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A B S T R A C T  

 
This paper aims to investigate the pull-in phenomenon of functionally graded (FG) capacitive nano-
cantilevers subjected to an electrostatic force and thermal moment due to an applied voltage and 
thermal shock considering the intermolecular force within the framework of nonlocal elasticity theory 
to account for the small scale effect. The FG nano-beam is made of mixture of metal and ceramic 
which the material properties vary continuously through the thickness according to an exponential 
distribution law (E-FGM). The nonlocal elastic behavior is described by the differential constitutive 
model of Eringen which enables the present model to become effective in the analysis and design of 
nano-sensors. The nano-beam is modeled assuming the Euler–Bernoulli beam theory and the equations 
are derived using the equilibrium of an element. A Galerkin-based step by step linearization method 
has been used to solve the governing static deflection equation. The present solution is validated with 
existing results reported in previous studies. The effects of temperature change, Van der Waals (VdW) 
or Casimir force and small scale factor on the five types of FG nano-beams are discussed in detail. The 
results indicate that VdW/Casimir force and thermal moment reduce the pull-in voltage; however, on 
the contrary, small scale effect causes to slightly increase the amount of pull-in voltage. 
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1. INTRODUCTION1 
 
Typically, a capacitive nano-beam device is constructed 
from two conducting electrodes where one is usually 
fixed and the other one is able to move in a manner that 
it is suspended by using a mechanical spring. By 
applying a voltage difference between two electrodes, 
the upper movable electrode displaces towards the 
ground electrode on account of the electrostatic force. 
At a certain voltage, the moving electrode becomes 
unstable and collapses or pulls-in to the ground plane. 
The voltage at this state is the so-called pull-in 
voltage[1]. 

Nano-structures are widely used in micro- and nano-
scale devices and systems such as biosensors, atomic 
force micro-scopes, micro-electro-mechanical systems 
(MEMS) and nano-electro-mechanical systems (NEMS) 
result from their superior mechanical, chemical, and 
electronic properties[2]. As the dimensions of 
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electromechanical systems reduce from micro- to nano-
scale, intermolecular effects appear. The intermolecular 
force between two surfaces can be described by the 
Casimir interaction. Considering the ideal case, i.e. 
infinite parallel surfaces, perfect conductivity, etc, the 
Casimir interaction is proportional to the inverse fourth 
power of the separation. However, when separation is 
well below the plasma (for metals)/absorption (for 
dielectrics) wavelength of the surface material Casimir 
force should be corrected. In this case, the retardation is 
not significant and the intermolecular force between two 
surfaces varies with the inverse cube of the separation 
(Van der Waals force)[3-5]. 

Lin and Zhao applied an approximate analytical 
solution to study the Casimir force effect on the critical 
pull-in gap and pull-in voltage of nano-electro-
mechanical switches[6]. Using cantilever beam with 
large deformation model, Wang et al.[7] investigated 
the pull-in instability of two nano-tubes under van der 
Waals force. They discussed the effect of some of the 
nano-tube parameters on the pull-in instability, as well. 
The influence of van der Waals (vdW) and Casimir 
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forces on the stability of the electrostatic torsional 
NEMS actuators is analyzed by Guo and Zhao [8]. The 
nonlinear behavior of nano-scale electrostatic actuators 
considering the influence of Casimir force is carried out 
by Lin and Zhao[9]. They used models with one degree 
of freedom to obtain the bifurcation properties of the 
actuators. Abadyan et al.[10] used the homotopy 
perturbation method (HPM) in order to investigate the 
effect of the Casimir force on the pull-in instability of 
electrostatic actuators at nano-scale separations. 

