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A new method is introduced here for root detection in minirhizotron images for root investigation. In
this method, a hypothesis testing framework is defined first to separate roots from background and
noise. Then, the correct roots are extracted by an entropy-based geometric level set decision function.
Performance is evaluated on real captured images in two different scenarios. In the first scenario,
images contain several roots while the second scenario belongs to no-root images, which increases the
chance of false detections. The results demonstrate better capability of the proposed method in root
detection compared to the present approaches in all the cases investigated. Furthermore, it can be
shown that better detection of roots in the proposed algorithm not only does not lead to extracting more
false particles, but also it decreases rate of false detections compared to the existing algorithms.
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1. INTRODUCTION

The root morphological traits are one of the most
important parameters for monitoring growth procedure
of many plants [1]. Therefore, some details of root
morphology such as its size and distribution must be
frequently observed under natural growing conditions
[2]. The main difficulty in such investigation is that the
roots are included in the soil and cannot easily be
separated from it.

For many years the root parameters have been
studied by utilizing soil core sampling methods [3].
These methods can provide precise information about
root parameters. However, they are destructive and time
consuming [3, 4].

Rhizotrons are high-technology equipment for root
observation under natural conditions without soil core
sampling. They utilize transparent walls and specially
designed microscopes for extracting details of root
morphology [5]. Rhizotron is an expensive equipment,
so it is supplanted by minirhizotron which is a
combination of camera and transparent plastic tube.
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This set is buried at an angle in soil near the plant, so
the minirhizotron images just represent a small cross-
section through the soil. As the root often has a spatial
distribution, a large number of minirhizotron images
may be required to study all of the root parameters. The
most critical part of root investigation by using these
images is to extract root completely from images which
leads to accurate estimation of root parameters [6, 7].

Several methods have been used for root detection in
minirhizotron images with the oldest one being manual
detection by an expert. Unfortunately, this method is
labor-intensive and its performance is degraded by
human errors. Therefore, the automated methods have
been substituted for processing these images [8].

The main challenges which limit the performance of
the automated methods are: the low contrast of captured
images, presence of bright background objects which
may be detected as roots, and finally the possible
changing brightness at different parts of root which may
be interpreted as root splitting [9]. Several approaches
have been proposed to solve automatic root detection
problems. Thresholding is one the most popular
methods for image segmentation [10], so some
researchers used several types of global and local
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thresholding techniques for root detection in
minirhizotron images. Unfortunately, these methods are
unable to extract roots accurately because background
objects have the same intensity distribution as the roots
and the resulting histograms do not possess the desired
bimodal [11, 12]. Other methods try to obtain the
bimodal histograms by improving the contrast in
images. For example the contrast stretching algorithm
ensures that only a few root pixels and some bright
background objects are left in the intermediate gray
level. This idea is not suitable for large number of
minirhizotron root images taken from various
backgrounds and recorded with different luminance and
exposure levels [13]. Another group of methods include
region- based root detection. The main limitation of
these methods is their low detection rate due to the low
contrast of roots and background soil in minirhizotron
images [14].

Some approaches utilize geometric features of roots,
to reduce detection of no-root objects (i.e., false
positives). The minimum root length (MRL) method is a
suitable example for such methods. This method is
based on the assumption that bright objects with
skeletons shorter than the experimentally determined
MRL must be considered as background. Although this
method may remove some no-root objects, but some
short roots may be eliminated by such a filter and this
method cannot completely detect all roots [15].

In other investigations artificial neural networks
have been utilized to identify roots in minirhizotron
images. This approach provides excellent results when
applied for identification of roots which the neural
network has been trained with. However there is a
considerable decrease in detection rate when the neural
network is applied to other images on which it had not
been trained [16].

Some recent methods utilize the local entropy
followed by image morphologic operators to separate
roots from background [17]. Despite considerable
potential of these approaches in extracting some parts of
roots, these techniques lead to fragmented roots.
Furthermore, simple morphologic operators cannot
prune background pixels which are included as a part of
roots (e.g. false detections).

