occur [21]. In other words, the 
sufficient condition for obtaining perfect tracking is that 
system G  is sign-definite, which is a very constraining 
condition because a vast range of systems might lack 
the mentioned condition. In [19], two methods were 
proposed for monotonous convergence to zero for 
indefinite systems which included using adaptive 
weights and exponential function. In literature [20, 21], 
inverse non-causal functions and system transpose 
system were used to provide monotonous convergence 
to zero tracking error for some systems. In [22], by 
using high order iterative learning mode control and 
adding special basis functions in the control input, it 
was shown that these basis functions could be chosen so 
that sign-definite condition of ideal system was 
satisfied. Nevertheless, an alternative method can be 
used to somehow improve parameter optimization so 
that sufficient conditions for convergence to zero could 
be more constrained. 

In the present study, a novel updating rule was 
proposed using adaptive compensation learning gain 
strategy, in which learning gain in every iteration was 
updated so that the system would be sign-definite. Thus, 
monotonic convergence of tracking error to zero was 
guaranteed. This strategy is based on the point that 
learning gain was updated in every iteration so that the 
adaptive Lyapunov (Riccati) equation became as 
follows: 

(1) T T
j j dGX X G Q+ = −  

dQ  is a desired sign-definite matrix and jX  is a weight 
matrix that should be calculated in every iteration using 
Lyapunov equation solution. The rest of this study is as 
follows: in the next section, dynamic and tracking 
problem is discussed for a supercavitating vehicle. In 
Section 3, the problem of tracking is solved using the 
proposed iterative learning control. In Section 4, 
simulations are done to show effect and robustness of 
the proposed method for the problem of perfect tracking 
in supercavitating vehicle. Finally, the conclusion 
section finishes the paper. 
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2. PROBLEM of TRACKING PITCH RATE OF 
SUPERCAVITATING VEHICLE  
 
In this section, first, a new model of supercavitating 
vehicle is briefly presented. In the next section, problem 
of pitch rate tracking of the vehicle is presented. 

The longitudinal motion equations of a 
supercavitating vehicle can be reduced to a two-state 
longitudinal model: attack angle (α) and pitch rate (q) 
are stated as radiant and radiant per second 2. The new 
model which was obtained in this study considered 
thrust, gravity and fin forces in addition to the forces 
and moments of the vehicle under non-planning 
conditions of cavitator forces and used the results of 
[23, 24] in this regard. For this purpose, Newton laws 
were used to rewrite motion equations through forces     
( F ) and moments ( M ) applied to the vehicle as 
follows: 

(2) ( )1 .
x x x xc T gu F F F F wq

m δ= + + + −&  

(3) ( )1
z z zc gw F F F uq

m δ= + + +&
 

(4) ( )1 .
y yc

yy

q M M
I δ= +&

 

in which indexes c , T , g  and δ  show cavitator, thrust, 
gravity and fin angle, respectively. Also, u  and w  are 
components of linear speeds of the vehicle in body 
coordinates and show pitch rate q  (rotation rate around 
y  axis) in the direction of x and y  axes of the vehicle. 
Also, m  and yyI  are mass and moment of inertia, 
respectively. Supercavitating vehicle has usually 
constant linear velocity in the direction of x axis [1]; in 
other words, 0u =& . Using attack angle of the vehicle, 
i.e. ( ) ( )w uα ≈& & , and also using the Taylor expansion, 
the model is reduced to two state, in which case the 
following relations show longitudinal motion equations 
of system in the vehicle [1]. 

(5) ( )1
z z zc gF F F q

mu δα = + + +&  

(6) ( )1 .
y yc

yy

q M M
I δ= +&

 

in which terms 
z

Fδ and 
z

Mδ are as follows: 

(7) ( )2
z L fin e finF c S u u w x uqδ αρ δ= − + −  

(8) ( )2
y L fin fin e finM c S x u uw x uqδ αρ δ= + −

 

finx , ρ , finS and Lc α are respectively distance of mass 
center to fin, liquid density, fin surface and the 

coefficient resulting from changes of lift coefficient 
with respect to attack angle. 
 