The small-size scales associated nanotechnologies 
are often sufficiently small to call the applicability of 
classical continuum models into question for nano-
structures with very small dimensions. Classical or local 
continuum models do not admit intrinsic size 
dependence in the elastic solutions of inclusions and 
inhomogeneities. At micro- and nano-meter scales, 
however, size effect often become prominent, the cause 
of which need to be explicitly addressed with an 
increasing interest in the general area of nanotechnology 
[11]. These effects can be captured using size-dependent 
continuum mechanics such as strain gradient theory 
[12], modified couple stress theory [13], and nonlocal 
elasticity theory [14, 15]. It is worth pointing out that in 
the theories of strain gradient elasticity and modified 
couple stress, in addition to the classical stress 
components acting on elements of materials, the couple 
stress components, as higher-order stresses, are also 
available which tend to rotate the elements. These type 
of theories are able to predict the size effects with 
appearance of some higher-order material constants in 
the corresponding constitutive equations [16-18]. 
However, the nonlocal elasticity theory was proposed 
by Eringen to account for scale effect in elasticity by 
assuming the stress at a reference point to be a function 
of the strain field at every point in the body. In this way, 
the internal size scale could be considered in the 
constitutive equations simply as a material parameter. 

In recent years, the applications of nonlocal 
elasticity, especially the nonlocal Euler–Bernoulli beam 
theory in micro- and nano-materials have turned into a 
hot research topic. The potential of applying the 
nonlocal Euler–Bernoulli beam theory to micro and 
nano-materials was indicated by Peddieson et al. [19] in 
which a nonlocal version of Euler–Bernoulli beam 
theory was formulated and applied to study a cantilever 
beam. Comparing the obtained results between MEMS 
and NEMS, they estimated the significance of nonlocal 
effects in nano-scale devices. Dequesnes et al. [20] 
studied the Pull-in phenomena and pull-in voltage of a 
carbon-based nano-electromechanical switch. They 
proposed a parametrized continuum model and 
compared the accuracy of their results with the reported 
experimental data. Reddy [21] derived theoretical 
formulations for nonlocal beams based on the Euler–
Bernoulli, Timoshenko, Reddy and Levinson beam 
theories and brought out the effects of the nonlocal 

behavior on deflection, buckling load and natural 
frequencies. Wang et al. [22]presented analytical 
solutions for the free vibration of the nonlocal 
Timoshenko beams. The static pull-in instability of the 
beam-type nano-electromechanical systems has been 
measured theoretically by Beni et al.[23]. They 
investigated the instability considering the effect of 
Casimir attraction, elastic boundary conditions and size 
dependency. Thanks to the  nonlocal elasticity theory, 
Yang et al. [24]studied the pull-in instability of the 
nano-switches subjected to the combination of 
electrostatic and intermolecular forces to account for the 
small scale effect. They found that the small scale effect 
contribute to the pull-in instability and freestanding 
behaviour of cantilever and fixed-fixed nano-beams in 
quite different ways. Peng et al.[25] reviewed the pull-in 
instability behavior of the nano scale actuators taking 
the nonlocal elasticity theory into account. Mousavi et 
al. [26]carried out a comprehensive study to determine 
the influence of nonlocal parameter on the pull-in 
instability characteristics of cantilever and clamped-
clamped  nano-beams. They observed that the cantilever 
and doubly clamped nano-beams behaved differently 
under small scale effect. That is, the nonlocal effect 
increases/decreases the pull-in voltage in 
cantilever/clamped-clamped nano-beams. Recently, by 
introducing a new formulation, Taghavi et al. 
[27]studied the pull-in instability of nano-switches 
under electrostatic and intermolecular forces. They used 
the hybrid nonlocal Euler-Bernoulli beam model and 
derived the governing equations of the beam-like 
movable electrodes of the cantilever and fixed-fixed 
nano-switches. 

Since a temperature difference between FG 
MEMS/NEMS devices and operating environment 
causes a coupled behaviour, a full thermo-electro-
mechanical analysis is required. Thus, the study of the 
FG structures under thermal loads certainly has been an 
active subject of research. Mohammadi-alasti et al. 
[28]studied the static behavior of the FG cantilever 
micro-beam subjected to a nonlinear electrostatic 
pressure and temperature changes. They derived 
nonlinear integral–differential thermo-electro-
mechanical equation based on Euler–Bernoulli beam 
theory. Jafarsadeghi-pournaki et al. [29] and 
Zamanzadeh et al. [30] studied the static and dynamic 
instability of a FG micro-beam based on modified 
couple stress theory, respectively. In their studies, the 
micro-beam was subjected to both nonlinear 
electrostatic pressure and thermal changes. 

