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A B S T R A C T  

   

This paper develops a robust optimization approach for a dynamic cellular manufacturing system (DCMS) 
integrated with production planning under uncertainty of parts processing time. To deal with this 
uncertainty, a robust optimization as a tractable approach is adopted. The model includes cell formation, 
inter-cell layout and production planning concepts under a dynamic environment. The aim of the model is 
to minimize inter and intra-cell material handling, inventory holding, back order and reconfiguration costs. 
To verify the behavior of the presented model and the performance of the developed approach, a 
numerical example solved in finding an optimal solution. 
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NOMENCLATURE 
   
Decision variables   

h
iB  Backorder of part type i in period h ( 0 0iB = ) Indices 

h
iI  Inventory of part type i at the end of period h ( 0 0iI = ) ,c c′  Index for machine cells ( 1,...,c C= ) 

,
h
m cN  

1 if machine type m is located in cell  in period h;
0 otherwise





c  h  Index for production periods ( 1,...,h H= ) 

h
iPQ  Production quantity of part type i to be produced in period h i  Index for parts ( 1,...,i I= ) 

h
iPQB  

1 if 0
0 otherwise

h
iPQ > 

 
  

 j  Index of different decision variables 

,l l′  Index for a candidate locations to be a cell ( 1,...,l L= ) M  Number of machines 

m  Index for machines ( 1,...,m M= ) hRi  Number of available routings for part type i in period h 

n  Index of different constraints ,
h
i mt  Processing time of part i on machine m in period h 

r  Index for routings required by part i in period h ( 1,..., hr Ri= ) ,
h
i mt%  

Uncertain processing time of part i on machine m in period 
h 

nt  Uncertain element of the n-th constraint ( 1 n CN≤ ≤ ) adopting 
values from truncated uncertainty interval ,

h
i mt$  

Range of uncertain processing time of part i on machine m 
in period h 

{ },( )(1) (2) (3)
, , , ,, , ,..., r iK

r i r i r i r iU U U U   Machine index in routing r of part type i ,h mt′  Time-capacity of machine type m in period h 
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Input parameters Indices 

1A  Inter-cell part trip unit cost cUP  Maximum number of machines should be located in cell c 

2A  Intra-cell part trip unit cost h
iα  Unit holding cost of part type i in period h 

A∞  A large positive quantity h
iβ  Unit backorder cost of part type i in period h 

% ,n ja  Uncertain element of the n-th row and the j-th column in A mγ  Relocation cost of machine m between production periods 

,n ja  Estimated nominal value of % ,n ja  nΓ  Conservation level value for the n-th constraint (
1 n CN≤ ≤ ) 

$
,n ja  Estimated range of % ,n ja  nJ  Number of elements of nJ  

C  Number of machine cells should be constructed nS  Number of elements of nS  

CN  Total number of Constraints Matrices and Vectors 
hDi  Demand value for part i in period h A CN DN×  matrix of coefficients 

,l lDis ′  Distances between two candidate locations l and l′  X  DN -dimensional decision vector 

DN  Total number of decision variables Sets  
H  Number of production periods nJ  

Set of uncertain elements of the n-th constraint (
1 n CN≤ ≤ ) 

I  Number of parts nS  
Set of uncertain elements of either objective function 
(n=0) or n-th constraint ( 1 n CN≤ ≤ ) adopting values 
from a respective uncertainty interval 

,
h
r iK  Number of machines in routing r of part type i in period h Variables 

L  Number of candidate locations to be a cell ( L C≥ ) , ,p y z  Continuous auxiliary robust modeling variables 

cLow  Minimum number of machines should be located in cell c jx  Element of the j-th row in X 

,
h

r iV  
1  if routing  of part type  is selected as process plan in period ;
0; otherwise





r i h
 

 

,
h
c lX  

1 if cell is to be constructed in location in period ;
0 otherwise





c l h
   

 
1. INTRODUCTION 
 
Today’s industrial world witnesses an increasing global 
competition, where old technologies failed to overcome 
the new form of change in demand. The application of 
group technology to production systems has in 
industries led to the introduction of cellular 
manufacturing (CM) which tries to take advantage of 
the similarity between parts. Each CMS design is 
consisted of four important decisions; namely cell 
formation (CF), group layout (GL), group scheduling 
(GS) and resource allocation [1], in which most of 
studies have developed CF problems [2, 3]. Only a few 
studies have concentrated on integrating two or more 
CMS decisions. Kia et al. [4] proposed an integration of 
CF and GL models considering the multi-rows layout 
utilization to locate machines in the cells configured 
with flexible shapes and several design features (e.g., 
alternative process routings, operation sequence, 
processing time, production volume of parts, purchasing 
machine, duplicate machines, machine capacity, lot 
splitting, intra-cell layout, inter-cell layout, multi-rows 
layout of equal area facilities and flexible 
reconfiguration). Jolai et al. [5] considered the 
integration of CL and GL models and proposed an 

electromagnetism-like algorithm to solve the problem. 
Arkat et al. [6] proposed a model that integrates CF, GL 
and cellular scheduling to minimize the total movement 
and completion time of parts. Their results show that 
considering three CM decisions simultaneously can 
significantly improve the performance of CM systems.  

