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NOMENCLATURE
P Href Reference partial pressure of hydrogen Hy04 out Purged water mass flow rate
F 0, ref Reference partial pressure of oxygen 0y in Inlet mass flow rate of oxygen into the cathode
Py 2 Partial pressure of hydrogen Nain Inlet mass flow rate of nitrogen into the cathode
PHZOA Partial pressure of water in anode side 05 used Reacted mass flow rate of oxygen
P02 Partial pressure of oxygen O, out Outlet flow rate of oxygen
PNZ Partial pressure of nitrogen N out Outlet flow rate of nitrogen
P, H,0 Partial pressure of water in cathode side HyO¢ produced~ Reacted water mass flow rate
Hy i Inlet mass flow rate of hydrogen Hy0c iy Water mass flow rate into the cathode
Hy sed Reacted mass flow rate of hydrogen Hy0c out Water mass flow rate out
Hy out Outlet flow rate of hydrogen Hy0 br Water flow rate across membrane
HyO4 jn  Water mass flow rate into the anode T Convergence time of any trajectory
Hy0 e Water flow rate across membrane Tu £ Uniform convergence time
51 Sliding surface T,, Finite time of compact set
52 Derivative of sliding surface Q Positive definite matrix
Umax Maximum value of control signal P Symmetric and positive definite matrix
Am>%ys  Controller parameter A AP Maximum Eigen value of P matrix
o Positive constant for Lyapunov function Anin P} Minimum Eigen value of P matrix
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1. INTRODUCTION

A fuel cell (FC) is an electrochemical energy resource
to convert chemical energy into electrical and thermal
energy. There are types of fuel cells which can generate
electrical power ranging from mW to MW [1].
Efficiency of PEM fuel cells operation is dependent on
the control mechanism. This justifies studying new
alternatives control specifically of the higher order.
Investigating and implementing advanced controllers
may significantly improve PEM fuel cells efficiency
and lifetime. This needs for a proper PEMFC model in a
multi-input multi-output (MIMO) representation. A
small signal model was primarily developed by Lu-Ying
Chiu in 2004 through linearization about the operating
point. Due to wide range and variety of disturbance a
linear control is failed to provide a satisfactory
performance[2] . Purkrushpan et al. [3-5] derived a
PEMFC model to consider flow characteristics,
dynamics of the compressor, manifold (anode and
cathode), reactant partial pressures and membrane
humidity. The linear model of PEMFC is obtained
through a Jacobean linearization using a Taylor series
expansion at a nominal operating point. In addition to
uncertainties in parametric coefficients for each cell on
kinetic and  electrochemical foundations, the
linearization technique also produces another kind of
uncertainty. Accordingly, in some control applications
e.g. in sensor-less based one, the model may be
insufficient. Furthermore, it fails to achieve a
satisfactory performance under large disturbances.

W. K. Na and the colleagues in [6, 7] presented a
nonlinear controller for their nonlinear model.

Simulation studies showed performance of the
proposed nonlinear control with respect to that of linear.
However, the proposed nonlinear controller could not
guarantee the robustness against operational parametric
uncertainties.

An H_ robust control based on feedback

linearization technique is suggested to regulate anode
and cathode sides pressure[8]. This technique provided
better transient responses whilst guaranteeing a stable
operation for the system. Recently, Winston Garcia-
Gabin and co-workers in [9] proposed a robust control
approach through a sliding mode control to control the
oxygen excess ratio. Since this important factor is
regulated via compressor input voltage, any fluctuation
in the input signal causes an immediate fluctuation on
the stoichiometry regime which degrades the overall
performance of the stack. Meanwhile, pressure drop at
two sides of the membrane should be kept less than a
critical value depending on the employed material
(usually less than 500 mbars). Therefore, the fluctuation
may generate physical damage on the membrane
between the anode and the cathode. These constraints
motivated researchers to design high order sliding mode

instead of normal one i.e. SMC. This includes a robust
control of air feed motor-compressor of PEMFC which
is addressed in [10-13]. Talj et al. [10, 11] developed a
robust controller based on high order sliding mode to
regulate the oxygen excess ratio of fuel cell through a
turbo compressor. A super twisting algorithm (STA) has
been used to stabilize the system against chattering in
[12,13].

