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A B S T R A C T  

   

In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series 
prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main 
components of this method. The learning process in this method is similar to the conventional gradient 
descent learning process, except that the input patterns and parameters are stored in memory as a look-up 
table after upgrade. In the testing phase according to input patterns, the nearest neighbors and the weights 
corresponding to the test pattern, similar patterns are extracted from memory. Eventually, by extracted 
weights and input pattern, prediction is performed. In order to validate the proposed method for predicting, 
the Mackey-Glass, Lorenz and biological Heart Rate Variability (HRV) time series is used. Finally, the 
results of proposed method with the conventional methods of time-series prediction are also compared. 
The results demonstrate the capability of proposed method in chaotic time series prediction. 
. 
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1. INTRODUCTION1 
 
Analysis of natural convection found applications in 
thermal insulation, cooling of electronic devices, Chaos 
theory as an essential part of nonlinear dynamics is a 
good tool to show the characteristics of dynamic 
systems and the prediction of complex systems 
trajectories. The main feature of deterministic chaotic 
systems is their sensitivity to initial condition. In other 
words, a small difference at initial conditions leads to a 
major difference over time [1].  

The chaos theory, as an essential part of nonlinear 
theory, has provided an appropriate tool to illustrate the 
characteristic of the dynamical system. There are four 
fundamental features for chaotic systems: a periodic that 
is the same state which will not be repeated, bounded 
meaning that neighbor states remain within finite range 
and does not approach infinity, deterministic that there 
is a governing rule with no random term to predict the 
future state of the system, and sensitivity to initial 
conditions meaning that a small difference in initial 
conditions (two point close to each other) will cause 
diverge as the state of system progress [2]. Due to rapid 
                                                        
1*Corresponding Author Email: M_r_shafiee@yahoo.com (M. R. 
Shafiee-Chafi) 

advances in chaos theory and its application in signal 
processing, communications, control, socio-economic 
and bio-informatics, modeling and predicting of chaotic 
systems has attracted many enthusiasts of the scientific 
community [3-5].  

In many cases, an accurate analytical model for a 
complex system like the stock market and the network 
load is very difficult, because the structure of such 
systems is very complex and the data are inaccurate and 
incomplete. Although, the deterministic chaotic systems 
are often considered as unpredictable systems for their 
randomness aspects, but such systems can be predicted 
for short periods. Thus, starting from 1980, chaotic time 
series prediction has been a popular subject [6]. With 
the development of chaos theory, many methods have 
been proposed to predict the chaotic time series. Most of 
the proposed methods can be classified in two large 
groups: global and local. In global approach, the overall 
of time series can be modeled in terms of a 
mathematical equation.  

The model is used in the whole phase space. 
Obviously, the disadvantage of this method is that the 
arrival of new information to systems may change all or 
part of the obtained parameters previously. Therefore, 
invalidate the previous model, and again a lot of time is 
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required to re-estimate the model parameters. To 
overcome the aforementioned problem, in local model, 
only a portion of the attractor is used for time series 
prediction [7-10]. Therefore, a defect in global 
modeling methods, using locally have been more 
welcoming. Among the various types of local modeling 
techniques, neural and fuzzy techniques have been 
considered over other methods. Artificial neural 
network is a nonlinear device that mimics the human 
nervous system function [11]. These networks have the 
properties such as associative memory, self-organizing, 
data- driven and self-adaptive [11, 12]. Artificial neural 
networks can learn the patterns and can also detect 
hidden functional relationships between patterns. 
However, there is no mathematical model for 
information; so, to obtain such a relationship requires a 
lot of energy and cost [12]. In the training stage, the 
neural network is trained with algorithms which have 
been proposed in the various references. In the test 
phase with the new entrance to the system, the trained 
neural network produce the desired output [12-16].  

Several types of artificial neural networks have been 
used to predict time series. Some examples have been 
used more than others in this area include: multilayer 
neural networks [17], neural networks [18-20] and 
neural network-based nonlinear autoregressive model 
with exogenous input (NARX) [21, 22]. 