The foregoing-mentioned articles reveal that a 
considerable amount of literature has been published on 
the static pull-in behavior of nano-beams using nonlocal 
elasticity theory. There are also a few published studies 
describing the effect of ceramic on the pull-in value of 
FG micro-beams under thermal moment. However, to 
the best of the authors’ knowledge, by employing 
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nonlocal elasticity theory, this is the first attempt on the 
static pull-in instability of FG nano-beam which is 
subjected to not only electrostatic pressure but also 
thermal load considering the effect of VdW/Casimir 
force. Using a Galerkin based step by step linearization 
method, nonlinear static deflection equation was solved 
and results are obtained in order to investigate the 
effects of small scale factor, VdW/Casimir force and 
ceramic constituent percentage on the static pull-in 
stability. 

 
 

2. MECHANICAL MODEL AND GOVERNING 
EQUATIONS 
 
Figure 1 shows a FG cantilever nano-beam of length L, 
width b, thickness h attached to an inertial reference 
frame Oxyz. The neutral axis and coordinates of the 
composite beam are shown in this figure, too.  

In this study, the material properties of the FG nano-
beam are assumed to vary through the thickness 
according to an exponential low function. Assuming

/2z z h= +  , the exponential law is given by [28]: 

( ) ( )0 0
0

/ 2 1, ln
z z h PbP z P e P et t Ph t

δ δ
δ

+  
= = =  

 

 
(1) 

( )P z is a typical material property, Ptand Pb are the 
values of the properties at the top and bottom of the FG 
beam and δ0 is defined as the dispersion of the ceramic 
into the metal. It is assumed that the top surface is made 
of pure metal and the bottom surface from a mixture of 
metal and ceramic. Also, it is assumed that ceramic 
content of the bottom surface varies from 0% to 100%. 
In order to determine material properties of the bottom 
surface (Pb), volume fraction of material is used [30]: 

P V P V Pb c c m m= +  (2) 

where, V is the volume fraction and subscripts “m” and 
“c” stand for the metal and ceramic, respectively. 
Therefore, Vm and Vc are the volume fractions of the 
metal and ceramic, respectively, and are related by:

1V Vm c+ = . 

 
 

 
Figure 1. Geometry and coordinates of symmetric capacitive 
FG nano-beam. (Side and section view) 

By changing the ceramic constituent percentage of the 
bottom surface, five different types of FG nano-beam 
are investigated. Using the above mentioned equations, 
parameter δ0 for two material properties is specified as 
follow [30]: 

1 1
ln ,

Eb blnEh hm m

α
γ β

α
= =

   
   
   

 (3) 

in which E and α denote the Young’s modulus of 
elasticity and thermal expansion coefficient, 
respectively. Based on the Euler-Bernoulli beam theory, 
the displacement field (u, w) of an arbitrary point on the 
movable nano-beam can be expressed as [30]: 

0 0
, ( )

w
u u z w w x

x

∂
= − =

∂
 (4) 

where ( , )u w are the axial and transverse displacements 
at any generic point and 0u and 0w are their counterparts 
calculated at the mid-plane. The only nonzero strain is 
given as[30]: 

0
2

2

u w
zx x x

ε
∂ ∂

= −
∂ ∂

 (5) 

In the classical elasticity, the stress state of any body 
at a point x is related to the strain state at the same point 
x. The constitutive equations of classical (macroscopic) 
elasticity are algebraic relationships between the stress 
and strain components. But, this theory is not in conflict 
with the atomic theory of lattice dynamics and 
experimental observations of phonon dispersion. As 
stated by Eringen [14, 15] the linear theory of nonlocal 
elasticity leads to a set of integropartial differential 
equations for the displacements field for homogeneous, 
isotropic bodies. In this theory, the fundamental 
equations involve spatial integrals which represent 
weighted averages of the contributions of related strain 
tensor at the related point in the body. Thus, the theory 
introduces the small length scale effect through a spatial 
integral constitutive relation. 