The super twisting algorithm usage was raised from
distinct robust features of the sliding mode techniques.
This STA provides a control signal smoother with
respect to the standard first-order sliding mode.
Laghrouche and Matraji designed (in 2010) and applied
(in 2012) a higher order sliding mode robust controller
to regulate sides’ pressure of Membrane Electrode
Assembly (MEA). In this report, derivative terms of the
sliding surface is provided by the Levant differentiator.
However, there is no estimation of the convergence time
of the used differentiator towards the surface given [14,
15].

An aim is to control anode and cathode pressure
such that the pressure dropap of MEA is stabilized.
This, subsequently, reduces sudden pressures exerted to
MEA and increases the life time. In the present study, a
second-order sliding mode controller (SOSMC) with
twisting algorithm will be used. However, this HOSM
controller needs availability of higher-order derivatives
of sliding variable. Lack of instant derivatives of sliding
variables §,S,...§ is a major problem to implement
HOSM controller. Theoretical differentiator is sensitive
to the output and the sliding surface noise. An efficient
recursive structure differentiator is proposed by Levant
[16, 17] which is continued to be developed by Usai et
al. [18] by presenting a sub-optimal based one.

These differentiators construct derivatives of the
sliding variables. Since the estimation will be used in a
control topology, the action time of the controller has be
known in advance. However, this is a drawback of that
differentiator when they offer no estimation of the
convergence time.

1. 1. MAIN Contribution In the current research, a
step by step algorithm is proposed to design the
differentiator. Furthermore, a Lyapunov function is
candidate to proof of the convergence as well as making
the estimation of the convergence time possible.

The designed differentiator is used within a second
order sliding mode controller based on twisting
algorithm. The performance of the proposed procedure
is verified when it is used to minimize deviations
between the hydrogen and oxygen partial pressures in a
PEMFC.

Indeed controller needs information about the time
derivative of the sliding manifold §. Accordingly a
second order sliding mode controller in combination
with a routine procedure of differentiator as an output-
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feedback controller is designed. This procedure uses a
second order sliding mode to estimate successive
derivatives of the measured error signal up to n—I order.
An overall configuration is as shown in Figure 1.
Another novelty is determining the estimation time of
derivatives i.e. finite time convergence is guaranteed.
This facility allows the designer to sufficiently apply a
controller when this time ends. This makes the whole
system stabilized in a finite time. Strong Lyapunov
functions for super-twisting algorithms have also been
presented. In this approach the necessary laws to
candidate designing Lyapunov function are presented.
The presented Lyapunov function is synthesized for
uniform convergence to origin and also estimation of
finite time convergence. Finally, the waiting and
elapsed time for estimation of derivatives have been
determined. Indeed, the proposed technique offers the
following benefits:

1. The controller works in a wide range of the operating
range of the fuel cell without restriction to a particular
linearized operation point.

2. It is found robust against uncertainty and in noisy
circumstances with respect to other traditional
alternatives.

3. Anode and cathode pressure is controlled using a
systematic super twisting differentiator which makes a
prior estimation of the convergence time possible.

4. Fast enough with respect to the Levant differentiator
and also others works [14, 15].

The paper is organized as follows:

Section 2 introduces a model for PEMFC. In Section 3

second order sliding mode controller is described.

Furthermore, a higher order sliding mode controller is

design in this section. Section 4, presents a step by step

differentiator as a systematic approach. Simulation
results and comparative study of second order sliding
mode control with respect to other controllers of its kind
is presented in Section 5. Finally, a conclusion closes
the work in Section 6.

2. NONLINEAR DYNAMIC MODEL OF PEM FUEL
CELL

This study mainly is a nonlinear control of pressure of
anode and cathode gases of a specific PEMFC model.