Krishnan et al. [7] developed a CF model to 
integrate group technology with a facility layout 
problem. They included three basic steps; (1) presenting 
a mathematical model for grouping the machines in 
order to minimize inter-cell part trips, (2) proposing a 
new measure (i.e., bonding efficiency) to balance the 
inter-cell flow and (3) implementing a genetic algorithm 
to determine the best facility layout. Moreover, some 
recent studies try to integrate CMS with other concepts 
(e.g., production planning), which conduct the model to 
be more real, since in real world the product demand is 
not equal to production quantity. Ah Kioon et al. [8] 
developed a model that integrates the cell formation, 
system reconfiguration along with the consideration of 
multiple process routings, production planning (PP), 
machine capacities and availabilities. Solimanpur et al. 
[9] developed a fuzzy goal programming-based 
approach for solving a multi-objective CF and PP in 
dynamic virtual cellular manufacturing systems 
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considering worker flexibility. In most studies related to 
CMS under a dynamic environment, input parameters 
are considered deterministic and certain. While in 
reality, a number of parameters (e.g., processing time, 
part demand, product mix, inter-arrival time and 
available machine capacity) are uncertain. Mahdavi et 
al. [10] developed the multi-period cell formation and 
production planning in a DCMS considering worker 
assignment. The objective of the model is to minimize 
machine, reconfiguration, inter-cell material handling, 
inventory holding, backorder, worker hiring, firing and 
salary costs.  

Some studies of considering uncertainty are as 
follows. Szwarc et al. [11] considered uncertainty in 
demand and machines capacity in CMS problem, and is 
resolved by fuzzy approach. Tavakkoli-Moghaddam et 
al. [12] proposed a multi-objective model for a cell 
formation problem under fuzzy and dynamic conditions, 
the main goal of the proposed model was to select a 
process plan with the minimum cost and also to identify 
the most appropriate production volume with respect to 
fuzzy demands and capacities. Asgharpour and Javadian 
[13] presented a nonlinear integer CMS model in 
dynamic and stochastic states solved by a genetic 
algorithm (GA) and considered a dynamic production, a 
stochastic demand, routing flexibility and machine 
flexibility. 

Tavakkoli-Moghaddam et al. [14] developed a 
model for facility layout problem in CMS with 
stochastic demands, where the aim of objective function 
is to minimize inter-cell and intra-cell costs. Ghezavati 
and Saidi-Mehrabad [15] proposed a CM model and 
assumed that processing and arrival times for parts are 
stochastic. After formulating the problem with queuing 
theory, it was solved with new combination of the GA 
and simulated annealing (SA) algorithm. In addition, 
Ghezavati and Saidi-Mehrabad [16] applied a scenario-
based stochastic programming technique to solve the CF 
problem integrated with GS decision. Rabbani et al. [17] 
proposed a bi-objective cell formation problem with 
stochastic demand quantities and solved with a two-
phase fuzzy linear programming approach. Studies 
considering uncertainty can be categorized to four 
approaches: stochastic programming approach, fuzzy 
programming approach, stochastic dynamic 
programming approach, and robust optimization 
approach [18, 19]. Fuzzy optimization (FO) is an 
alternative method to cope with uncertainty that 
represents uncertainty through fuzzy numbers. Its aim is 
to find the best decision alternative under a membership 
to a given set that is inexact. On the other hand, 
stochastic programming (SP) is a methodology for 
solving optimization problems under uncertainty, which 
is usually characterized by a probability distribution on 
some parameters. In other words, a scenario generation 
approach is used to produce some scenarios from a 

probability distribution representing realizations of 
random variables associated with uncertain sources. 

In real-world applications of linear programming 
(LP), there is the possibility that uncertainty in the input 
parameters may make the usual optimal solution no 
longer optimal or even infeasible. Therefore, the need to 
use approaches, which are immune to data uncertainty, 
increases. A recent methodology for optimization under 
uncertainty is robust optimization that models data 
uncertainties through a set of deterministic and bounded 
intervals [20]. The robust optimization approach solves 
a deterministic version of the original uncertain problem 
to obtain an optimal solution that is immunized against 
data uncertainties [21]. 

It is proved that the RO method outperforms other 
FO and SO methods. The main advantages of this 
method can be described as follows: 

•  Many FO methods increase the solving 
complexity and are typically difficult to be solved 
in a reasonable computational time, especially in 
comparison with the proposed RO method that is 
less sophisticated.  