Because of the good features of fuzzy logic to deal 
with imprecise and vague information, this method is 
widely used in the branches of engineering [23-25]. The 
ability of fuzzy logic is that it can translate the method 
and the logic of human decision making in the form of 
fuzzy rules. The use of vague and imprecise information 
in order to carry out the decision process has become 
the fuzzy model as an effective model for predicting. 
The most important issues facing the fuzzy system are 
how to determine membership groups, their number and 
type, the design of rules for the fuzzy decision process, 
and the scale function used in fuzzyfication and 
defuzzyfication functions.  

Therefore, fuzzy models are widely used in 
forecasting time series [26, 27]. Anfis network proposed 
in 1993 by Jang has the advantages of both fuzzy and 
neural network approaches. Anfis uses rules and 
parameters related to train data for setting membership 
function [6, 28]. Other techniques have been cited in the 
references to predict time series. AI-based methods [29, 
30], Self-organizing networks [31], support vector 
machines [32], wavelet networks [33] and methods 
based on delay embedding [34, 35] have been 
considered more than the other methods. The present 
paper is organized as follow: after introduction, the 
phase space reconstruction is presented concisely. The 
benchmark and HRV time series are demonstrated in 
section 3. In section 4, the performance of proposed 
method is investigated. Finally, the discussion and 
conclusion is stated in section 5. 

2. PHASE SPACE RECONSTRUCTION 
 
In this section, it is presented that how the phase space 
can be reconstructed from scalar time series by means 
of time lag embedding technique. 

 
2. 1. Concept     Many natural systems exhibit 
nonlinear or chaotic behavior in which by using chaos 
theory can be defined in terms of mathematical 
formulas. A chaotic time series in phase space is 
displayed as a vector space in R  Euclidian space. Each 
point is described with an n-dimensional vector (t) in 
this space [36]. 

(t)} s,…(t), s(t), {s=s(t) n21  (1) 

where, t is the index of time series, in the phase space 
dimension and si(t) is the dynamical system 
components. Based on the Tekken embedding theorem 
[37], since s(t) and its components in a chaotic system 
are unknown, if the value of a component or a variable 
x(t) of the dynamical system can be determined, then 
the attractor will be reconstructed [38]. In other words, 
if the value of x(t) is measurable and dynamic 
reconstruction of a chaotic system by y(t) according to 
Equation (2), then the system dynamics in reconstructed 
space is similar to the original attractor in terms of the 
geometry. 

DT)}-x(t,…2T),-x(tT),-x(t{x(t),=y(t)  (2) 

where, T is time lag. In the absence of system equations, 
chaotic time series is used for the reconstruction phase 
space. In such cases, by choosing a particular 
embedding dimension for time series, attractor can be 
reconstructed. By considering a chaotic time series x(t) 
in the phase space, the attractor can be reconstructed 
according to Equation (2), where D is the embedding 
dimension, and T is the time lag [39]. Parameters D and 
T are called reconstruction parameters. 
 
2. 2. Time Lag        The parameter T is very important 
in successfully reconstruction. T must be selected to 
provide minimum correlation among data in 
reconstructed phase space. If T is too short then 
coordinates x(t) and x(t+T) , … in Equation (2) are 
almost near to each other. So, all vectors in delay 
coordinate space are focus around the diagonal. 
Reconstruction is useless in this situation [40]. In fact, 
the distances between sampling point are so low that 
could not provide useful information about dynamic of 
the system. If T is selected too large, the points in delay 
coordinate space are so far from each other that seem 
uncorrelated. In this case, the mutual information is 
almost zero. Significant stretching and folding have 
been occurred, which considering the large amount of T, 
no logical relationship between the data in 
reconstruction phase space is found. The mutual 
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information which is criterion of correlation between 
neighboring points x(t) and x(t+T), is given by Equation 
(3) [41]. 

))(()).((
))(),((log))(),(()(
Ttxptxp

TtxtxpTtxtxpTI
t +

+
+= ∑  (3) 

where, p(x(t)) and p(x(t+T)) are marginal probability 
density function of neighboring points x(t) and x(t+T). 
p(x(t),x(t+T)) is joint probability density function too. 