Load current = disturbance

+ -
H,ref Step by Step (;I'witstill':g
Dif i ontroller
5

Figure 1. Proposed control structure

Accordingly, a nonlinear state space model of PEM fuel
cell is developed. Partial pressure of hydrogen, oxygen,
nitrogen and vapor on both electrodes in the PEM fuel
cell system are theoretically derived. These are chosen
as five states; gas (moist hydrogen) in anode and gases
(oxygen, nitrogen and vapor) in cathode, namely

[Py, Pri.o, Po, Px, P01 The following assumptions are

made to construct a model for PEM FC.

1-The amount of nitrogen in the cathode is constant
whilst the required oxygen flow rate is determined by
the nitrogen-oxygen flow ratio (79/21).

2-The stack temperature is kept constant atgoec [6, 7].

2. 2. The Anode and Cathode Pressure Model
According to the ideal gas principal and mole
conservation rule, partial pressure of each gas is
balanced by the gas inlet flow rate minus the gas
consumption and the gas outlet flow rate as given by [3,
5-7]:

dP,, RT

d_tzsz(Hzin _HZILSOd_HZOUX) (1)
dPyyo RT

TA :V_A(HZOAin -H,0, out 7H20mbr) (2)

where | Py Pyo. ] is partial pressure of hydrogen and

water in the anode side respectively, 2 i» the inlet mass
flow rate of hydrogen, H, , the reacted mass flow rate

of hydrogen, H,  the outlet flow rate of hydrogen ,

H,0, . the water mass flow rate into the anode, H,0

27 mbr

the water flow rate across membrane, and po, = the

A out

purged water mass flow rate. State equations on the
anode side are also given as:

dP,  RT N N P

-= Y, U K Ay, —— 1, -(U, K Ay —— [/L-)$] (3)
a v, " > 2F > 2F “p 4P,
dP, P
s RTj—2h k2,
dt VA Py, +PHO 7§0an< :
2 204 s
. (4)
H,0
7(UaKa)'H2 7C2’fc)P +2 4 -C,1,)]
Hy Hy0 5
Cathode mole conservation implies [3, 5-7]:
dP,, _RT
2= 0, =0,0ea = Osou
20,01 ~0) )
dPy, RT
2= N,,-N, out
gt~y Nan = Naw) (0)
dPH,o RT
d; <= % (Hzor it Hzoc produced Hzoc o T Hzombr) (7)
c
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where [P, Py, Puso. ] AT partial pressures of oxygen,

nitrogen and water in the cathode side respectively,
[0, N, ] are inlet mass flow rate of oxygen and

nitrogen into the cathode, O,, , is reacted mass flow

2in

rate of oxygen, [0, N are outlet flow rate of

2out 2 our]

is the reacted water

oxygen and nitrogen, y.o., .

mass flow rate, (n,0., n,0.,,1 are the water mass flow
rate into the cathode and out the cathode, H,0,,, is the

water flow rate across membrane. Similarly, state
equations on the cathode side are expressed as:

dP, RT N N F,

=Y, U Ko Ay —— L U K Ay —— 1) ———————] (8)
a v, 4F 4F ©P +P 4P,
Py, _RT Yy Udc Ko 2y —(Up Ko 2y = )
=, UnYe Be i — e Be A
dt Ve 2 Py, + Py, + Py
dPy RT P
= = P n Uc K¢ Ay +Ci 1,
dt Ve Po, + Py, + Py, —0c P
., (10)
H,0,
—(U. K A, +C I, +CL L) - +C,1,)
Py, +Pyo. + Py,

In the following a general MIMO nonlinear state
space representation incorporating disturbance is
developed:

X=f(x)+g,(x)u, +g,(x)u, + p(x)d
y =h,(x) 1mn
¥, =h,(x)

>

>

>

PH2
2 Pio
i o U, MEERS 7hl(X)7PH2
o e S P e N e B
PN2

5 P

HyOc

>

where xR’ is the system state, U the input vector, ythe
output vector, and f{x) and g(x) are n-dimensional
smooth vector fields. d represents the disturbance
variables whilst stack current is considered as a
measurable disturbance (d=I). Vector P(x) is
coefficient of disturbance.

f(x)=0,d=1I, (13)
kaYH2 k X, 1
v, 7V7Ax,+x2
k, ¢, P, k, x
g;("):RT}‘H2 VA(X]‘FXE*(paRﬁ)iZX]‘FXE (14)
0
0
L 0 J