•  Standard approaches (e.g., RO), which utilizes 
real-valued quantities, are less difficult to 
understand than fuzzy optimization using fuzzy 
numbers. 

•  In scenario-based SP methods, a number of 
scenarios may be huge and can increase the model 
complexity strictly. However, the RO method 
remains computationally tractable irrespectiveness 
of its number of uncertain parameters [22, 23]. 

In this paper, a robust optimization approach is 
proposed for the integrated mathematical model of cell 
formation, inter-cellular layout and production planning 
with alternative process routing under a dynamic 
environment to minimize the presented model against 
the product processing time uncertainty. The aim of the 
objective function is to minimize inter-cell, intra-cell, 
inventory holding, back order and machine 
reconfiguration costs. 

This paper is organized as follows. In section 2, the 
mathematical programming model is presented. Section 
3 presents an example with computational results to 
demonstrate the behavior of the presented model and 
verify the performance of the developed approach. The 
paper ends with conclusion. 
 
 
2. PROPOSED FORMULATION 
 

In this section, the nonlinear mathematical model is 
first presented in a deterministic form integrated of cell 
formation, inter-cell layout design and production 
planning with the aim of minimizing five main costs: 
inter-cell and intra-cell part trip, inventory holding, 
backorder and machine relocation. Different routings 
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for each part are also considered; where for one part, 
one of its routings with the lowest cost is chosen among 
other routings. Then, the presented nonlinear model is 
linearized and afterwards a robust optimization 
approach is applied throughout the model as a tractable 
optimization technique to cope with the product 
processing time uncertainty. 

The problem is formulated according to the following 
assumptions: 

• The demand for each part type in each period is 
known and deterministic. 

• Parts have different processing routings where 
each routing has different sequence of machines. 

• Inter-cell movement cost is dependent on the 
distance traveled, while intra-cell movement cost 
is regardless of the distance. 

• The inventory holding and back orders are 
considered. 

• The time capacity of each machine type is known. 
• The upper and lower bound of cell size is known. 

 
2. 1. Mathematical Model 

, 1

1
, ,

1 ,
1 1 1 1 1 1 1 1

, , ,, ,

M in .

. . . . .

hh
r ii

m m
r i r i

KRH I C C L L

l l
h i r m c c l l

h h h h h h
r i i c l c lU c U c

A Dis

V P Q N X N X

−

+

′
′ ′= = = = = = = =

′ ′′ 
 .    

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
 (1a) 

, 1

1
, ,

2 , , ,
1 1 1 1 1

. . . .
h

r ii

m m
r i r i

KRH I C
h h h h

r i i U c U c
h i r i c

A V PQ N N
−

+

= = = = =

+  ∑∑∑ ∑ ∑  (1b) 

1 1

.
H I

h h
i i

h i
Iα

= =

+∑∑  (1c) 

1 1

.
H I

h h
i i

h i
Bβ

= =

+ +∑∑  (1d) 

1
1 1

, , , , ,
1 1 1 1 1 1

. . . . .
H M C C L L

h h h h
m m c m c c l c l l l

h m c c l l

N N X X Disγ
−

+ +
′ ′ ′ ′

′ ′= = = = = =
∑∑∑∑∑∑  (1e) 

s.t. 

,
1

,
M

h
m c c

m
N Low h c

=

≥ ∀∑  (2) 

,
1

,
M

h
m c c

m
N UP h c

=

≤     ∀∑  (3) 

,
1

1 ,
C

h
m c

c
N h m

=

=            ∀∑  (4) 

,
1

,
h
iR

h h
r i i

r
V PQB h i

=

=      ∀∑  (5) 

,
1

1 ,
L

h
c l

l
X h c

=

=            ∀∑  (6) 

,
1

1 ,
C

h
c l

c
X h l

=

≤           ∀∑  (7) 

,
, ,,

1 1
. . ,

h
i

m
r i

RI
h h h

r i i h mi U
i r

V PQ t t h m
= =

′≤       ∀∑∑  (8) 

1 1 ,h h h h h h
i i i i i iPQ D I B I B h i− −= − + + − ∀  (9) 

. ,h h
i iPQ A PQB h i∞≤      ∀  (10) 

, (0,1) , ,h
m cN h m c∈ ∀  (11) 

, (0,1) , ,h
c lX h c l∈       ∀  (12) 

(0,1) ,h
iPQB h i∈      ∀  (13) 

, (0,1) , ,h
r iV h r i∈        ∀  (14) 

, , 0 and int. ,h h h
i i iPQ I B h i≥ ∀  (15) 

The objective function (OF) of the presented model 
consists of five terms as follows. Equation (1a) represents 
the inter-cell material handling cost where, this cost 
happens when parts need to be processed in more than 
one cell. In Equation (1b), the intra-cell material part trip 
occurs only when two consecutive operations in one 
routing are allocated to the same cell but to different 
machines. Equation (1c) represents the inventory holding 
cost which happens due to keeping inventories for all 
parts. In Equation (1d), the backorder cost occurs when 
the manufacturing system is unable to fill an order and 
must complete it later. Equation (1e) represents the 
relocation cost of machines between periods where the 
distance between cells for these reconfigurations are 
considered. Equations (2) and (3) ensure that the 
number of machines for one cell is not exceeded lower 
and upper bound of cell size. The lower bound is used to 
prevent all machines from being assigned to a single 
cell. 