 
 

2. 3. Embedding Dimension
 
           According to 

Taken theorem [37], embedding dimension should 
satisfy the condition: 12 +≥ dm . d in aforementioned 
equation is correlation dimension. In order to 
reconstruct original attractor, we have to embed time 
series in the space with large enough dimension. The 
parameter m is the size of embedding dimension. If it 
were not large enough, reconstruction would be 
impossible. If dimension is too large, the volume of 
unnecessary calculation will increase. There are some 
cases reported in literature where estimate the 
embedding dimension from a given time series data [11] 
e.g. non-intersecting trajectory approach. In accordance 
this method, if reconstruction attractor is large enough, 
trajectory does not cross itself. In 1983, another 
approach was proposed by Grassberger and Procaccia. 
At first, correlation function is calculated from Equation 
(4).  

](
)1(
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where, xi and xj are attractor points which are selected 
randomly among reconstructed attractor points, H(y) is 
Heaviside function and N is number of points which are 
selected from total attractor space randomly. R and ...  
are also the radius of sphere centered on xi or xj and ∞ - 
norm, respectively. For some ranges of R, correlation 
function and embedding dimension should satisfy linear 
relation as Equation (5). 

)ln(
))(ln()(

R
RCmd =  

(5) 

where, )(md  is the size of embedding dimension. In 
this paper, we use the Grassberger-Procaccia algorithm 
to estimate the embedding dimension. First, select the 
initial embedding dimension then plot the ln(c(R))-ln(R) 
curve under different dimension, finally determine the 
graph of each d(m) value and estimate the slope, which 
is the correlation dimensiond(m). 
 
 
3. PROPOSED METHOD 
 
The proposed method uses fuzzy gradient descent 
learning algorithm, the nearest neighbor algorithm and 

delay coordinate technique for prediction of chaotic 
time series. The parameters embedding dimension and 
time lag are obtained from an observed time series 
firstly. Then, phase space has been reconstructed by 
these parameters. The number of fuzzy system inputs is 
considered as much as embedding dimension. Learning 
phase in this regard is similar to the conventional 
gradient descent method. After determining the 
reconstruction parameters, the overall structure of fuzzy 
system including fuzzification, defuzzification, 
membership groups and interference engine are 
specified. Product inference engine, singleton fuzzifier, 
center average defuzzifier, and Gaussian membership 
function have been used in this study. The Fuzzy system 
is formed as follows: 
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where, M is the number of fuzzy rules, D embedding 
dimension, xi

-l the center of input membership 
functions,  σi

-l  width of Gaussians, xi ith input, and y-l 
the center of output membership functions. 
 
3. 1. Train Phase        At every stage of the training, 
reconstructed vector as input vector and next scalar 
point of time series are considered as the output of the 
fuzzy system. After applying the inputs to the fuzzy 
system, according to predetermined membership 
functions, the input value to each membership 
determined as follow. 
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where, i=1, 2, …, D, x   and б    are center of 
membership functions and width of the membership 
function per rule, respectively. Then, according to 
Equations (9) and (10), X and Y are obtained by 
summation operator and weighted summation operator. 
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Although the structure of the fuzzy system is selected as 
Equation (6), but fuzzy system has not been designed, 
because the parameters y-l  ،

 
xi

-l and σi
-l  are not 

determined and distributed randomly. In order to 
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determine the exact value of the parameters, we need an 
error function. Therefore, the square error function 
defines as Equation (11). 

2)(
2
1 yfe −=  (11) 

where, f and y are fuzzy and scalar outputs of time 
series, respectively. In each step of prediction, training 
error is calculated by Equation (11). The result has been 
compared to predetermined value that considered as the 
error bound previously. If the error is greater than 
predetermined value, the parameters are changed in an 
internal loop to reduce error. For each pattern, the 
training process stopped when the iteration or error 
reaches to predetermined value. Then, this process is 
repeated for the next patterns.  The update equation is as 
follows: 
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where, q, e,  xi
-l ,  y-l  and  σi

-l  are the number of the 
internal loop iteration, error, center of Gaussian 
membership functions, output membership center and 
width of Gaussian membership groups, respectively. For 
convenience and increase training speed,  y-l  is only 
considered as variable. Parameters  xi

-l  and  σi
-l   are 

fixed. Using chain rule, the training algorithm for y-l  is 
obtained as follows [42]: 
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where, q is the number of the internal loop iteration and  α is learning rate that they are considered 30 and 8, 
respectively. Y and   zi

l  are also calculated according to 
Equations (10) and (8). In this study, the width of the 
Gaussian membership groups σi

-l is considered as much 
as 0.4.  xi

-l  Set could also be uniformly distributed 
between maximum and minimum of each entry. Here, 
the range between maximum and minimum per input is 
divided into four equal parts.  