0

0
cho2 k, X
Ve _z Xy+ X, + X
kY., k. x, (15)
v, Vv,

k. oc P, k X

c 5

3

2,(x)=RTA,

Vo x5+ x,+X;

_VF(x3+x4+x5—¢F Pm) Ve X3+ X, + X |

G, G
V, V,(x +x,)

C,x, C,

V, (x,+x,) _Z
P(x)=RT C C x, (16)
_ZVF 2V (x; +Xx,+Xx5)

0

C, C, x; C, xg

c,
L Ve Velxg+x,+x) Vo(xg+x,+x5) V|

3. BASIC CONCEPTS OF HIGH ORDER SLIDING
MODE CONTROL

This technique is used to provide a robust control under
uncertainties in parameters and unknown perturbations.
The first step in SMC is to define a sliding surface s

such that the process slides to its desired value. In fact,
the sliding surface represents the system behavior
during the transient period. In the standard SMC, term
S(t)is discontinuous. This is the main reason why high

frequency switching appears in the output signal
(chattering effect). In order to avoid chattering, a high
order sliding mode control (HOSMC) may be used [17,
19-21].  HOSMC acts in terms of higher order time
derivative of the system, instead of using a first
derivative of deviation as in SMC.

3. 1. Control Objective and Sliding Surface  The
first stage to design a nonlinear SOSM based control
system is to reformulate the model according to the
requirements of the SOSM design procedure. A control
objective will be established and accordingly a sliding
surface is defined in second stage. The objective is to
control hydrogen and oxygen partial pressures to avoid
unwanted pressure fluctuations. This protects MEA
from collapsing by minimizing the pressure drop AP,
between the anode and the cathode, even under different
load conditions. The control objective is expressed as
follows:

Sl(x>t):PH27PH2ret‘ > Sz(xﬁ):Poz*Pozref (17)
where S (x,t) and s,(x,r) are the sliding variables that
must be steered to zero and Puyer> Fo,r  are the

hydrogen partial pressure and oxygen partial pressure
reference, respectively. The sliding variable S has a
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vector of relative degree of one with respect to the
control inputu . Consider a single-input single-output
nonlinear system:

X=f(x)+gx)u , y=S(x,t) (18)
where x € " as state variable and y < denotes input,
such that {lxi|<xi'MAX’1gjgn} and {Ju| Sy} -
Functions f, g are smooth uncertain functions, S(x,r) is
an output function or sliding variable.

3. 1. 1. Definition 1. [22, 23] Given the sliding
variable S(x,t), its “second order sliding manifold” is

defined by:

§? ={S(x,0)=S(x,1) =0} (19)
In order to establish sliding mode on this manifold, a
control problem is to force S(x,t)and S(x,t)to zero, by
applying a discontinuous control onS(x,t). Since the

relative degree is found one with respect to the sliding
variable, they are expressed as:

S:ai[S].[f(X)+g(x).u]
X

§=2[s][r aNTE 20
767)([ ][ (x)+g(x).u]+5[S].u7(0(X,u,t)+y(x,u,t).v

where discontinuous control is applied on y =, while
system (17) is controlled by u.¢(x,u,t) and y(x,u,t) for

the PEMFC systems are smooth functions to force S to
zero in finite time. It is also supposed that:

©>0, |(p(t,x,u)|§CU, 0<I <y(t,x,u)<T -

According to local coordinate (5 ;v [s.8] then a

second order sliding mode problem in (20) becomes
finite time stabile for the following uncertain second
order system:

5.‘ % @1
S, = (x,u,t)+y(x,u,t).v
3. 2. Twisting Algorithm There are several
algorithms which ensure finite time stabilization of
system (21). Twisting algorithm [19, 22, 24] belongs to
class of second order sliding mode when the relative
degree is two. This means that trajectories Sand s
converge to the origin in finite number of rotations.
This algorithm is defined by the following control law
[19, 22, 24], where u,;,, is an allowable maximum value
of u:

—u if abs(u)>u,,
if 66,<0 and abs(u)<u,, (22)
if 66,>0 and abs(u)<u,,

m

-, sign(,)

v =1-a, sign(5,)

Corresponding, sufficient conditions to achieve a finite
time convergence to the sliding manifold § is given by
Levant 1993 [22] as:

oc>£
" K

m

O<a, <oy, K,.a,-C>K, .a,+C (23)

It is seen that control law (22) needs information of
[5, ,52]7{55 S‘}Twhich requires information about the

time derivative of the sliding manifolds .