Equation (4) is for ensuring that each machine is only 
being assigned to one cell. Equation (5) indicates that 
just one process routing will be chosen for each part and 
this routing will be selected only if that part type is to be 
produced in corresponding period. Equations (6) and (7) 
ensure that each cell is assigned to only one location and 
each location is assigned to one cell, respectively. 
Equation (8) is for forcing machine workload not to 
exceed its capacity. Equation (9) makes the inventory 
and/or backorders balanced with those from the 
previous period, production quantity, and the demand 
quantity. Equation (10) is a logical equation which 
guarantees that quantity of a part type produced in a 
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particular period can be a positive quantity only when 
its corresponding binary viable is equal to 1. At last, 
Equations (11) to (15) are to define the decision 
variables types. 

 
2. 2. Linearization     In this section, the linearization 
of the nonlinear model is developed based on 
linearization methods [4, 24]. The nonlinearity of the 
model is due to Equations (1a), (1b) and (1e) and (8). 
Therefore, to linearize the model, some new variables 
should be defined as follows: 

, ,.h h h
r i i r iVPQ PQ V=    

1 1
, , , ,

,, , , ,
. .m m m m

r i r i r i r i

h h h h
r iU U c U c U cVPQ N Nψ + +  

=       

1 1
, , , ,

, , ,, , , , , , ,
. . . .m m m m

r i r i r i r i

h h h h h h
r i c l c lU c l U c l U c U cVPQ N N X Xϕ + + ′ ′′ ′ ′=    

1 1
, , , , , , , ,. . .h h h h h

m c c l l m c m c c l c lN N X Xη + +
′ ′ ′ ′ ′=         

The following equations respect to new variables must 
be added to the original model: 

( ), ,. 1 , ,h h h
r i i r iVPQ PQ A V h r i∞≥ − − ∀  (16) 

, 0 and int. , ,h
r iVPQ h r i≥ ∀  (17) 

( )1 1
, , , ,,, , , ,

. 2m m m m
r i r i r i r i

h h h h
r iU U c U c U cVPQ A N Nψ + +∞≥ − − −  

, , , ,h r i m c∀  
(18) 

1
, ,, ,

0 and int. , , , ,m m
r i r i

h
U U c

h r i m cψ + ≥ ∀  (19) 

(1 1
, , , ,,, , , , , , ,

. 4m m m m
r i r i r i r i

h h h h
r iU c l U c l U c U cVPQ A N Nϕ + +∞′ ′ ′

≥ − − −  

), , , , , , , , ,h h
c l c lX X h r i m c c l l′ ′ ′ ′− −       ∀  

(20) 

1
, ,, , , , ,

0 and int. , , , , , , ,m m
r i r i

h
U c l U c l

h r i m c c l lϕ + ′ ′
′ ′≥ ∀  (21) 

1 1
, , , , , , , ,4 h h h h h

m c c l l m c m c c l c lN N X Xη + +
′ ′ ′ ′ ′≤ + + +  

1,..., 1, , , , ,h H m c c l l′ ′      ∀ = −  
(22) 

1 1
, , , , , , , , 3h h h h h

m c c l l m c m c c l c lN N X Xη + +
′ ′ ′ ′ ′≥ + + + −  

1,..., 1, , , , ,h H m c c l l′ ′    ∀ = −  
(23) 

, , , , is bin. , , , , ,h
m c c l l h m c c l lη ′ ′ ′ ′∀  (24) 

By substituting new variables in the model, the linear 
form of the model is as follows: 

, 1

1
, ,

1 , , , , , ,
1 1 1 1 1 1 1 1
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hh
r ii

m m
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h
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−
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h m c c l l
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H I
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Iα
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+∑∑  
1 1

.
H I

h h
i i

h i
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s.t. 
Equations (2) to (7), (9) to (15), (16) to (24) 

,
, ,,

1 1
. ,

h
i

m
r i

RI
h h
r i h mi U

i r
VPQ t t h m

= =

′ ≤ ∀∑∑  (26) 

 
2. 2. Robust Optimization Approach   In recent 
years, dealing with uncertain data is a major challenge 
in optimization. One approach to address data 
uncertainty is developed under the name of robust 
optimization, which means finding a solution that can 
cope best with all possible realizations of the uncertain 
data. Various approaches of robust optimization are 
developed. Idea behind robust optimization is to 
consider the worst case scenario without a specific 
distribution assumption. The roots of robust 
optimization can be found in the field of robust control 
and in the work of Soyster [25] considered a 
deterministic linear optimization model, which is 
feasible for all data lying in a convex set. However, the 
model is very conservative and is protected against the 
worst-case scenario. Subsequently, a number of 
important robust formulations are developed by Ben-Tal 
and Nemirovski [26-28], El Ghaoui et al. [29] and 
Bertsimas et al. [30]. 