As the structure is subjected to both temperature 
changes and mechanical load, the total strain can be 
decomposed into summation of mechanical and thermal 
components. According to Eringen’s nonlocal elasticity 
theory, the one dimensional stress–strain relationship 
for the FG nano-beam is [14-30]: 

( )
2

2
02

( )    ( ) ; ( )x E z z e axx
x

σ
σ µ ε α θ µ

∂
= + − =

∂

 (6) 

where xσ  is axial stress, θ refers to temperature change 
measured with respect to an initial temperature T∞, and 
(e0a) is specified as the parameter showing the small 
scale effect on the response of the structure and may be 
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determined from experiments or by matching dispersion 
curves of plane waves with those of atomic lattice 
dynamics [31]. By considering that the axial force, due 
to the free end of the beam, along the x axis is zero, it 
can be concluded that: 

0
A

dAxσ =∫  (7) 

Substituting Equation (6) into Equation (7): 

2
0

2

1
( ) ( ) ( )

( ) A A

A

u w
zE z dA E z z dA

x xE z dA

α θ
∂ ∂

= +
∂ ∂

 
 
 
 
∫ ∫

∫

 
(8) 

Multiplying Equation (7) by z, integrating over the 
cross-section area,the moment–curvature relation can be 
obtained as: 

( ) ( )
2 2

2 2
Ω

M w
M x EI eq

x x
µ θ

∂ ∂
= + +

∂ ∂
 (9) 

For the purpose of this study ( )EI eq
 and Ωθ are 

taken to mean as the equivalent bending rigidity of FG 
nano-beam and thermal moment, respectively, where: 

( ) 2
( )

( ) ( )

( )

A

A

A A

zE z dA

EI E z z dA E z zdAeq
E z dA

= −
∫

∫
∫ ∫  (10) 

( ) ( )
Ω ( ) ( ) ( )

( )

A

A A

A

E z z dA
E z zdA E z z zdA

E z dA

α

α= −
∫

∫ ∫
∫

 
(11) 

For an Euler-Bernoulli nano-beam, shear deformation 
is ignored. The equilibrium equation of an element with 
respect to z-axis can be obtained as: 

( ) 0
V

V dx Vdx Q x dx
x

∂
+ − + =

∂
 
 
 

 (12) 

where M is bending moment, V shear force and ( )Q x  
the distributed load. The equilibrium requirements of 
forces in the vertical direction and moments of an 
infinitesimal element of the beam give: 

( ) ( )
2

2

V M
Q x Q x

x x

∂ ∂

∂
⇒= − = −

∂
 (13) 

Multiplying this equation by μ and substituting it 
into Equation (9), the governing equation for the static 
deformation of the FG nano-beam can be easily derived 
as: 

( ) ( ) ( )24

4 2
Q xw

EI Q xeq x x
µ

∂∂
= −

∂ ∂

 
(14) 

Further, considering Equations (9) and (13), the 
expressions for the moment and shear force are 
expressed in terms of deflection, transverse load and 
thermal moment ( TM θ= Ω ): 

( ) ( ) ( )
2

2 Teq
w

M x Q x EI M
x

µ
∂

= − + +
∂

 (15) 

( ) ( ) ( )
3

3eq
Q x w

V x EI
x x

µ
∂ ∂

= −
∂ ∂

+  (16) 

When the actuating voltage is applied between the 
nano-beam and substrate, the electrostatic force per unit 
length are computed using a standard capacitance model 
and is equal with [30]: 

( )

2
0

2
2 0

bV
Qelect

g w

ε
=

−

 
(17) 

where 12 2 1 2
0 8.85 10 C N mε − − −= ×  is vacuum permittivity, 

b the width of the FG nano-beam, g0the initial gap 
between the nano-beam and the ground electrode, Vthe 
applied DC voltage, and wthe flexural deflection. For 
the small/large separation regime, the dispersion force 
per unit length of the beam is defined considering the 
VdW/Casimir force [8]. The VdW( 3Q ) and Casimir        
( 4Q ) forces per unit length between nano-beam and 
substrate is given by: 