4. STEP BY STEP
DIFFERENTIATOR

SUPER TWISTING

In order to implement the controller in (22), a first time
derivative of output error (sliding surface) is required.
However, it can be estimated in a finite time by using a
second order universal sliding differentiator. A first kind
of robust discontinuous differentiators is extensively
investigated [16, 17]. Levant in 1998 and 2003 showed
that the super twisting differentiator is robust and
accurate and a finite time convergent one. The idea
behind the routine designed differentiator was first
introduced by Usai et al. [18]. An algebraic
observability was used to synchronize chaos by using a
suboptimal algorithm. As a restriction, this algorithm
needs a peak holder which is hard in implementation.
Furthermore, the algorithm offers no estimation of the
convergence time. However, the differentiator will be
developed here based on super twisting algorithm for
the first time. The idea includes a single super twisting
based differentiator to generate successive derivatives of
£ (t)signals in n-1 steps (Figure 2). Main advantage of
this design is a real-time and robust estimation of
f@, f¢t), ... and rmo¢ymade available. Functions

x,=f(t)> % =f(t)» x,=f() to x =f"() are base
signals of £ ) for n steps of differentiation according to

Equation (24). An aim is here to estimate signals
£@), f(t), ...andr () after a finite and predetermined

time.
X, =x, =1(t)

X, =x,=1f(t)

5 24
%, =x,=f""(@)

%, =" (t)

This technique uses super twisting algorithm together
with some extra injection terms as in the following
form:

£, |x, =%, |2 sign (x, - %,)
1
1
X, E [X,+A,|%, - X, |? sign (X, - X,)]
b3 1
S EIR, A, IR, =R, P osign (R, - %, )]
X" - l
| E, [0 +2,1%, - %, |* sign(%, - %,)] (25)
)e' ’Zz + ¢, (e| )
E,.[%, +¢,(e,)]
ESE =
20 B E + e, )]
E, [0+ ()]

In Equation (25), E, is:
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-if g =1 thenle; |=| X, - %, [<e
-if g, =0 then|e, |5 X, - X, |>€
where € is a small positive constant. It should be noted
thatg =0 indicates the error of that step is not

converging either eor zero. Therefore, jumping to the
next step to estimate next signal is not taken.
Alternatively, if E, =1, the estimation error of the signal

in that step reaches zero ore. Therefore, the process
proceeds to the next step for estimating the next signal.
In addition to proving stability through Lyapunov
function, additional terms are added to differentiators to
provide faster finite time. It will be shown that
convergence time is limited by a constant. These terms
are defined in functions of ¢ (¢)and ¢,(e)of

differentiator in (25). This is summarized in the
following form to indicate systematic procedure of
designing the differentiator with linear terms for
improving the convergence rate:

X;‘I =X, +k o)
X, =k, 0,(e)

1 (26)
o (e)=le, |* . sign(e) + u. e,

sign(e,) 3 L
¢,(e) =T'+ ue +EH'|€' [*. sign(e;)

By adding these linear terms in case X is far from the
origin, a more powerful force for attracting estimation
signals to the origin is generated. These terms work
well when the state Xis far from its estimated value (the
equilibrium points for the error). For , > ¢ super twisting

path converges to origin from x  after a finite time T. In

case these accelerating terms are added to the super
twisting algorithm, error dynamic equation becomes:
{él =-k,.p(e)+e,

€, =-k,.p,(e)—g,

e =%, —f(t),e, =%, @7
G =) &=f@, é=F@, |fo|<L
1
@1(61):‘61 |* . sign (el)+:u~ € (28)
sign (e, 3 L
%(el):%ﬂizﬁl +E:u"e| ‘2 . SIgn(el)

Figure 2. Step by step differentiator based on super twisting
algorithm

4. 2. Proof of Finite Time Convergence using the
Proposed Differentiator = Two Lyapunov functions
are candidate to achieve a uniform convergent when the
differentiator is used in the super twisting algorithm.
- Another function to converge in a finite time from any
compact set towards the origin in any path [Moreno].
- A Lyapunov function to converge in a finite time from
any arbitrary initial conditions into a compact set
including the origin.