2. 1. Linearization and Trim Conditions    
Equations (5) and (6) show vehicle model with two 
dynamic and nonlinear states in longitudinal axis which 
are presented in terms of force and moment for the 
cavitator, gravity and fin. By placing , 0qα =& & , trim 
points are obtained [1]. Nonlinear equations can be 
converted into linear ones about trim points or working 
points. Thus, the new two-state equation is linearized as 
follows: 

(9) 

1 1 1

1 1

1 1

1 1

z z z z

y y y y

z z

y y

c c

c c

yy yy

c

c e

c

yy c yy e

F F F F
mu mu q q

M M M M qq
I I q q

F F
mu mu

M M
I I

δ δ

δ δ

δ

δ

α αα α

α α

δ δ

δ δ

 ∂ ∂ ∂ ∂   
+ + +    ∂ ∂ ∂ ∂       =    ∂ ∂ ∂ ∂        + +       ∂ ∂ ∂ ∂    

∂ ∂   
   ∂ ∂   

+
∂ ∂   

      ∂ ∂   

&
&
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e

δ
δ

 
 

  
  
  

 
 

 

Each of these derivatives is in the following way: 

(10) ( )2
3 2 2 3 12( ) (3 ) ( )zc

c c c c

F
qA k k k k kα δ α

α

∂
= × − + + −

∂
 

(11) z
L fin

F
c Sδ

αρ
α

∂
= −

∂  

(12) ( )2
3 2 2 3 12( ) (3 ) ( )zc c c

c c c

F l q A k k k k k
q u

α δ α
∂ −

= × − + + −
∂  

(13) z
L fin fin

F
c S x u

q
δ

αρ
∂

=
∂  

(14) 
2z

L fin
e

F
c S uδ

αρ
δ

∂
= −

∂  

(15) ( )2
3 2 3 2 32( ) ( 2 )zc

c c c c
c

F
qA k k k k kα δ α

δ
∂

= × − + + +
∂  

(16) { }, , ,y z

y zfin fin e

M F
M x F x x q

x x
δ δ

δ δ α δ
∂ ∂

= − ⇒ = − =
∂ ∂  

(17) { }, , ,y z

y z

c c
c c c c c

M F
M l F l x q

x x
α δ

∂ ∂
= − ⇒ = − =

∂ ∂  

cl  is distance from vehicle's gravity center to cavitator 
and cA is cavitator effective contact surface with liquid 
which is equal to: 

(18) 2

4c cA dπ=  

where cd is diameter of disk cavitator.  
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(19) ( ) ( )
zc c c c c c c cF D L D Lδ α α= − − + + − −  

(20) 21, , .
2c cc D c c c L c c cD C q A L C q A q uρ= = ≈

 

Meanwhile: 

(21) 2
2 1 3, .

c cD c L cC k k C kα α≈ − + ≈ −
 

Finally, cα as cavitator attack angle is obtained in the 
following way: 

(22)  c
c c

l q
u

α δ α= + −  

Constants 1k , 2k and 3k depend on cavity number σ , 
for which 0.08σ =  [23]: 

(23) ( ) ( )2
1 2 30.875, 0.0002 180 , 0.0126 180k k and kπ π= = =  

xgF  and 
zgF  are components of the force gravity along 

with the x and z axis. In contrast with regular 
underwater robot the supercavitating robot is covered by 
vapor which makes the two mentioned forces negligible 
[25]. Meanwhile, the trust is also constant or varies 
slowly with time. This, also provides derivation of the 
trust with respect to parameters zero [1]. 

Form (9) can be rewritten in the following state 
space form: 

(24) x Ax Bu= +&  

(25) [ ], 0 1y Cx C= =  

Matrices A  and B are found here as: 

(26) 11 12 11 12

21 22 21 22

, ,
A A B B

A B
A A B B

   
= =   

     

where: 

( )( )2
11 3 2 2 3 1

1 2( ) (3 ) ( ) ,c c c c L finA qA k k k k k c S
mu αα δ α ρ= × − + + − −

( )2
3 2 2 3 1

12

2( ) (3 ) ( )1 1,
c c

c c c

L fin fin

l q A k k k k k
A u

mu c S x uα

α δ α

ρ

− × − + + − = +  + 

 

(27) 

( )

( )
( )

2
3 2 2 3 1

21

2
3 2 2 3 1

22

2( ) (3 ) ( )1 ,

2( ) (3 ) ( )1 .

c c c c c

yy fin L fin

c c
c c c c

yy
fin L fin fin

l qA k k k k k
A

I x c S

l q Al k k k k k
uA

I
x c S x u

α

α

α δ α

ρ

α δ α

ρ

 − × − + + −
 =
 + 
 − − × − + + −  

 =  
 − 

 

and:
( )