In this section, we present a robust approach 
developed by Bertsimas et al. [31] for discrete 
optimization problems with uncertain parameters based 
on a polyhedral uncertainty set. Aforementioned studies 
are based on ellipsoidal uncertainty or box uncertainty 
sets. The approach proposed by Bertsimas et al. [31] is 
adopted according to the following justifications: 

• The robust optimization (RO) model proposed by 
Bertsimas [31] is more tractable than RO 
frameworks with ellipsoidal uncertainty sets. A 
robust counterpart of a model considering 
uncertain linear programming (LP) with ellipsoidal 
uncertainty sets is solved in form of second-order 
conic programming (SOCP). However, the robust 
counterpart of this model with polyhedral 
uncertainty sets remains in form of linear 
programming. Besides, obtaining a solution from 
SOCP as a non-linear model is more difficult than 
LP. Then, it is not particularly attractive for 
solving robust discrete optimization problems[31, 
32]. 

• Although, RO’s tractability in the model based on 
both polyhedral and box uncertainty sets are equal 
(i.e., the robust counterpart of an uncertain LP 
model is in form of LP), RO with a polyhedral 
uncertainty set handles uncertainties more 
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flexiblely than RO with a box uncertainty set (e.g., 
Soyster’s RO [25]). Since RO with polyhedral 
uncertainty offers can assign each conservation 
level to each uncertainty, RO with a box 
uncertainty assigns only one conservation level to 
all uncertainties of each equation [31]. 

Bertsimas approach permits to control the 
conservatism level of the solution [31]. Solutions 
obtained from robust optimization approach guarantees 
more situations even worst ones. The important concern 
of the robust methodology in this paper is to present an 
optimal planning that is robust with regard to data 
uncertainties in product processing time. The 
deterministic compact form of the model can be 
rewritten as follows: 

.TMin c x  
s.t. 

.A x b≤  
lb x ub≤ ≤  

(27) 

Suppose that only matrix A= ,( )n ja  elements are 
subjected to data uncertainty, the RO methodology 
models data uncertainties through bounded intervals 
designated as uncertainty set. Therefore, the matrix A’s 
uncertain elements can be defined using the mean value 
and range of each uncertain element as follows: 
% $ $ %, , , ,, ,,n j n j n j n jn j n ja a a a a a A = − + ∈     (28) 

A number named conversion level (CL), symbolized by 
nΓ (n= 0,1,…,CN) is introduced in [31] for robustness 

intentions and adjusting the robustness level which 
adopts different values in the interval 0, nJ   , where Jn 

is a set comprises uncertain elements of the n-th 
equation $

,n jnJ j a= {    > 0 } . Therefore, the robust 
counterpart of Equation (27) which is nonlinear can be 
written as follows: 
Min .Tc x  
s.t. 

, .n j j
j

a x∑

{ }{ }
$ ( ) $

, ,
, , \
max . . .n tn

n n n n n n n nn n

n j n tj n n
S t S J S t J S j S

a x a x
∪ ⊆ = Γ ∈   ∈

  + + Γ − Γ   
  
∑

nb n≤ ∀  
lb x ub≤ ≤  

(29) 

By applying the linearization technique for nonlinear 
Equation (28), we have: 

.TMin c x  
s.t. 

, ,. .
n

n j j n n n j n
j j J

a x z p b n
∈

+ Γ + ≤ ∀∑ ∑
$

,, . ,n jn n j j nz p a y n j J+ ≥ ∀ ∈  

(30) 

j j jy x y j− ≤ ≤ ∀  

j j jlb x ub j≤ ≤ ∀  
0nz n≥ ∀  

, 0 ,n j np n j J≥ ∀ ∈  
0jy j≥ ∀  

Now, a robust DCMS model can be developed by 
introducing a set of symmetric bounded intervals which 
represent the uncertainty of the product processing time 
as follows: 

, , ,, ,, , ,
h hh h h

i m i m i mi m i mt t t t t h i m ∈ − + ∀  
$ $%  (31) 