A linear method to derive the Lyapunov function is
primarily proposed by Moreno in 2008 and 2009 [9,
10]. In this regard the time of convergence i.e. T, is

found by (29) to achieve the first derivative of f,(t).
However, in order to find time of providing the second
derivative £ () and appropriate time of convergence i.e.
T, ,another design of Lyapunov is needed. This

algorithm is proceeded until total time of convergence
of an n-order differentiator i.e. T, ,T, .and 1, is

€£2 Ea
achieved. Since the whole time for the differentiator is
limited by summation of those, finite time of
convergence is determined.

Theorem 1. [Moreno 25, 26] Super twisting
algorithm including additional terms in (27) and (28),

initiating from xin a finite time T, , converges to the
origin.

It should be noted that the time is assessed in the
following considering two cases , =oas a STA and =1

as STA together with additional terms:

1
V2(x,) if u=0

T. = 7:(Q)
.l 1
2 (2@ ya iy i ps0
7.(Q, 1) 7(Q) (29)
A A Lp A
M®:£%%j%Li,h@#F#f%%
Theorem 2.  Lyapunov function for Equations (27)

and (28) considering additional terms is presented in
(30) to ensure a uniform convergence of system (27)

and (28) in total time of convergence T, , as in (31).

V,(e)= %.k2.| e,|2 —e,.| ez|.sign(ez) +%.| ez|2 (30)

C 2C €
v(t)<v(0).exp(-——t) => ——2.In(—) =T, , (&,v,

2C, G Vo ! ( ( ) (31
Ve =¢
Total convergence time (r =T,, +T,,) is equal the
convergence time (r, ) to reach from any arbitrary initial

condition to a compact set and a convergence time
(T,,) within the compact set. As seen in Figure 3,

Equation (30) is always convex. Accordingly, it will be
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shown that function v,(e) is positive definite and the
derivative of v, (e)is negative definite (see Appendix A).

4. 2. Determination of Convergence Time, the N-
Step Super Twisting Differentiator Systematic
design finite time convergent differentiator will be
achieved as in the following:

First step (¢ =¢,.¢)—(0,0) in a finite time of 7. In second

step (¢=c,e)—x00); therefore, second differentiation
tends to the real one in a finite time of T,. Until ith

step: (& =¢,

i+l

e)—(0,0), and the convergence of the
differentiation to the real signal is achieved in T,.
Finally at (n-1)th step: (¢, =e e, ,)—(0,0), and the
convergence is achieved inT, . Accordingly, total time
of convergence is achieved by a summation over the

. . . . n-l
entire achieved time, i.e. 7— 3T

i=l

T_ILA)

st

0\ I L L L
0 25 5 75 10 12.5 15
Time(sec)

Figure 4. Load current variation profile

5. SIMULATION RESULTS

To verify the performance of the proposed control law
(22) in presence of model uncertainties, external
disturbances against in a wide range of current demand
several simulations studies are performed in
MATLAB™-Simulink environment. During the

simulation the temperature and the humidity of the
system are kept constant and ;=1 is set for the

differentiator. The rest of parameters are tuned
according to Table 1. The load disturbance is subjected
to a variation of current from 0A to 47A as shown in
Figure 4. Figures 5 and 6 display an absolute value of
the difference between partial pressures of hydrogen
and oxygen. Figure 5 uses a first order SMC to regulate
pressure difference of O, and H, whilst Figure 6
successfully gains the benefit of the twisting algorithm
in combination with the prescribed differentiator. From
these graphs one can see that the second order sliding
mode (SOSM) controller with differentiator in Figure 6
provides better response in terms of time indices, and of
course, chattering. The achieved results are addressed in
the following.