In this paper a new method is introduced which
detects roots in minirhizotron images by using entropy
based level-set segmentation. In the proposed method,
the dependency of each pixel in captured image to root
or background is modeled by using hypothesis testing
framework. To assign the pixel to one of the above
hypotheses, a decision function is constructed using an
entropy-based geometric level set model. Utilizing level
set concept enables the proposed algorithm to detect
roots in low contrast minirhizotron images without
splitting them unlike the existing methods. This leads to
reduced detection of no-root objects without losing
correct roots.

The paper is organized as follows. In Section 2, the
proposed algorithm is introduced including hypothesis
testing framework, estimating entropy from gray level
co-occurrence matrix and constructing the energy
function which leads to extract edge-based level set. In
Section 3, the performance of the proposed method is
evaluated in two different scenarios based on real
minirhizotron images. In Section 4, the results obtained
from the experiments are compared with those of the
existing methods using their effective parameters.
Conclusion is presented in the last section of the paper.

2. MATHEMATICAL MODEL

Suppose I as a minirhizotron image that contains root,
soil and several underground particles which the two
latter parameters is called background in this article. For

each pixel of I it can be written:

I,=I(l,j) 1<ISL 1<j<J (1)
In the above equation, I,jiS brightness of a pixel in I
which is located in row /and column j, respectively.
Also, L and J are the image sizes. Dependence of the
pixel I jto the background and noise (H,) or its
dependence to the root ( H,) is determined defining
hypothesis testing Equation (2):

H,: I,j:|c,j+n,j|

2

H,: I,j:|r,j+c,j+n,j|

In the above equation, I;, Gy and ny show the root,

background and noise components in I, ;j respectively.
Assume that I has N gray levels denoted by
B ={0.1,2,....N—1} which constructs 1-D histogram of I.

But, this 1-D histogram neglects the correlation among
gray levels of root and background which is vital in

segmentation of I. In order to resolve this problem, the
co-occurrence matrix is introduced which is a square

matrix as: W=[w,_ ]y in which W, is the numbers of

transitions between all pairs of gray levels in B . The
above parameter is defined as [18, 19]:
L J
W =20 T G)
= j=1
In which
1 ifl;=k and I, =z
Ty =41 if I;=k and I, =z 4)

0 otherwise
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The transition probability from gray level K to gray
level Z is obtained as:

Wiz
8l = " v )
Wz
k=0 2=0

Let T be a threshold used to separate root from other

particles in minirhizotron imagelI. Therefore, it
partitions co-occurrence matrix into four quadrants as
A, A, A5 and A,. These four quadrants can be
clustered into two classes. Let pixels with gray levels
above the threshold be assigned to the root and those
equal to or below the threshold ,to the background.
Therefore, A and A show local transitions within
background and root, which are called local quadrants.
The quadrants A and A, represent joint transitions

across boundaries between background and root which
are called joint quadrants. The probability of each
quadrant is:

I e N T
=228  G=YYe,

k=0 20 A k=T+ 2=0
= Zz=
T N-I (6)
N-1  N-I
G-33e o
A kz G, = )
k=0 z=T+1 A k:ZTH Z:Zﬂ»lgkl

Suppose the threshold T to be applied to the original
image I and lead to processed imageI'. Now, the
transition probabilities of I are shown as G=[ g,

N*N?>
and for the I' as X' =[x' k] .y, Where x"i has the
similar definition as g,,. The second-order cross-

entropy of the above gray-level transition probabilities
is defined as [20]:

T N-1 N-1 g
E(G,X")=>> g,log=k (7
k=0 z=0 Xz

The above entropy is used to measure the information
distance between the original image I and the processed
(e.g. thresholded) image I'. Therefore, the smaller this
entropy is, the closer the two images are in terms of
their probability distributions. Based on this fact, it can
be concluded that minimization of E(G, X")over T

generates I'in such way that best matchesl. Let all
gray levels above T be called B, ={T+1,T+2,...,N-1}

and all gray levels equal to or below T called
B, =1{0,L...,T}. So, B, and P, are partitioned sets of
[ that had been introduced before. Assuming that gray
levels in f3; and B, are uniformly distributed in their

respective regions, the resulting XZZ for each quadrant
can be found by [21, 22]:

. G,
Xy =——————, Vk,zep,
(T+1)(T+1)
GT
of = Yk
Yon = T N-T=1) K€ Po2eh)
. G, ®
= ~ ke p,
Yon = NCToN_T1) e Phzeh
GT
! A VkeB,zep,

X, , =
A (N=T-1)(T+1)
where G/: , Gz , G/: and Gz were defined by (6). For
T T T
Xega» Xoia and Xy,
constants in each individual quadrant and they only

depend upon the quadrants they belong to. To optimize
Equation (7) which leads to obtaining the best value of

each selected T,X,Q 4 are

T, firstly it is expanded as:
E(G.X")=F(g,1)-Y Y g.loex, =F(G)-E(T)  (9)

k=0 z=0

In the above equation, E'(G) is the entropy of the

probability matrix (Gand is independent of T, so
E'(T) is only threshold-dependent part of entropy. As
mentioned before, the best T is the one that yields the
smallest value of E(G, X"). However, minimization of
E(G, X") in Equation (9) is equivalent to maximizing
the second term of the right-hand-side of this equation,
which can be further reduced to:

E"(T)= G,.10g(x"t1a) + G, 1og(x"kia ) +
T T T r (10)
GAS.IOg(X kAA;)“‘GA,-lOg(X K44, )

Therefore, the threshold value T that maximizes (10) is
found as:

Tep

T = arg{ min E"(T)} (11)

Let the result of thresholding by T be a processed
image I'which is defined as:

{(I) o (I)I;hz:x;/ise (12)
Let the edge indicator d be defined for the thresholded
image I' as:
1

Vo a3
where D is a Gaussian kernel with a standard deviation
O . The convolution term v D_ * ['* acts as smoothing
filter for noise reduction. The edge indicator d usually

takes smaller values at object boundaries than at other
locations.
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Supposing ¢ as the level set function (LSF) on I', the
energy function can be defined as:

O(9) = uR,(§) +An,(9) +ay ,(9) (14)

in which ;> 0is a constant and R,(¢) is the level set

regularization term defined as:
R,(#) =] p(Ve)dx (15)

where p(|v¢|) is potential function which is defined as:

p(Ve) =] (vol-1?dx (16)

Based on Equations (15) and (16), it is clear that R,(9)
has a minimum point at|v¢| =1.
In the second and third terms of Equation (14), A >0

and ¢ e R are the coefficients of the energy functions
n,(¢)and y _(¢) which are defined as:

n.(¢) = ds($Vodx (17)

v (@) =[ dH(-$)dX (18)

where §() and H() are the Dirac and the

Heaviside functions, respectively. Using these
functions, the energy n,(¢)computes the line integral

of d along the zero level contour of @ . This energy is

minimized when the zero level contour of ¢ is located

at the object boundaries [23].
The energy functionaly ,(¢)computes a weighted

area of the region I; ={s:¢(s) <0)} and is introduced

to speed up the motion of the zero level contour in the
level set evolution process, which is necessary when the
initial contour is placed far away from the desired object
boundaries.

In this paper, we use LSFs that take negative values
inside the zero level contour and positive values outside.
In this case, if the initial contour is placed outside the
object, the coefficientor in the weighted area term
should be positive, so that the zero level contours can
shrink in the level set evolution. If the initial contour is
placed inside the object, this coefficient should take
negative value to expand the contour.

In practice 6 (.) and H(.) in Equations (17) and (18)
are approximated by the following smooth functions
[24, 257

L[l+cos(ﬂ—¢ } p<e
5, (9)=12¢ € (19)
0 d>¢

l{l +£+lsin(ﬂ—¢)} p<e¢

2 e €

H,(¢)=11 p>¢ (20)
0 ¢ <—¢

Substituting above functions in main Equation (14),
energy is approximated by:

O0.(0)=u], p(IVo| S +1[ d5,(6 VodS+
ocJ-rng(—d) XS

This energy can be minimized by solving the following
gradient flow:

1)