Therefore, the robust counterpart of the proposed model 
is as follows: 
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(32) 

s.t. 
Equations (2-7), (9-15), (16-24) 
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, , ,, , ,
, 0 , , ,h h h

m m mi U i U i Ur i r i r i

h
r it t t

y VPQ y y h r i m− ≤ ≤ ≥ ∀  (35) 

, 0 ,h mz h m≥ ∀  (36) 

, 0 , ,h
i mp h i m≥ ∀  (37) 

However, the dimension of the processing time is equal 
to H I M L× × × . However, note that the processing 
time for machine m in part i and period h is similar in all 
routings. Therefore, the total number of all uncertain 
variables of the set is equal to H I M× × . Besides, by 
considering Equations (28) and (31), it is revealed that 
n=h×m and 1 2, ,..., h m×Γ Γ Γ . Hence, in Equation (33), for 
each m and h, the number of uncertain set’s elements 
are equal to the number of parts that machine m 
produces in period h (i.e. ,0, 0,n n h mJ J I =   =    ),  where, 

,h mI  is the number of parts are produced by machine m 
in period h. 
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3. NUMERICAL RESULTS 
 
A numerical example is considered to validate the 
performance of the presented model, in which eight 
machine types allocated to two possible cells to process 
12 different part types, each having maximum three 
different routings and with the planning decisions over 
two time periods. This example is solved using the 
CPLEX 12.5 solver within GAMS software package on 
the personal computer 2.3 GHz Intel Core i5 with 4GB 
of RAM. The information related to the machine 
capacity, distance between candidate locations and part 
types are given in Tables 1 to 3, respectively. Table 3 
contains the information related to the part sequences, 
routings, processing time and demand. For instance, part 
type one with the demand quantity of 95 has two 
different routings. The first routing consists of three 
operation sequences that each needs machines 7, 5 and 
1, respectively. Furthermore, the minimum and 
maximum sizes of each cell in terms of machine 
numbers are assumed to be 2 and 4, respectively. 

Based on definition in section 2.3, 1 2 16, ,...,Γ Γ Γ  
(n=h×m=2×8=16) can vary according to the Table 4. 
Note that when nΓ =0, the Equations will be equivalent 

to the deterministic form. By changing 0,n nJΓ ∈     
there will be also the flexibility of modifying the 
robustness of the method pertaining to the conservatism 
level of the solution. In the mentioned example, we 

adjust the processing time uncertainty ,, m
r i

h
i Ut$  to equal 

50% of the nominal processing time and 0.5n nJΓ = × . 

The obtained optimal solution of the proposed 
integrated model is presented in Tables 5 to 8. The cell 
configurations for two periods corresponding to the 
optimal solution of Table 5 are shown in Figure 1. 

The optimal inter-cell layout is shown in Table 5. As 
an example in period one, cells 1 and 2 are constructed 
in locations 1 and 2, respectively, where they are 1 unit 
apart. Cell configurations for two periods are also 
presented in Table 5 and Figure 1. For instance, in 
period one, machine types M4, M5, M6 and M7 are 
assigned to cell 1. The efficient routing for each part 
type is shown in Table 6. By considering Tables 3, 5 
and 6, it can be figured out how inter and intra-cell part 
trips happen. For instance, in period 2, part type 10 
needs machines M3, M7 and M6 successively. On the 
other hand, the machines are assigned to C2, C1 and C1, 
respectively. Therefore, part type I2 after being 
processed on M3 in cell C2 would experience inter-cell 
part trip to cell C1 to be processed on machine M7, at 
last the part would experience intra-cell trip to M6. 

 
 
 

TABLE 1. Distance matrix between cell locations 
To       

    From 
L1 L2 L3 

L1 0 1 2 

L2 1 0 1 

L3 2 1 0 

 

 
TABLE 2. Capacity of machines 

 M1 M2 M3 M4 M5 M6 M7 M8 

Period 1 1800 1650 1950 2550 1500 1800 2025 1800 

Period 2 1500 1350 1350 2400 1800 1950 2025 1500 

 

 

Figure 1. Optimal cell configuration 
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TABLE 3. Input data of part processing 
Part 

Period 1  Period 2 
Process Sequence Processing time (min) Demand  Process Sequence Processing time (min) Demand 