( )
Λs ; 3, 4

0

   Q ss s
g w

= =

−

2b
Λ ; Λ3 46π 240

cbπ
= =

hA

 
(18) 

where 
19(0.4 4) 10 J−= − ×A  is Hamaker’s constant,

341.055 10 Js−= ×h is Planck’s constant and 82.998 10c = ×
is the speed of light [8]. Finally, ( )Q x is determined as 
the summation of the electrostatic force and the 
intermolecular force: 

Q Q Qelect s= +  (19) 

Thus, the governing static deflection of nonlocal 
Euler–Bernoulli beam can be derived by substituting 
Equation (19) into Equation (14): 

( )
( ) ( )

24
0 s

4 2
0 0

Λ

2
s

bVw
EI eq x g w g w

ε∂
= +

∂ − −
(20) 
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( ) ( )

22
0

4 2
0 0

( 1)Λ3 s
s

s sbV w
xg w g w

ε
µ +

+
− +

  ∂      ∂ − −   

( ) ( )

2
0

3 1
0 0

2

2

Λs
s

sbV w
xg w g w

ε
µ +− +

∂

∂

  
   − −   

 

Besides, the moment and shear force are converted 
to the subsequent equations: 

( )
( ) ( )

( )
2 2

0
2 2

0 0

Λs
2

s
bV

M x EI Meq T
w
xg w g w

ε
µ= − + + +

  ∂
 
  ∂− − 

 (21) 

( )
( ) ( )

( )
2 3

0
3 1 3

0 0

sΛs
s

bV
V x EI eq

w w
x xg w g w

ε
µ += − + +

 ∂ ∂
 
  ∂ ∂− − 

 (22) 

It is easily seen from the above equations that the 
local Euler–Bernoulli beam theory is recovered when 
the parameter μ is set identically to zero. 

Following dimensionless quantities are presented in 
order to rearrange the equations into a non-dimensional 
form: 

µ $ ¶ ¶
0

, , ,
* *

T
T

Mw x M

g L M M
w x M M= = = =  (23) 

Therefore, the non-dimensional static deflection 
equation is: 

µ

$ µ( ) µ( )
4

4

2

1 22
1

1 1
s

Vw

w wx
A A∂

= +

∂ − −

µ( ) µ( )
µ

$

4

4 4

2

3 4

1
2

1 1

V
A A

s
w

xw w
+

∂
− +

∂

 
 
 
 − − 

µ( ) µ( )
µ

$5 6

2 2

3 21
1

1 1

V
A A

s
w

xw w
+

∂
− +

∂

 
  
      − − 

 

(24) 

where: 

( ) ( ) ( )

4 4 2Λ 3
0 s 0, ,

1 2 33 1 32
0 0 0

L b L L b
A A A

sEI g EI g EI geq eq eq

ε ε
µ= = =

+

( ) ( ) ( )

2 2 2

4 5 63
0 0 0

( 1)Λ Λs 0 s, ,
1 1

L s s L b L s
A A A

s sEI g EI g EI geq eq eq

ε
µ µ µ

+
= = =

+ +
 

(25) 

Moreover, the non-dimensional form of the 
Equations (21) and (22) can be obtained: 

µ
µ( ) µ( )

µ

$
µ

2 2

242

1
1 2

1 1
TM M

V
B B

w w

w

x

∂
= − − + +

∂− −

 
(26) 

µ( ) µ( )
µ
$

µ

$

2 3

3 43 31
1

1 1
s

V
V B B

w w
x xw w

+
∂ ∂

= − + +
∂ ∂

 
 
 
 − − 

$  
(27) 

in which: 

( ) ( )

2
0

1 23
0 0

2 Λs, ,
12

LbL
B B

sEI g EI geq eq

ε
µ µ= =

+  

( ) ( )

22
0

3 43
0 0

Λs,
1

L sbL
B B

sEI g EI geq eq

ε
µ µ= =

+
 

(28) 

Eventually, the boundary conditions for the FG 
cantilever nano-beam subjected to thermal moment and 
considering intermolecular force and taking nonlocal 
elasticity theory into account are introduced as: 

µ µ µ
µ0     0,         0 

wx w
x

∂
= = =

∂
⇒

 

$
µ( ) µ( )