In training phase, for each pattern from training 
matrix,  y-l  set has been initially randomly distributed. 
In order to minimize error function,  y-l  set is changed. 
Then, both fine-tuned  y-l  and input vectors are stored in 
a memory. This process will be repeated for the next 
pattern from input matrix. 

 
3. 2. Test Phase     The test pattern that used to 
examine prediction performance of proposed method is 

selected from test space. Pattern that has a closet 
distance to it (test pattern) is selected from memory. The 
distance can be Euclidean distance or any other 
distance. Then corresponding weight that stored in 
memory, are extracted too. Prediction will be done by 
means of extracting weight and test pattern. This 
process is repeated for all testing set. The proposed 
scheme is different from standard training method like 
gradient. Here, both input pattern and correspond 
weight are stored in the memory at training stage. At 
testing stage, the nearest pattern to test pattern, which 
stored in the memory, is selected firstly and then the 
correspond weight are extracted from memory too. The 
extracting weights are put on the network to do the 
prediction. In conventional methods, the weights of the 
network are modified during the training phase but in 
test phase, they are fixed. Therefore, changing the 
weight of the network in each step of prediction is the 
main difference between proposed scheme and 
conventional methods. The proposed method has been 
tested on both benchmark time series Mackey-Glass and 
Lorenz. Then, the prediction performance of proposed 
method is compared with conventional method in 
chaotic time series prediction.  In order to more 
evaluation, the proposed scheme has been adopted to 
predict real life HRV time series data. The simulation 
results show that the new scheme has satisfactory 
performance in context of HRV prediction. 
 
 
4. BENCHMARK TIME SERIES 

 
To evaluate the proposed method, the famous Mackey-
Glass and Lorenz time series as well as biological HRV 
time series is used. In this section, these three time 
series are studied briefly.  
 
4. 1. Lorenz Equation              A popular example of a 
chaotic time series is related to climate change. Lorenz 
model is obtained by simplifying Navier-Stokes 
equation that is used in fluid mechanics. Lorenz model 
is not a good approximation to the original equations, 
because, except for certain range of parameters the 
model is not interesting and for changing parameters, 
regions of chaos has been observed [43]. Lorenz 
equations are given by: 
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where, x,y and z are the real function of time and б , b  
and r are dimensionless parameters. In this paper, x-
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coordinate is considered as a chaotic time series and б, b 
and r, are chosen 10, 8/3 and 28, respectively. 
 
4. 2. Mackey-Glass Equation         The Mackey-Glass 
system has been introduced as a model of white blood 
cell generation [44]. Because of Mackey-Glass chaotic 
characteristics, is used as a benchmark in literature. The 
time series is generated by differential equation as 
follow. 

)(
])(1[

)(
)(
)( tbx

Ttx
Ttax

td
tdx

c −
−+
−=  (17) 

where, T is the time lag and a, b and c are dimensionless 
parameter which are usually considered as 0.2, -0.1 and 
10, respectively. T changes in above equation create the 
different type of attractors. For T<4.43 fixed-point 
attractor is created, one stable limit cycle produce when 
4.43<T<13.3 and two limit cycle when 13.3<T<16.8. 
Chaos is observed when T>16.8 [41]. In this paper a, b  
and T are taken as .2, -0.1 and 17, respectively. The 
initial value for x(0) is 0.8 too. 
 
4. 3. HRV Time Series       Herat rate variability is the 
variation of beating interval in cardium. This is also 
called R-R interval. R is the peak of Electrocardiogram 
(ECG) time series, which demonstrate the vascular 
contraction. Low and high of HRV and its variation has 
significant clinical indicators and are caused because of 
  muscle cramps, acute heart failure, and emotional 
arousal. Biological signals such as EEG, ECG, and 
HRV are classified in non-stationary signals [45]. 
However; the chaotic nature of such signals is 
controversial among researchers. In some references, 
such signals have been classified among the chaotic 
signals [46, 47]. Nevertheless, others have not [45, 47]. 
They all agree on the non-stationary behavior of such 
signals [48, 49]. However, due to the complex nature of 
the signal, they are used as a difficult benchmark to 
evaluate the ability of the proposed method in literature 
[50-52]. In this paper, the HRV is used to evaluate and 
validate the proposed method for time series prediction. 
Error of prediction is calculated by three criteria: MSE, 
RMSE, NMSE (Equations (18)-(20)). 
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where, yyy ii ,, )  are mean, predicted value, and time 
series, respectively and N is the number of predicted 
points. 
 