Bl . Vo

L= ndiv(0, (IVY )V )+ A8 (¢ ).div(d —

prals iv(0,(IVY| Vo )+ 18, (¢ ).div( |v¢|) o)
+ads,(¢)

where div(.) is divergence operator and 6 is a

function defined as:
p' (|V¢|)
V4|

where p'(|v¢|) is derivative of function p(|V¢|) which

0,(Ve) = (23)

has been introduced in Equation (16).
Now dependence of a pixel to background and noise ( H)

or to root ( H, ) is determined by combining Equations (2)
and (22) as:

Hy: i,¢¢ :1,j:|c,j+n,j|
] ] 24)
H: i;e¢ :1,j:|r,j+c,j+n,j|

3. TESTS AND RESULTS

The proposed algorithm was applied to real data. The
data set was several minirhizotron images where half of
them contained various types of roots and the remaining
half were no-root images composed of background
objects or dead roots. Table 1 depicts some important
parameters corresponding to images (e.g. number,
contrast and size) and some parameters of roots which
these images belong to (e.g. type, length and width of
roots). More detail about the dataset can be found in
[17]. The proposed method was implemented using
Matlab 2009. Additionally, Entropy Thresholding
Algorithm (ETA) [17], Minimum Root Length (MRL)
[15], Region Based Root Detection (RBRD) [14] and
Histogram Thresholding Algorithm (HTA) [12] were
implemented to compare with the proposed algorithm.
For brevity some results of the proposed, ETA and HTA
methods are graphically showed in this part of article,
but the complete statistics of the test results will be
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discussed in part 4. The captured videos were first
processed using manual detection to obtain a ground-
truth detection to compare the automatic methods with.
Then roots were detected by applying the proposed and
other algorithms. Finally, performance of each
algorithm was determined by comparing its results with
manual detection. The complete extraction of roots is
essential to compute their parameters, so, each detection
was considered as a correct root only if at least 90% of
its pixels had been extracted same as manual detection.

3. 1. First Scenario In the first scenario the
implemented algorithms were applied on images which
had been captured from root-contained scenes. Figures
(1-b), (1-c) and (1-d) show results by utilizing three
algorithms on image shown in Figure (1-a). It can be
seen in (1-b) that the HTA has extracted the correct root
but with great number of extra pixels (note bottom of
root);, also this algorithm has extracted a completely
false root. Figure (1-c) shows that result obtained from
ETA. This result contains the partitioned correct root as
two separated roots and furthermore some parts of root
have become loose The result of applying the proposed
method has been shown in Figure (1-d) which implies
the complete extraction of correct root neither with false
detections nor splitting effect.

Figure (2) shows another type of results. Figure (2-
b) shows that the HTA has extracted one of totally two
roots existing in Figure (2-a). Note that this root is
extracted with some extra pixels and so it may cause
some errors in extracting geometric features of root. As
shown in (2-c) ETA also has extracted both roots, but
the second root has been extracted in fragmented parts.
Although (2-d) shows that the proposed algorithm has
extracted both roots better than the other two
algorithms, but still the second root has been detected
incompletely.

3. 2. Second Scenario The existence of some bright
background objects which can be detected as roots is one
of the challenges in root detection problem. Therefore, in
this scenario those images were examined which have
been captured from no-root scenes. An example for such
images is shown in Figure (3-a). Figure (3-b) shows the
result which has been obtained from processing (3-a) by
HTA with a false detection. But as shown in (3-c) and
(3-d), ETA and the proposed algorithm have had no false
detections.

4. PERFORMANCE MEASURES

Real data were analyzed using ETA, MRL, RBRD,
HTA and the proposed method and the results were
compared with manual detection ones using two
standard parameters. The first parameter was defined as

the probability of correct association of pixels to valid
roots which is called the probability of detection as:

P, =P(I;e¢|H,) (25)

This parameter was estimated as:
total images
z Missed rootsinimage k

P, =(1-—*%L )*100
total images x number of roots

(26)

The second evaluation parameter was the probability of
associating the pixels to incorrect roots which is called
false alarm probability:

P, =P(I,j €¢|H,) (27)

This parameter was estimated as:
total images
false rootsinimagek

P, = k=l *100
total imagesx number of roots

(28)

Using the mentioned parameters, changes of detection
rate versus false detection rate (e.g. ROC curve) have
been obtained for both scenarios and all examined
methods as shown in Figure (4). This figure shows the
superiority of the proposed method compared to other
four examined algorithms. For better interpretation of
results, P, =5% and P, =90% were considered as

typical acceptable values for false detection and
detection probabilities and Table 2 was constructed
from Figure (4). The performance of algorithms may be
compared using other arbitrary thresholds for acceptable

P, and P, by using Figure (4) in the same manner.