µ

$
µ

µ( ) µ( )
µ
$

µ

$

2 2

1 22 2

2 3

3 43 3

1
0

1 1
1

1
1

0
1 1

V
B B

s

V
B B

MT

s

w

xw w
x

w w
x xw w

∂
− − + + =

∂− −

=

∂ ∂
− + + =

∂ ∂− −

⇒

+





        
  

 

(29) 

 
 

3. NUMERICAL APPROACH 
 

Thanks to the nonlinear nature of the governing 
equations, the analytical solution methods cannot be 
used, therefore, the step by step linearization method 
(SSLM) [32] method has been used in order to linearize 
the equations. Afterwards, the obtained linearized 
differential equation is solved using a Galerkin based 
weighted residual method. Using this method, the 
smooth and continuous behavior of the beam can be 
approximated in each step and the amount of nonlinear 
forces in each step will be obtained from foregoing 
iterations. By using SSLM, the voltage applied to the 
nano-beam is increased from zero to its final value 
gradually. It is supposed that µ iw  is the displacement of 
the FG nano-beam dye to applied voltage iV . With 
increasing the voltage and consequent virtual force 
variable ( λ ) the deflection of ( 1)thi + step may be 
obtained as [32]: 

µ µ µ µ $1 ; ( )1
1

V V Vi i
i i

i i
w w w w x

δ
δ δ ψ

λ λ δλ

= ++
⇒ = + =+

= ++





 
(30) 
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in which δV, δλ and µwδ  are voltage variable, virtual 
force variable and deflection growth, respectively. So, 
the equation of the static deflection of the FG nano-
beam can be rewritten at the step of (i+1) as follows: 

$

$( ) $( )

2
1

2

1

1 1
1 2

1

4

4
1 1

i

i i

i
s

iw

w

VA A
x w

λ+

+ +

+ +

− −

∂
= +

∂ $
 

µ( ) µ( )
$

1

2

4

2
1

3 4 2
1 1

1

1 1

ii
s

i

i

i

w

xw

VA
w

A λ +
+

+ +

+ +

∂

∂

 
 − +

 
  


 
 − −


$

 

µ( ) µ( )
$

1
2

3 1 2
1 1

2
1 1

3 4
1 1

ii
s

i i

i w

x

VA A
w w

λ +
+

+ +

+ +

∂

∂

 
 − +

 
   − −


  

$
 

(31) 

 By considering a small value of  δV and δλ, the µwδ  
will be small enough; therefore, using Calculus of 
Variations theory and Taylor’s series expansion about
µ iw and applying the truncation to first order for suitable 
values of δV and δλ, it is possible to obtain the desired 
accuracy. The linearized equation to calculate $( )xψ  can 
be concluded as: 
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An approximate solution for this linear ordinary 
differential equation based on the function spaces in 
terms of basic functions is: 

$ $
1

( ) ( )
n

j
x a xi iψ ϕ

=
= ∑  (33) 

where ( )i xϕ $ is suitable shape function satisfying the 
corresponding nonlinear boundary conditions and ia  are 
constant coefficients calculated in each step by applying 
Galerkin weighted residual method. 
 
 
4. NUMERICAL RESULTS 
 
The considered nano-beam here is a wide beam, which 
has the geometric and material properties are listed in 
Tables 1 and 2.According to the different ceramic 
content of the bottom surface, five different types of FG 
nano-beam are investigated, the characteristics of which 
are shown in Table 3.To compare the results with those 
of the literature, the obtained pull-in voltages are 
validated using the results of References [28]. The 
parameters used in that micro-beam are presented in 
Table 4. 
 