 
5. TIME SERIES PREDICTION USING PROPOSED 
METHOD 
 
In this section, the performance of proposed method is 
evaluated by applying to three benchmark time series. 
In order to show the complexity, largest Lyapunov 
exponent for Lorenz, Mackey Glass and HRV time 
series are calculated using TSTOOl1 and their value are 
obtained as +0.45, +0.0116 and +2.1, respectively. The 
greater lyaponuv exponent, the higher complexity and 
the shorter predictability.  
 
 
5. 1. Prediction of Lorenz Time Serie     To generate 
Lorenz time series, the Equation (16) is simulated with 
initial condition 1, 3, 4 for x, y, z, respectively.  

The vector x is selected with 7500 points. Of these, 
4,000 points will be assigned as the training vector. 
Then, according to Equations (4) and (3), the time lag 
and embedding dimension are obtained 3 and 3, 
respectively. Four membership functions are considered 
for each input. Membership functions have Gaussian 
distribution. The numbers of rule are achieved as 64 
according to the number of input membership functions. 
The prediction result and its error are illustrated in 
Figure (1) and Table. 1. 
 
 
 
 

 
Figure 1. One step ahead prediction of Lorenz time series 
using proposed method. Original time series, predicted value 
and prediction error 

 
                                                        
1 Tstool v 1.11,  http://www.physik3.gwdg.de/tstool 
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TABLE 1. Results of Lorenz chaotic time series prediction by 
different methods . 

 Lorenz  Time Series 
NMSE RMSE MSE Error 
1.9E-2 9.5E-1 0.9 MLP_Gradiant 
1.7E-7 3.3E-3 1.0E-5 TS_Fuzzy 
1.5E-4 9.5E-2 9.1E-3 LPC(5) 
6.8E-3 6.3E-1 0.4 AR(4) 
1.0E-3 3.3E-1 0.2 Fuzzy_Gradiant 
2.8E-4 7.1E-3 4.9E-5 Proposed method 

 
 

TABLE 2. Results of Mackey-Gladd chaotic time series 
prediction by different methods commonly used for prediction 
and proposed method 

Mackey-Glass Time Series 
NMSE RMSE MSE Error 
5.4E-2 6.7E-2 4.5E-3 MLP_Gradiant 
5.5E-8 6.7E-5 4.5E-9 TS_Fuzzy 
2.1E-4 4.2E-3 1.7E-4 LPC(5) 
8.1E-1 6.3E-1 3.9E-1 AR(4) 
4.2E-3 1.0 E-1 1.1E-2 Fuzzy_Gradiant 
5.4E-2 6.7E-2 4.5E-3 Proposed method 

 
 

 
Figure 2. One step ahead prediction of Mackey-Glass time 
series using proposed method. Original time series, predicted 
value and prediction error. 
 
 

 
Figure 3. Determining embedding dimension through G-P 
algorithm 

5. 2. Prediction of Mackey-Glass Time Serie   
Proposed method is applied to Mackey-Glass time 
series and the result is illustrated in Figure (2).   

To generate the time series, the Equation (17) is 
simulated with .2 as initial condition. The embedding 
dimension and time lag is achieved as 3 and 8, 
respectively. The train vector is considered as 4000 
points and the test vector equal to 200 points. The 
number of fuzzy system set equal to three and four 
membership functions are assumedfor each input. 
Overall, the numbers of fuzzy rules are 64.  

As shown in Figure 2 , very small prediction error 
shows the high performance of proposed method in time 
series prediction. In order to compare the proposed 
method with other methods used to predict chaotic time 
series, similar simulations, in the same conditions, are 
also executed by conventional methods whose results 
are presented in Tables 1 and 2.  