( )

2
11 3 2 3 2 3

2
12

2( ) ( 2 ) ,

1 ,

c
c c c

L fin

qAB k k k k k
mu

B c S u
mu α

α δ α

ρ

= × − + + +

= −

 

(28) 
( )2

21 3 2 3 2 3

2
22

2( ) ( 2 ) ,

.

c c
c c c

yy

fin
L fin

yy

qAlB k k k k k
I

x
B c S u

I α

α δ α

ρ

= − × − + + +

=
 

Coefficients of the linear state form of (17) are seen in 
(18-19). Considering state Equations (24) and (25), 
supercavitating vehicle's tracking problem will be 
explained below. 
 
2.  2. Describing Tracking Problem of 
Supercavitating Vehicle      High performance 
tracking is an important goal in supercavitating vehicles. 
Pitch rate is commonly accurate, available, and low-
noise sensor measurement for feedback [1]; therefore, 
pitch rate control has attracted much attention. The goal 
of pitch rate control is that system pitch rate could 
perfectly track command pitch rate as far as possible. In 
other words: 

(29) ( ( ) ( )) 0 for 0,comq t q t t T− = ∀ ∈    

in which comq  and T are respectively command pitch 
rate and time period for the vehicle. To make use of 
micro-processor systems, formulation of vehicle's 
discrete time is considered in the general form of (30) 

(30) ( 1) ( ) ( ), 0,1, 2, ...,x k Ax k Bu k k M+ = + =   

(31) ( ) ( )y k Cx k=
 

k is time during a trial, nx∈ ¡  is state vector, u ∈ ¡  
and y∈ ¡  are system input and output, respectively. 
Moreover, the system initial conditions are equal to 0x ,
M number of sampling in the time interval and A, B and 
C matrices are also real with appropriate dimensions. 
Problem (29) is rewritten as follows 

(32) { }( ( ) ( )) 0 for 0, 1, ...,comq k q k k M− = ∀ ∈  

Then, it is demonstrated that iterative learning control 
can provide a desired feed-forward control for reaching 
perfect tracking of pitch rate command. 

 
 

3. ITERATIVE LEARNING CONTROL 
 
Assume that equation of iterative discrete time state 
space is as follows: 

(33) ( 1) ( ) ( )j j jx k Ax k Bu k+ = +  

(34) ( ) ( )j jy k Cx k=
 

where  j is the number of iteration (trial). Without losing 
generality, the lifted plant model can be used for 
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describing this system [22]. In general, ILC problem is 
that the system's control law (33) should be designed so 
that increase iterations reduce the error between ( )jy k  
and ( )dy k or, in other words, ( )jq k  and ( )comq k  using 
the following definition: 

(35) lim( ( ) ( )) 0 for , 1,...,d jj
y k y k k l l M

→∞
− = = +  

in which l  is relative degree as calculated in the 
following way: 

(36) { }1

0 0

min : 0 0s

s

D
l

s CA B D−

≠=  ∈ ≠ =
¥

 

At time { }0, 1, ..., 1k l∈ − , system output is not influenced 
by system input because its corresponding relating 
coefficient between input and output (Markov 
parameters) is zero [13]. Therefore, lifted plant model of 
Markov parameters matrix can be used for other times 
as shown below: 

(37) 
1

1 2 3

1 2

0 0 0
0 0

0 ,
0

l

l l

M M M

M M M l

h
h h

H
h h h
h h h h

+

− − −

− −

 
 
 
 =
 
 
  

L
L

M M M L
O
L

 

This matrix can be also calculated for time-variant 
systems (like supercavitating vehicle) and nonlinear 
systems ( 0lh ≠ ) and, then, use lifted plant matrix H  
instead of Markov parameters matrix G without losing 
generality. Suppose that the system is controllable and 
observable with Equations (33) and (34). The designing 
idea of ILC is that an iterative control law should be 
formed so that: 

(38) lim 0 .jj
e

→∞
=  

which, in other words, means: 

(39) 
*lim 0jj

u u
→∞

− =  

where .
 denote 2-norm. Also, (0), (1),..., ( 1)

T

j j j ju u u u N = −  ,

( ), ( 1), ..., ( )
T

j j j je e l e l e M = +   
and ( ) ( ) ( )j de k y k y k= −  (

1N M l= − + ). Feed-forward control law is defined as 
follows: 