 

TABLE 1. Geometrical properties of FG nano-beam 
Parameter Length 

(L) 
Width 

(b) 
Thickness 

(h) 
Initial gap 

(g0) 

Value 50 nm 10 nm 5 nm 7 nm 

 
 

TABLE 2. Material properties of FG nano-beam [28] 

Parameter 

Value 

Ceramic metal 

Material type Siliconnitride 
(Si3N4 ) 

Nickel (Ni) 

Young’s modulus (E) 310 GPa 204 GPa 

Thermal expansion (α) 3.4×10-6  K-1 13.2×10-6  K-1 

 
 

TABLE 3.Characteristics of five types of FG nano-beam [28] 
Type 1 2 3 4 5 

Ceramic 
percent of 
Bottom surface 

0% 
(Metal-

rich) 
25% 50% 75% 100% 

( )bE Gpa  204 230.5 257 283.5 310 

6 110 ( )b Kα − −×  13.2 10.75 8.3 5.85 3.4 

710γ ×  0 2.44 4.62 6.54 8.37 

710β ×  0 -4.1 -9.28 -16.2 -27.1 
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TABLE 4. Geometrical properties of FG micro-beam [28] 

Parameter Length 
(L) 

Width (b) Thickness 
(h) 

Initial gap 
(g0) 

Value 500 μm 90 μm 6 μm 2 μm 

  
 

TABLE 5.Pull-in voltages for five types of FG micro-beam 
[28] 
Type 1 2 3 4 5 

Voltage (V) 13.48 13.75 14.19 14.52 14.85 

  
 

 
Figure 2. Tip gap versus applied voltage for five types of FG 
micro-beams (θ=0). 
 
 

 
Figure 3. Tip gap versus applied voltage for five types of FG 
nano-beams (θ=0). 

  
 

Figure 2 illustrates the non-dimensional end 
deflection for five types of FG micro-beams versus 
voltage considering the geometrical properties reported 
in Table 4. Comparing the data of Table 5 with Figure 2 
can clarify that the present results are quite close to 
those predicted by mohammadi-Alasti et al. [28]. 

Figure 3 shows the non-dimensional end deflection 
for five types of FG nano-beams versus voltage when 

temperature changes and VdW/Casimir force as well as 
small scale effect are neglected. It is apparent from this 
figure that enhancing the ceramic constituent of the FG 
nano-beam causes decreasing of the deflection, and as a 
result, the pull-in phenomenon happens in the higher 
voltages. Note that the bigger the ceramic constituent, 
the stiffer the FG nano-beam. 

When the gap between substrate and movable beam 
is small enough, the movable beam might collapse onto 
the stationary electrode without applying voltage due to 
the Casimir or VdW force. Accordingly, the geometrical 
dimensions used in this study are determined such that 
with the purpose of ignoring this kind of collapse [24]. 
The effects of VdW (Figure 4a) and Casimir (Figure 4 
b)force on the static pull-in voltages for five types of FG 
nano-beams is presented in Figure 4. The data would 
seem to suggest that considering VdW and Casimir 
forces causes a reduction in the amount of pull-in 
voltages. Moreover, the beam has initial deflection due 
to the presence of intermolecular force even when no 
voltage is applied. Compering the data of Figure 4 with 
that of Figure 3 results that the effect of Casimir force 
on the pull-in instability is more significant than the 
VdW force. Therefore, from now on, VdW force is 
neglected and the results are obtained by considering 
only Casimir force. 

 
 

 
(a) 

 
(b) 

Figure 4. Tip gap versus applied voltage for five types of FG 
nano-beams considering, a) VdW force, b) Casimir force 
(θ=0). 
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Figure 5 depicts the effect of small scale factor on 
the static pull-in voltages for homogenous (metal rich) 
(a) and FG (b) nano-beams. As expected, as the small 
scale factor increases, the pull-in voltages of the 
cantilever nano-beam increase. 

  
 
 

 
(a) 

 

 
(b) 

Figure 5. Tip gap versus applied voltage, a) homogenous 
nano-beam, b) 5th type of FG nano-beam (θ=0). 
 
 

 
Figure 6. Tip gap versus applied voltage for 5th type of FG 
nano-beam with primal temperature changes considering 
Casimir force. 

 
Figure 7. Tip gap versus applied voltage for 5th type of FG 
nano-beam (θ=100). 

  
 

The considerable influence of the temperature 
changes on the pull-in voltage for 5th type of FG nano-
beam is illustrated in Figure 6. What is interesting in 
this data is that, when the nano-beam heats up primarily, 
the pull-in phenomenon happens earlier than when there 
is no temperature. It means that the pull-in voltage will 
be decreased when the primal temperature is increased. 