The results in Table 2 indicate the better predictions 
of the proposed method in comparison with other 
methods. However, as can be seen in Tables 1 and 2, the 
proposed method performance is weaker in dealing with 
the Mackey-Glass and Lorenz systems than the TS 
fuzzy approach. Perhaps one of the reasons for this can 
be seen as a set of incorrect parameters. Another reason 
which can be outlined  for this is the use of gradient 
learning algorithm, in contrast to other methods such as 
Levenberg-Marquardt, Gauss- Newton and ... algorithm 
that is considered to be weak. In addition, undesired 
local minimum, which is common in Gradient based 
method, can be considered as an additional problem. 
Using Mamdani fuzzy systems, number of training 
patterns to fuzzy system, the learning rate parameter and 
the number of iterations of the inner loop fuzzy systems 
are also the reasons for the poor performance of the 
proposed method against TS fuzzy approach. 

 
5. 3. Prediction of HRV Time Serie

 
        HRV time 

series is a very complex biological time series and most 
methods are failing to predict it. In this section, to 
further evaluation of the proposed method, the non-
stationary HRV series prediction is studied. Figure 3 
shows finding of embedding dimension based on 
Grassberger-Procaccia(G-P) algorithm. As can be seen 
in Figure 3, the slopes of graphs are constant after four. 
Therefore, the embedding dimension is chosen equal to 
four. The time lag is obtained four by using the mutual 
information method. HRV time series data is taken from 
MIT-BIH database [53]. HRV time series prediction 
results by the proposed method are presented in Figure 
4. As can be seen in the figure, the fuzzy system is able 
to forecast the time series of HRV. In order to compare 
the proposed method with other methods, similar 
simulations, are also performed by conventional 
methods whose results are presented in Table 3. It can 
be seen from Figure 4 that the proposed method can 
predict HRV time series with a good accuracy.  As it is 

hamid
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hamid
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hamid
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Line



1047                      M. R. Shafiee-Chafi and H. Gholizade-Narm / IJE TRANSACTIONS A: Basics   Vol. 27, No. 7, (July 2014)  1041-1050 

shown in Table 3, other conventional methods of 
delaing with HRV signal in contrast with proposed 
method, , have poor performance. It is acquired from 
Table 3 that the proposed method has predicted better 
than the other methods even TS. The time lag and 
embedding dimension have been chosen equal to four to 
predict HRV. Different methods are presented in 
various references for these parameters calculations [29, 
54, 55] but none of these techniques have claimed that 
they have been able to offer the best time lag and 
dimension for a time series [56]. Since the deterministic 
method for finding the optimal time lag and embedding 
dimension does not exist and also to ensure the accuracy 
of the proposed method ability to predict the time 
series, prediction using different dimensions and lags 
was carried out by proposed method. The obtained 
results are given in Table 4. 
 
 
TABLE 3. Results of HRV time series prediction by different 
methods commonly used for prediction and proposed method 

NMSE RSME MSE  
1.2 1.3E-1 1.8E-2 MLP_Gradiant 
1.1 8.9E-2 7.8E-3 TS_Fuzzy 
2.8 1.6E-1 2.7E-2 LPC(5) 
1.0 6.5E-1 4.3E-1 AR(4) 
1.2 1.1E-1 1.1E-2 Simple Fuzzy 

1.1E-2 5.4E-3 7.1E-5 Proposed method 
 

 
 

TABLE 4. The result of prediction of  HRV with various time 
lags and dimensions 

MSE Running Time 
(s) 

Number of 
Fuzzy Rule 

Delay 
Time 

Embedding 
dimension 

1.8E-4 6.75 64 8 3 
7.1E-5 26.75 256 4 4 
1.9E-4 89.56 1024 2 5 
1.7E-4 373.50 4096 1 6 

 
 

 
Figure 4. One-step ahead prediction of HRVtime series using 
proposed method. Original time series, predicted value and 
prediction error 
 

As can be seen in the Table 4, the results are not 
very different from each other for various time lags and 
dimensions. However, the lowest error is obtained for 
dimension and time lag equal to four. The lack of much 
dependency of proposed method on the reconstruction 
parameters is another reason of the ability of the 
proposed method in time series prediction. 