(40) 1 1j j j ju u eα+ += +  

in which jα is scalar learning gain which may change 
from one iteration to another. To calculate the input 

1ju +  in ( )1 thj +  iteration, at the end of every thj iteration, 

learning gain 1jα + will be obtained by solving the 
following quadratic optimization problem: 

(41) ( )( )
1

1 1 1min
j

j j ju
Jα α

+
+ + +=  

in which: 

(42) 1 1j jy H u+ +=  

To satisfy energy limitation, performance index 
( )1 1j jJ α+ + is defined as: 

(43) ( ) 2 2
1 1 1, 0j j jJ e w wα α+ + += + >  

The first part of the equation on the right is related to 
reducing tracking error and the second part is about 
reducing learning gain in every iteration due to practical 
limitations. If performance index is minimized 
compared with learning gain, then learning gain in 
every iteration is obtained as follows: 

(44) 1 2

,k k
j

k

e H e

w H e
α + =

+
 

in which the operator .,.
 
indicates standard internal 

product. Closed loop tracking error in iterations will be 
obtained as: 

(45) ( )1 1j j je I H eα+ += −  

N NI ×  identity matrix of size N. By selecting the recent 
learning gain, i.e. (44) in every iteration, performance 
index is minimized and errors are monotonically 
reduced. In other words, the following relation will 
hold:  

(46) 1 .j je e+ <  

By substituting closed loop error dynamic and also 
learning gain (44) in performance index, the final index 
relation will be as: 

(47) ( )
2

2

1 22

,j j
j j

j

e He
J e

w He
α + = −

+
 

which shows that error norm is monotonically 
decreasing 1 1j j je J e+ +< < .  

The main and most important aim of ILC is that 
error norm tends to zero. This will be absolutely 
possible only if the matrix TH H+ is sign-definite [16]. 
Otherwise, tracking error norm convergence to zero 
(zero convergence) cannot be expected for this method 
(with such learning gain). Then, a new method was used 
for solving this problem using adaptive gain. 

 
3. 1. Adaptive Compensation Learning Gain    As 
mentioned before, the obtained learning gain does not 
result in perfect convergence for some indefinite 
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systems (in the sense of TH H+ ); so, another alternative 
should be found for learning gain. Thus, the following 
control law can be proposed: 

(48) 1 1 1j j j j ju u P eα+ + += +  

where 1jP + is a matrix with appropriate dimension 
which is called adaptive compensation matrix. By 
substituting new control law, i.e. (43), the relation of 
closed loop error will become: 

(49) ( )1 1 1 ,j j j je I H P eα+ + += −  

Also, learning gain and performance index are: 

(50) 
1

1 2

1

,
.k j k

j

j k

e H P e

w H P e
α +

+

+

=
+

 

(51) ( )
2

2 1
1 2

1

,
.j j j

j j

j j

e H P e
J e

w H P e
α +

+

+

= −
+

 

As a result, the new perfect convergence condition is 
that 1 1

T T
j jH P P H+ ++  is sign-definite. Then, it is shown 

that if the following relation holds: 

(52) T T
j j dH P P H Q+ =  

in which dQ  is a desired sign-definite matrix with 
appropriate dimensions; then, zero convergence will be 
guaranteed. Equation (52) is similar to Lyapunov 
equation and, in every iteration, it is solved so that 
matrix 

j

T T
jH P P H+  is sign-definite. Solving the 

proposed Lyapunov equation will be explained in the 
following chapter. 
 
3. 2. Solving Lyapunov Equation Using Iteration 
Consider the following matrix equation: 

(53) .TAX X B F+ =  

in which n mA ×∈ ¡ , m nX ×∈ ¡ , m nB ×∈ ¡  and n nF ×∈ ¡
. There are several algorithms for solving Equation (53) 
by iteration which include gradient-based iterative 
algorithm (GI) as follows [26]: 

(54) 

1 2

1

2

( ) ( )( ) ,
2

( ) ( 1) ( 1) ( 1) ,

( ) ( 1) ( 1) ( 1) .

T T

TT

X j X jX j

X j X j A F AX j X j B

X j X j B F AX j X j B

µ

µ

+
=

 = − + − − − − 

 = − + − − − − 

 

This algorithm is a new method for obtaining unknown 
matrix X  iteratively in Equation (53). Also, [26] proved 
that, if µ  stands in the following range, then ( )X j will 
converge to desired X.  