As shown in Table 2, the proposed algorithm has
achieved detection rates of 19%, 24%, 28% and 42%
better than ETA, MRL, RBRD and HTA methods
respectively, versus 5% of false detection. Also, this
table shows that the detection rate of the proposed
algorithm reaches 90% without any false detection, that
is 20% ,35% , 40% and 45% better than false alarm
values which have been obtained for MRL, RBRD and
HTA for the same detection rate.

TABLE 1. Specifications of examined minirhizotron images
and roots

Specification of Specification of

Tmages Value Roots Value
Number of tested 100 Plant Specics Magnolia
images frames p and Peach
Min and Max 60,490
0, >
Average contrast 19% length of roots pixels
Frame size 480*640 Min and Max 12,33
(pixels) pixels width of roots pixels
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The Main Image Result of Histogram Thresholding Algorithm in Root Detection

(a) (b)

Result of the Entropy Thresholding Algorithm in Root Detection Result of the Proposed Method in Root Detection

(© (d)

Figure 1. (a) - A One-Root hand-labeled minirhizotron image and detection results of (b) - HTA , (c)- ETA and (d)-The Proposed
Algorithm

The Main Image Result of Histogram Thres holding Algorithm in Root Detection
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Result of the Entropy Thresholding Algorithm in Root Detection Result of the Proposed Method in Root Detection

© (d)

Figure 2. (a) - A Two-Root hand-labeled minirhizotron image and detection results of (b) - HTA ,(c)- ETA and (d)-The Proposed
Algorithm

The Main Image Result of Histogram Thresholding Algorithm in Root Detection
(2) (b)
Result of the Entropy Thresholding Algorithm in Root Detection Result of the Proposed Method in Root Detection

© (d)

Figure 3. (a) - A No-Root hand-labeled minirhizotron image and detection results of (b)- HTA , (c)- ETA and (d)-The Proposed
Algorithm
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Comparison of ROC Curwes Obtained for Three Examined Algorithms

T | |
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Figure 4. ROC curves obtained for the proposed (solid line-blue), ETA (dashed line-red), MRL (square line- magenta), RBRD

(square -cyan) and HTA (dotted- black) algorithms

TABLE 2. Comparison of the performances of examined
algorithms

Parameters
Examined Methods
P, P,

Proposed 0.95 0
ETA 0.76 0.2
MRL 0.71 0.35
RBRD 0.67 0.40
HTA 0.53 0.45

5. CONCLUDING REMARKS

In this paper a new method was introduced for
automated root detection in minirhizotron images. The
proposed method first modeled the dependence of each
pixel to root or background in the hypothesis testing
framework. Then, the correct hypotheses was
determined by minimizing the energy function of an
entropy-based geometric level set model.

To evaluate the performance of the proposed
algorithm, two scenarios were considered based on real
captured images which may or may not contain different
roots. The performance of the proposed algorithm was
compared with ETA, MRL, RBRD and HTA in terms of
detection and false alarm rates. Numerical comparison
showed better performance of the proposed algorithm in

root detection compared to the other. From the
inspection of the ROC curves, it was observed that the
proposed algorithm has extracted roots at least 19%
more than the best of all the other examined methods in
presence of a typically low false detection rate equal to
5%. Furthermore, it was shown that false detection rate
of the proposed algorithm was at least 20% less than the
best of other examined methods considering the
minimum acceptable detection rate of 90%. These
results demonstrated that better root detection capability
obtained by the proposed algorithm not only has not
increased false detections, but has improved false alarm
rate instead. Consequently, it can be concluded that the
proposed method may be used as a suitable alternative
for detecting roots in minirhizotron images which have
poor contrast and low SNR.
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