Figure 7presents the influence of small scale factor 
on the static pull-in instability for 5th type of FG nano-
beam when the beam is initially deflected by a thermal 
moment due to a temperature change of 100℃. In 
accordance with what was discussed so far, for the 
cantilever nano-beam, the inclusion of the small scale 
factor gives rise to a reduction of pull-in voltage values. 
 
 
3. CONCLUSION 
 
Coming to conclusion, this study set out in order to 
investigate the static pull-in instability of FG nano-
cantilevers under nonlinear electrostatic and 
intermolecular forces subjected to a thermal moment 
based on Eringen’s nonlocal elasticity. It was assumed 
that the upper surface was made of pure metal and the 
lower surface a mixture of metal and ceramic. Changing 
the ceramic constituent of the bottom surface, five 
different types of FG nano-beams were studied. 
Considering an exponential form to represent the 
continuous variation of material properties along the 
beam thickness, the nonlinear governing equations and 
boundary conditions based on Euler-Bernoulli beam 
theory in the framework of nonlocal elasticity theory 
was derived. The static instability of the FG nano-beam 
was studied through solving the equation of static 
deflection implementing SSLM and Galerkin method. 
This study produced results that corroborate the findings 
of a great number of the previous works in this field. It 
is found that the VdW/Casimir force and small scale 
factor regarding nonlocal continuum theory affect the 
pull-in behavior of capacitive nano-beams. As argued 
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previously, for a cantilever nano-beam, considering the 
VdW/Casimir forceled the nano-beam to be deflected 
initially. Corresponding, based on the material 
properties and geometries assumed in this study, it was 
seen that the Casimir force has more influence than 
VdW force. Moreover, the results pointed out the 
significance of applying nonlocal continuum mechanics 
in nano-sized strictures. It is confirmed that for a 
cantilever-type nano-beams, an increase in the small 
scale factor leads to higher pull-in voltage. Another 
important result found was that temperature changes 
have considerable effect on the stability of the FG nano-
beams. Indeed, applying voltage to the thermally 
deflected FG nano-beam can remarkably reduce the 
pull-in voltage. The high amount of the initially applied 
thermal moment can cause the low pull-in voltage 
value. 
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  چکیده

  
  

 تغییر تابعیمساخته شده از مواد  یخازن یردارسر گ  یک یرنانوت یکیاستات یداريولتاژ ناپا يها یدهپد یمقاله بررس ینهدف از ا
در نظر گرفتن و براي  بوده یمولکول ینب یرويو ن یحرارت لنگر یکی،الکتروستات یروينیک در معرض  حاضر یرت نانو. باشدیم

از مخلوط  یر تدریجیمتغخواصفرض شده است که مواد . استفاده شده است یرموضعیغ یسیتهستالا ياندازه از تئوراثرات 
 وضعیم یرغ یکالاسترفتار . کند ییرتغ ییتابع نما یرتحتمواد در جهت ضخامت ت یاتو فلز ساخته شده و خصوص یکسرام

با استفاده  یرنانوت ینا. موثرتر باشد سورهاسن یزو آنال یحاضر در طراحسازد که مدل یارائه شده است، قادر م ینگنکه توسط ار
با استفاده از روش . اندالمان استخراج شده یکمدل شده و معادلات با استفاده از روابط تعادل  یبرنول- یلراو یرت يتئور یهازفرض

حاضر با  لح ،ینهمچن. اندحل شده یکیشکل استات ییرمعادلات حاکم بر تغ ،ینگام به گام به همراه روش گلرک يساز یخط
و فاکتور اثر اندازه  یمیرکزواندروالس یا  یرويدما، ن ییراتتغ یراتتاث. داده شده است یقتطب یقبل يگزارش شده در کارها یجنتا
والس یا واندر یروينشان دادند که اعمال ن یجبحث شده و نتا یاتبه جزئ یر تدریجیمتغ خواصبا  یرنوع مختلف نانوت پنج يرو
 ياندك ولتاژها یشاندازه باعث افزا یراتعکس، اعمال تاثرو ب يریداناپا يولتاژها باعث کاهش یحرارت لنگرو  یمیرکز
 شوندیم یداريناپا
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