(55) ( ) ( )0
max max

2
0 :

T TAA BB
µ µ

λ λ
< < =

+
 

where ( )max .λ  denotes the largest Eigenvalue. 
Considering the above relations, it can be concluded 
that, if A H= , TB H= , ( ) jX j P=  and dF Q=  are 
substituted, then 1 2X X= ; also, µ  is selected so that the 
following relation holds:  

(56) 
max

10
( )TH H

µ
λ

< <  

Then, tracking error convergence to zero will occur. 
One of the properties of the mentioned method is 
monotonic convergence to zero. Given the above 
explanation, diagram block in Figure 1 clearly illustrate 
problem of finding feed-forward control for 
supercavitating system through cδ . In this figure, fbK
denotes the controller gain whilst ffG

 
and eG  the feed-

forward and feedback time varying transfer function, 
respectively. Indeed these function are found in terms of 

eδ  and cδ . 
 
3. 3. Systems with Uncertainty     One of the 
properties of this method is that, in spite of system 
uncertainty, zero convergence is uniformly possible. 
This is an important advantage over other conventional 
methods because the possibility of turning sign-definite 
systems to indefinite ones still exists in the presence of 
uncertainty. In this section, monotonic convergence is 
proved with the existence of uncertainty and then zero 
convergence is discussed. To clarify this point, the 
following two propositions are first presented: 

  
Proposition 1. Assume the following system with 
uncertainty:  

(57) 
( 1) ( ) ( ) ( ) ( ),

( ) ( ) ( )
j j j

j j

x t A A x t B B u t
y t C C x t

+ = + ∆ + + ∆
 = + ∆

 

 
 

( )fb eu δ

−

comq q( )e t
fbK

ffG

eG

+

( )ff cu δ

 
Figure 1. Schematic diagram of the learning control scheme 
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The closed loop error equation in iterations can be 
summarized as lumped uncertainty [13]. 

(58) 1 .j je H e+ ′=  

where H H H′ = + ∆ and ∆  are matrix of uncertainty 
coefficients. Also, if H∆ satisfies the following 
condition, then, closed loop error will be convergent. 

(59) 1σ∆ ≤ <  

 
Proof: Given that a positive part is added to positive 
statement of 2

1je +  in performance index relation, then 

( )2

1 1j je J α+ +< . On the other hand, by substituting 

error relation (58) and learning gain (50) in index (43), 
the following can be obtained: 

( )
2

2 1
1 2

1

21 1
12

1

,

,
,

j j j
j j

j j

j j j j
j j j

j j

e H P e
J e

w H P e

H P e H P e
e H P e

w H P e

α +
+

+

+ +
+

+

< −
+

 ∆ ∆ +   + 

 

(60) 

( )

2
2 12

2

1

2

12
22

1

,
(1 )

,

j j j
j

j j

j j j

j j

e H P e
e

w H P e

e H P e
w

w H P e

σ

σ

+

+

+

+

< − −
+

−
+

 

If 1σ < , then ( ) 2

1j jJ eα + < ; as a result, 

( )2 2

1 1j j je J eα+ +< < . In fact, convergent is 

monotonous. Otherwise, there is no guarantee for 
convergence. Condition of zero convergence will be 
investigated in the following proposition. 

 
Proposition 2. According to the previous conditions, in 
addition to providing monotonic convergence, matrix 

jH P  should be sign-definite for zero convergence. 
 
Proof: Consider index relation in (60). Using induction, 
the following relation can be obtained: 

(61) ( )
2 2

22 1 12 2
0 2 22

1 1

, ,
(1 ) 0j j j j j j

j

j j j j

e H P e e H P e
e e w

w H P e w H P e
σ σ+ +

+ +

> − − − >
+ +

 

In other words, index relation is always limited per 
iteration. One of the necessary conditions for limiting 
the index in infinite iteration is that the following term 
should be zero. 

(62) 
2

1
2

1

,
lim 0 .j j j

j
j j

e H P e

w H P e

+

→∞
+

=
+

 

Thus, similar to the previous state, if jH P  is sign-
definite, then this zero convergence will occur. It is 
enough for the relation to be obtained using Lyapunov 

equation in every iteration in order to be sign-definite at 
the end. Proposition 2 states that uncertainty conditions 
in the presence of convergence condition in the 
proposed method are similar to conditions without 
uncertainty. In other words, by providing conditions of 
Proposition 1, zero convergence condition will be also 
provided using the proposed method. 