TABLE 1. Parameters in the fuel cell model

Parameter  Value and definition

N Cell number :35

R Universal gas constant [J/mol-k] : 8. 314[J/mol-K]
T Temperature of fuel cell[K]: 353[K]

F Faraday constant [C/mole] : 96485[C/mole]

a Charge transfer coefficient: 0. 5

m Constant in mass transfer voltage: 211x107 [V]

n Constant in mass transfer voltage: gx107> [cnZma™!
r Area specific resistance: 245x10™% [KQ sz]

Ap, Fuel cell active area: 232 [¢m?]

v, Anode volume: 0. 0053,

Ve Cathode volume: 0. 01 [m3]

kg Anode conversion factor : 7034104 [mol /5]

k¢ Cathode conversion factor : 703610~ [mol /5]

P The saturation pressure at the temperature 353[K] :
Vs 32 [KPa]

o, Oxygen initial mole fraction : 0. 21
Vi, Hydrogen initial mole fraction : 0. 99
N, Nitrogen initial mole fraction : 0. 79
Q. The relative humidity on cathode
o, The relative humidity on anode
A Air stoichiometry
le Hydrogen stoichiometry
U, Control input in anode side
U Control input in cathode side
C = Nz[:f‘ C, :1.2684.NTA&
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—Ap with SMC

Pressure difference (bar)

-

0 25 5 75 10 125 15
Time(sec)

Figure 5. Variation of the pressure difference of O, and H,
using a first order sliding mode controller
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Figure 6. Variation of the inlet pressure difference of O, and

H, using SOSM controller with differentiator
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Figure 7. Inlet hydrogen pressure with respect to desired level

(3 bar) using SMC controller
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Figure 8. Inlet hydrogen pressure with respect to desired level
(3bar) using SOSM controller with differentiator

5. 1. Chattering Analysis The second order sliding
mode controller provides similar robustness and

performance with respect to SMC (First order or
standard sliding mode), but without chattering.
Unfortunately, the inlet pressure difference of O, and H,
in Figure 5 shows chattering with high frequency which
is usually harmful to physical systems. In contrast, the
second order sliding mode with differentiator attenuated
the chattering phenomenon (Figure 6).

5. 2. Tracking Analysis Trajectories tracking of inlet
oxygen pressure in response to the reference pressure
are shown in Figures 7 and 8 using SMC and SOSM
controller with differentiator, respectively. Results are
found encouraging due to narrow band of the error in
Figure 8.

Figures 9 and 10 show the required control signals
against the load variations which are generated by SMC
and SOSM controller with differentiator respectively.
The hydrogen flow rate using SMC varies between 0
[slpm] to 15 [slpm], while the input signal in the second
controller causes the hydrogen flow rate to vary from 0
[slpm] to 3.5 [slpm]. It is observed that the hydrogen
flow rate in SMC has much more variations.
Furthermore, hydrogen consumption is more than that in
the case of the SOSM controller against the load
variation.

Figures in 11 show derivatives of the error during
estimations procedure, i.e. s, susing the proposed

differentiator. It is shown that the convergence speed of
estimation of the differentiator g gis provided in a

finite time of less than 0.24 second.

N
(=1

—control signal with SMC

-
o

Control signal with SMC
@ s

10 12.5 15

‘
00 25 7.5
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Figure 9. Control signal using SMC
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Figure 10. Control signal which is provided by SOSM
controller with differentiator
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Figure 12. Estimations of the surface differentiation by the
Levant differentiator
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Figure 13. The H, pressure signal of under noisy
circumstance

5. 3. Comparative Study of Super Twisting and
the Levant Differentiator Performance of the
proposed super twisting differentiator will be compared
with that of the Levant in terms of the time indices. The
convergence time of using the proposed differentiator is

fast as shown in Figure 11 i.e. 0.24 second with respect
to 3.8 seconds in the Levant's (Figure 12). Two linear
terms are added to the super twisting algorithm to
provide more convergence time together with more
robustness. This extra degree of freedom provides a
strong attraction force when states are far from the
origin. The further from the origin, the more forces are
acted by the added terms. Therefore, fast convergence
together with further robustness for wider range of
uncertainty is provided.