From the perspective of processing speed and 
computing complexity, the proposed method is 
somewhat slower than other methods and also more 
complex. This is because in the proposed method 
weights are fetched according to the input from 
memory, while in the other mentioned methods they are 
fixed. Constant weight, increase speed and reduce the 
complexity of the process, but greatly reduces the 
prediction accuracy. In this paper, by paying very little 
cost, we have greatly increased the accuracy of 
prediction. 

 
 

6. DICUSSION AND CONCLUSION 
 
In this paper, a new method is proposed for chaotic time 
series prediction. Phase space reconstruction and fuzzy 
technique with gradient-based training algorithm are 
components of the proposed scheme. Storing the input 
pattern and conventional weight in a memory and 
changing the weights of the network in each step of 
prediction can be considered as the main difference 
between our method and other conventional methods. 
Thus, a history of original system patterns and the fuzzy 
decision for each pattern are always available in the 
memory. Storing input pattern and correspond weight in 
a memory play an important role in increasing the 
prediction accuracy because there is quasi-periodic 
property in chaotic time series. If the training matrix is 
rich enough, the prediction ability will be considerably 
increased. 

The neighboring relations of the scalar time series 
have been used for prediction in conventional methods 
such as artificial neural network, etc. Finally, the 
network weights, which are unchanged in test stage, are 
obtained from these relations. However, in proposed 
method, by similarity between test pattern and patterns, 
which were stored in the memory, correspond weights 
are also extracted from it (memory). Therefore, the 
network weights can be change during the test process. 
When the dimension value of the dynamical system is 
raised, consequently the number of both fuzzy rule and 
the parameters are increased. Training time will also 
increase. An obvious disadvantage in this situation, 
which the dimension is very high, is that the proposed 
method converge at a lower speed, which cannot satisfy 
the request of online prediction. 

The proposed method has been used to forecast 
chaotic benchmark time series such as Lorenz map and 
Mackey-Glass. Prediction result were compared with 
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the conventional methods such as TS-Fuzzy, Artificial 
neural network with gradient based learning algorithm 
and etc. simulation results demonstrate the superiority 
of the proposed method in comparison with other 
traditional methods. In some cases (Tables 1 and 2), it 
was observed that the proposed method has poor 
performance than TS-Fuzzy method. Poor convergence, 
undesired local minimum, determination the optimal 
parameters of the membership functions such as center 
and width, which in this study is determined by trial and 
error, could be considered as a main reason for 
malfunction of proposed method. In other to more 
evaluation, the proposed scheme has been used to real 
life HRV time series forecasting. The result is also 
compared with the conventional method especially TS-
Fuzzy method. The result demonstrates that proposed 
model has a good prediction performance for HRV 
forecasting compared with the result of the other 
conventional methods such as TS-Fuzzy. 

In this paper, the fuzzy system including center of 
membership functions and training rate are determined 
through trial and error. Using optimization techniques 
and evolutionary algorithms to optimize these 
parameters and apply other more powerful training 
methods such as Luneburg, it could be considered as 
two extension of proposed method to make prediction 
more efficient. 
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  چکیده
  

  

روش . هاي زمانی غیرخطی آشوبی ارائه می شودبینی سريدر این مقاله یک روش جدید بر مبناي روش فازي در پیش
فرآیند آموزش . فازي با الگوریتم آموزش گرادیان و روش نزدیکترین همسایه اجزاي اصلی این روش را تشکیل می دهند

هاي ورودي و پارامترها بعد از بهنگام ند روش متداول گرادیان نزولی است با این تفاوت که الگويدر این روش همان
در مرحله ي تست با توجه به الگوي ورودي، . سازي در یک حافظه جانبی بصورت جدول جستجو ذخیره می شوند

سرانجام . ز حافظه جانبی استخراج می گرددهاي متناظر با الگوي متشابه با الگوي آزمون انزدیکترین همسایه به آن و وزن
- روش پیشنهادي به منظور اعتبارسنجی براي پیش. بینی انجام می شودتوسط وزن هاي استخراجی و  الگوي ورودي پیش

در انتها نتایج . مورد استفاده قرار می گیرد HRVهاي زمانی مکی گلاس و لورنز و همچنین سري زمانی زیستی بینی سري
نتایج بدست آمده بیانگر توانمندي . هاي متداول در پیش بینی سري زمانی نیز مقایسه می گرددهادي با روشروش پیشن

    .هاي زمانی استبینی سريروش مذکور در پیش
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