 
 

4. SIMULATIONS 
 

In this section, for better efficacy and efficiency of the 
proposed method, simulation is done. Pitch rate was 
measured as a supercavitating output and then was used 
in the feedback loop. The complexity of this system was 
in its nonlinearity, in which u is constant under 
supercavitation conditions. Nevertheless, changing pitch 
rate and attack angle led supercavitation and state 
matrices to partially change about trim points. So, the 
system would be time-variant which more complicated 
its control. Anyway, suppose the desired pitch rate as 
follows [27]. Here, initial conditions were considered 
zero. Also, working conditions were considered similar 
to those in [1]. For the first state, the model with no 
uncertainty was supposed. Uncertain model was studied 
in the second case. 

  
4. 1. Case 1: Perfect Model       This case was divided 
into two parts. The first part showed error improvement 
trend for different iterations. Figure 2 demonstrates 
system output for several iterations. Some eigenvalues 
of matrix H (composed of Markov parameters) were 
positive and some others were negative. So, this matrix 
is not sign-definite and norm convergence of closed 
loop error to zero in iteration using conventional 
methods was challenging. However, by selecting the 
proposed method and dQ I= − , monotonic convergence 
of error norm to zero can be obtained. Figure 3 indicates 
error norm for 200 iterations. With more number of 
iterations, errors were reduced and the system's pitch 
rate followed the command pitch rate. The second part 
was related to different values of proposed dQ  for 
Lyapunov equations. Figure 4 shows the results for 
different values of proposed dQ . As can be seen in this 
figure, the bigger the dQ  size, the faster the convergence 
to zero would be. For obtaining more convergence, 
more iteration should be selected. One of the advantages 
of this method was that it provided one more degree of 
freedom for designing control necessities, which 
resulted in bigger dQ  for more convergence without any 
need to more iteration (in here). Thus, faster 
convergence would be possible without using more 
iteration. Figure 5 show the performance of the 
proposed technique of modification, the outcome was 
compared with an optimal LQR method used in [27]. 
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Figure 2. Pitch rate Command Tracking for different iteration 

  

 
Figure 3. Norm of Error 

 

 
Figure 4. Norm of Error for Different Desired Lyapunov 
Matrices 

 

 
Figure 5. Comparison of outcome the proposed ILC in two 
iterations with respect to the conventional LQR 

 

 
Figure 6. Norm of the Error 

 
Figure 7. Norm of the Error 

 
 
As can be seen in this figure, the bigger the dQ , the 

faster the convergence to zero would be. For obtaining 
more convergence, more iteration should be selected. 
One of the advantages of this method was that it 
provided one more degree of freedom for designing 
control necessities, which resulted in bigger dQ  for 
more convergence without any need to utilize more 
iteration (in here). Thus, faster convergence would be 
possible without using more iteration. To show the 
performance of the proposed technique of modification, 
the outcome is compared with an optimal LQR method 
used in [27]. The following figure clarifies preference of 
the proposed method in comparison with the LQR 
method. 

 
4. 2. Case 2: System with Uncertainty     Consider 
system (57). There are system's matrix parameters as 
10% within nominal value in uncertainty parameters 
[27]. Thus, system's uncertainty matrix holds in the 
following relation: 

(63) 0.2 ,∆ <  

where 0.2σ = . Figure 6 shows error norm for 100 
iterations. As seen in the figure, error norm converged 
monotonically to zero as iterations increase. But, if 

1.2σ =  were selected, there would be no guarantee for 
convergence. Figure 7 clearly illustrates that in 10 
iterations. As can be observed in Figure 7, error norm is 
divergent; in other words, it is not convergent. For this 
uncertainty bound, there would be no guarantee for 
convergence. The study is adequate enough for bounded 
uncertainty, specially for 1∆ < . However, as shown by 
the unsatisfactory result in Figure 8, for the uncertainty 
greater than one, there is no guarantee for convergence. 
Figure 6 is shown to confirm the achievement for 
provided bound of uncertainty, whereas Figure 7 for the 
wider uncertainty ( 1∆ > ) which is not converging. 
 