1 M7-M5-M1 
M8-M7 

2.4-3.2-1.6 
4-2.4 95  M8-M5 

M8-M7-M1 
2.4-3.2 

2.4-1.6-0.8 75 

2 M2-M5 
M3-M4 

0.8-3.2 
1.6-2.4 50  M2-M4-M5 0.8-4-2.4 0 

3 M2-M5 
M4-M6 

2.4-4.8 
3.2-4 

65  
M6-M7 
M4-M6 

M2-M5-M1 

4-1.6 
1.6-4 

0.8-2.4-1.6 
70 

4 
M1-M7-M8 
M7-M4-M8 
M1-M4-M3 

2.4-4.8-0.8 
4.8-3.2-0.8 
2.4-3.2-1.6 

60  M1-M4-M8 
M4-M7-M1 

2.4-3.2-1.6 
4.2-2.4-2.4 50 

5 M6-M3-M7 
M2-M7-M4 

3.2-1.6-0.8 
2.4-0.8-1.6 50  M3-M6-M7 

M2-M6-M7 
3.2-4-0.8 
2.4-4-0.8 45 

6 M1-M4-M6 
M1-M2-M4 

0.8-2.4-1.6 
0.8-1.6-2.4 80  M5-M4-M2 

M6-M7-M3 
1.6-1.6-2.4 
0.8-1.6-3.2 60 

7 M1-M4-M6 
M3-M5-M2 

1.6-0.8-2.4 
3.2-4-0.8 40  M4-M5-M6 

M1-M4-M5 
0.8-2.4-3.2 
1.6-0.8-2.4 45 

8 M3-M7 
M5-M8 

2.4-4 
3.2-4.8 50  M3-M7 

M4-M6 
1.6-3.2 
1.6-4.8 60 

9 M8-M6-M3 
M2-M4-M3 

1.6-4.8-6.4 
3.2-2.4-6.4 0  M4-M8-M2 1.6-5.6-5.6 90 

10 M3-M7-M6 
M6-M8 

0.8-2.4-1.6 
1.6-3.2 50  M3-M7-M6 5.6-4-0.8 45 

11 M8-M6-M7 
M2-M4-M3 

1.6-4-6.4 
3.2-2.4-6.4 100  M6-M8-M7 1.6-5.6-5.6 85 

12 
M1-M7-M4 

M4-M8 
M1-M5-M4 

1.6-3.2-2.4 
2.4-4 

1.6-2.4-2.4 
70  

M8-M5-M4 
M3-M7-M4 
M1-M5-M8 

5.7-4-1.6 
4.8-4.8-1.6 
1.6-4-5.6 

75 

 
 

TABLE 4. Range of variation for conservation levels 
Machine Period 1 Period 2 

M1 [0,5] [0,5] 
M2 [0,7] [0,5] 
M3 [0,8] [0,5] 
M4 [0,9] [0,8] 
M5 [0,6] [0,6] 
M6 [0,7] [0,7] 
M7 [0,7] [0,9] 
M8 [0,7] [0,5] 

 
 

TABLE 5. Optimal inter-cell layout and machine grouping 

Cell 
Period 1 Period 2 

Cell location Machines Cell location Machines 

C1 L1 
M4,M5, 
M6,M7 

L2 
M1,M8, 
M3,M6 

C2 L2 
M3,M8, 
M1,M2 

L1 
M2,M5, 
M7,M4 

 

 
TABLE 6. Optimal part routings 

Part Period 1 Period 2 

1 R2 R2 

2 R1 R1 

3 R1 R1 

4 R1 R1 

5 R1 R2 

6 R2 R2 

7 R2 R1 

8 R2 R2 

9 R2 R1 

10 R2 R1 

11 R2 R1 

12 R2 R3 
 

 
 
 

TABLE 7. Objective function value (OFV) 

OFV Inventory cost Backorder cost Relocation cost Inter-cell cost Intra-cell cost 

3096 294 168 27 1580 1027 
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TABLE 8. Optimal production plan 

Part 
Period 1  Period 2 

Inventory  Backorder Production Demand  Inventory Backorder Production Demand 
1 3  98 95    72 75 
2   50 50    0 0 
3   65 65    70 70 
4 1  61 60    49 50 
5   50 50    45 45 
6   80 80    60 60 
7 45  85 40    0 45 
8   50 50    60 60 
9 39  39 0    51 90 
10   50 50    45 45 
11   100 100   7 78 85 
12 30  100 70    45 75 

 
 

TABLE 9. Objective function value (OFV) for 1
7 6α =  

OFV Inventory cost Backorder cost Relocation cost Inter-cell cost Intra-cell cost 

3828 404 168 86 1150 2020 
 
 

TABLE 10. Computational results from different-sized problems 
No. I×M×C×H No. variables No. constraints Objective function Computational time (sec) Gap (%) 

1 12×8×2×2 2801 7551 3096 106 0 
2 18×12×2×2 4973 12467 6453 291 0 
3 24×16×2×2 8529 20767 11082 360 0 
4 30×20×3×2 13469 41451 31078 914 0 
5 36×24×3×2 17793 65519 44736 1159 0 
6 42×28×3×2 26858 83587 60981 1453 0.01 
7 48×32×4×2 51470 139547 94355 1898 0.01 
8 54×36×4×2 97937 259859 135380 2642 0.08 
9 60×42×4×2 129911 370775 176901 5648 10.3 

 
 

 

Figure 2. Effect of conservation level on objective function (cost) 
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The objective function value (OFV) is presented in 
Table 7. According to mentioned tables, for part type 1 
in period 2, its routing R2 is chosen. This part should be 
processed on machines M8, M7 and M1 allocated to 
cells C2, C1 and C2, respectively. Hence, this part has 
two inter-cell trips. Based on the first term of the 
objective function, its first inter-cell part trip cost, is 
computed by: 

1 2
2 ,1 2,1

2 2 2 2 2 2
1 2,1 2,1 1 2,2 1,1,2 ,1. . . . . .U UA Dis V PQ N X N X

 
 .     