 
5. CONCLUSION 
 
In this article, a new two-state model based on attack 
angle and pitch rate was presented for more 
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simplification of equations of supercavitating systems 
for two fin input and cavitator input. The cavitator force 
could not provide the lift force needed for underwater 
vehicles; on the other hand, the force produced by the 
fin was non-minimum phase and slowed the system 
reaction down. So, for excluding the non-minimum 
phase part produced by the fin, cavitator feed-forward 
control was used. For calculating the force needed for 
the cavitator, iterative learning control was applied. It 
was also shown that perfect tracking by iterative 
learning control depended more on the system including 
supercavitating system.  

For this reason, a new model was proposed for 
solving perfect tracking problem using adaptive 
compensation matrix in learning gain, and then its 
calculation in every iteration by solving Lyapunov 
equation. It was shown that, in the presence of 
uncertainty in the systems using the new proposed 
method, monotonic convergence to zero would be 
possible if uncertainty bound did not exceed the 
determined value. In Simulation, results verify the 
tracking of the output to the command trajectory 
improves with the iterations.  

Figure 2 confirms that applying cavitator controller 
as feed-forward controller increases speed of control 
reaction with respect to using just the fin angle feedback 
control. Recently modified ILC converges the norm of 
tracking error to zero whilst traditional ILC fails to 
provide zero tracking as depicted in Figure 3. Efficacy 
of using the proposed method in iterative learning 
control was shown for calculating feed-forward control 
for perfect tracking of command pitch rate in the 
supercavitating system and zero convergence occurred. 
It was also shown in the simulation that the higher the 
desired Matrix of the Lyapunov equation, the faster the 
zero convergence would be. Moreover, in the presence 
of uncertainty, if uncertainty bound guaranteed the 
conditions, error norm would tend to zero; otherwise, 
there would be no guarantee for tracking error norm 
convergence to zero. Some of the restrictions and 
relevant improvements are listed here: 

 
- Zero convergence of tracking error may be weakened 

by existence of measurement noise especially if it is 
of a random. This effect may be coped with using 
some filters. 

- Misuse of initial condition may cause a problem to 
achieve zero convergence.  

- Basically underwater vehicles under rigid condition 
are two-dimensional symmetric. The non-minimum 
phase phenomena of yaw with respect to the fin 
angle restrict the control reaction and reduce the 
performance of the system. To overcome this 
problem, traditional ILC is modified to construct the 
cavitator control in yaw channel. 

]۱-۲۷[  
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  چکیده
  

  

در این مقاله، روش جدیدي براي ردیابی دقیق سیستم سوپر کاویتاسیونی بر اساس مدل جدید دوحالته برحسب نرخ پیچ و 
خروجی نرخ پیچ سیستم سوپرکاویتاسیون نسبت به تغییرات . گرددزاویه حمله براي دو ورودي بالک و کاویتاتور ارائه می

کنترل چنین سیستمی . باشد العمل آن براي کنترل نرخ پیچ فرمان کند می که عکس ضمن  آن است،بالک، غیرمینیمم فاز زاویه 
براي . العمل کنترلی بالک همچنان جزء مسائل باز است در یک بازه زمانی معین و افزایش سرعت پاسخ سیستم نسبت به عکس

. خور، استفاده کرد عنوان کنترل در مسیر پیشه کارگیري کاویتاتور به طریق بخور و از  توان از کنترل پیشرفع این مشکل می
منظور بهبود عمل ردیابی در حضور عدم قطعیت با استفاده از کنترل ه دست آوردن دقیق ورودي کاویتاتور به ایده این مقاله ب

منظور ه بهینه ب-یادگیر تکرار شونده پارامتر علاوه بر این، این مقاله روش جدیدي مبتنی بر کنترل. یادگیر تکرار شونده است
کارگیري بهره تطبیقی لیاپانف در ه باشند؛ با ب معین بودن سیستم می- هایی که فاقد شرایط علامت حل مسئله ردیابی دقیق سیستم

یکنواخت به خطاي  در آن با استفاده از حل معادله لیاپانف مبتنی بر تکرار، مشکل همگرایی. نماید کنترل بروزشونده ارائه می
عملکرد وکارایی اثر روش مذکور را براي کنترل یادگیر  ،سازي نتایج شبیه. گردد مرتفع می 2ردیابی صفربه مفهوم نرم 

     .دهد هاي متداول براي ربات سوپر کاویتاسیون، نشان می تکرارشونده نسبت به کنترل کننده
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