0.85×1×1×72×1×1= 30.6 
Note that: 1

2,1U  indicates to machine M8, which is the 
first machine in the second routing of part type 1. Table 
8 demonstrates optimal production planning, demand 
quantity for each part type can be satisfied through 
production, backorder and/or inventory. For instance in 
period 1, the demand of part type 7 is 40 while 85 units 
are produced. Therefore, 45 units will be kept for next 
period as inventory and this amount can satisfy the next 
period’s demand. Furthermore, type part 11 has been 
produced 78 units while the demand quantity is 85. 
Therefore, the demand cannot be satisfied completely 
and 7 units are considered as backorder. To verify the 
costing effect of inventories, assume that the unit 
inventory cost of part type 7 is increased from 3 to 6 per 
unit. Table 9 demonstrates the results in the objective 
function values. This increase makes the part type 7 
demands to be satisfied in each pertaining period, in 
other words production quantity for part type 7 after this 
change is 40 and 45 in periods 1 and 2, respectively. 

The robust optimization approach by solving the 
worst case problem presents an optimal solution 
immunized against all data uncertainties. To verify the 
behavior of the model, Figure 2 is plotted presenting the 
effect of the conservation level on the objective function 
value. According to this figure, the OFV is the function 
of conservation level. By increasing conservation level, 
the OFV increases. With robust optimization approach 
the desire to stay on the safe side can be achieved by 
enlarging uncertainty set. In the non-presence of 
conservation level (i.e., deterministic model), the 
optimal value is 1943. On the other hand, with 
maximum conservatism (i.e., worst case) the optimal 
value is increased by 75% to 3409. As far as we 
increase the conservatism, the presented model becomes 
more immune against processing time uncertainty. To 
better illustrate the ability of the robust DCMS model, 
the computational results from different-sized problems 
are presented in Table 10 illustrating the computational 
time, objective function, relative optimality criterion 
(Gap) and the number of variables and constraints for 
each problem. It is obvious that by increasing the 
problem size in terms of a number of variables, the 
computational time increases. The relative optimality 
criterion for an MIP problem is as follows: 

( ) ( )/ 1.0 10BP BF e BF− − +  

where, BF is the objective function value of the current 
best integer solution, while BP is the best possible 
integer solution [33]. 
 
 
 
4. CONCLUSION 
 
In this paper, a robust optimization approach has been 
developed for a new presented mathematical model 
integration of cell formation, inter-cell design, and 
production planning under dynamic environment, in 
order to cope with parts processing time uncertainty. 
This model has minimized inter and intra-cell material 
handling costs, relocation costs and production planning 
costs (e.g., inventory and backorder costs). This model 
has been able to determine the optimal cell 
configuration and production plan for each part type at 
each period over the planning horizon. The important 
advantages of this study are as follows: 

• Applying a robust optimization approach to the 
DCMS. 

• Distance-based relocations of machine types. 
• Considering different routings for each part type. 
• Incorporating inter-cell layout of machines with 

cell formation to exactly calculate inter-cell 
material handling cost. 

• Considering uncertainty for parts processing 
time. 

For future studies, providing frameworks that which 
considers more options of uncertainty can be interesting 
fields. 
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  چکیده

  
  

براي طراحی یک سیستم پویاي تولید سلولی ترکیب شده با برنامه ریزي تولید،   این مقاله یک روش بهینه سازي استوار
سازي استوار براي مقابله با این عدم اطمینان، یک روش بهینه. دهدتحت عدم قطعیت در زمان پردازش قطعات توسعه می

این مدل شامل مفاهیم تشکیل سلول، طراحی درون سلولی و . ن یک رویکرد کنترل پذیر به کار گرفته شده استبه عنوا
هاي حرکت درون و برون سلولی قطعات، سازي هزینههدف این مدل، کمینه. باشدریزي تولید در یک محیط پویا میبرنامه

در خاتمه یک مثال عددي براي نشان دادن رفتار مدل . باشدنگهداري موجودي، سفارش تاخیر یافته و پیکربندي مجدد می
 .شودبراي یافتن راه حل بهینه حل می پیشنهادي و بررسی عملکرد روش توسعه یافته

 
.  
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