5. 4. Pressure Control using SOSM Controller with
Differentiator and Feedback Linearization
Technique wunder Noisy Circumstances: a
Comparative Study In order to investigate the
capability of the proposed configuration, a practical
instrumentation noise is added to the measurement.
Characteristic of the noisy data is seen in the following
table.

These noisy data are applied to states of hydrogen
pressure (x;), and oxygen pressure (x3). Before
simulation and as a practical treatment, data are passed
through a low pass 2nd-order Butterworth filter with 30
Hz cut off frequency. Thereafter, hydrogen pressure (x;)
is seen under noisy circumstances in Figure 13. The
outcome of using feedback linearization (Figure 14) is
compared with SOSM based twisting algorithm with
differentiator (Figure 15). From these graphs,
performance of the proposed controller SOSM
controller with differentiator is found satisfactory in
presence of noisy data. However, the SOSM controller
is more robust with respect to the feedback linearization
against the noise in the tracking duty.

TABLE 2. Statistics of the applied measurement noise

Mean . _ . -
—0.0023237 Variance=0.13362 Co-variance=0.0179
_ Signal/Noise(SNR) The Distribution:
PSD =0.22 =28 dB Gaussian
3.5 A
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—x, with feedback linearization , noisy condition|

n

Pressure signal X, (bar)
N
[3,]
.

-
LU
.

Y 25 5 75 10 125 15
Time(sec)
Figure 14. The H, pressure control under noisy situation using

feedback linearization technique
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Figure 15. The H, pressure control under noisy situation using
SOSM controller with differentiator
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In the following, control pressure difference (AP of x;
and x;) of oxygen and hydrogen using two techniques of
feedback linearization and SOSM will be shown.
Similar results are achieved confirming performance of
the SOSM with respect to the feedback linearization
when lower pressure oscillations are acted on two sides
of MEA.

6. CONCLUSION

High order sliding mode controller keeps ap in a lower
range to protect the membrane from damage. , ,
Therefore, it prolongs the life of the fuel cell stack. A
pressure control technique for PEMFC was designed in

this paper. An analytical study is given to proof the
validity of the finite time convergence. Significance of
the proposed controller is shown through numerical
simulation. Performance of the control is also
investigated in presence of external disturbance. Super
Twisting algorithm is found to have the following
advantages:

* It guarantees an extended range of operation, in spite
of the highly nonlinear nature of the plant.

* Robust against chattering.

* Structure of the algorithm is routine and feasible.
Furthermore, a differentiator was introduced to provide
a finite time convergence. This permits the controller to
take part quickly, as soon as the differentiator
reconstructs the necessary state(s). Performance of the
super twisting algorithm and also with combination of
the proposed differentiator is shown through simulation.
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Appendix A

Lemma 1.

For real numbers a>0,b>0,¢>0, p>1,g>1 , concerning

1,1_,, the following inequality is held:
p q

(A. 1)

A. 1 Proof of Theorem 1. (i) It is primarily shown
that v, (e) is positive definite. Applying Young’s (A. 1)

inequalities to v, () in (30), yields:

2 -2
V,(e) 2%.k2.| el|2 +%.| ez|2 7[}/—;|el|2 +y‘7| ez|2j (A.2)

A simple factorization implieS'
g _ 7’1 )l ezl
In order to make V, (e) posmve, it is necessary to have:

z.k,fy—r >0
2 72 712

= o>l o>y7 :o>{y‘ y[z}
o Vy >0 k,
2 2
It expresses a bound to make the positivity of the
Lyapunov candidate v, () valid.

2
(o) Y 2
V,(e)= (E.k2 ‘_é)'| el +

(ii) Here, it is shown that the derivative of v, ()along
with the trajectories of (27) and (28) becomes negative.

V,(e)= (0’.kz.e,.eZ +k,.pu.e.e, —G.kz.yz.ez.e,)

(kL) ")

i sign (el) ) )
okyey—s——mert g 064 4
T 7 ExtraTerm Extra Term

A use of the inequality (A.1), assuming v, > ¢ yields:

—|61||62|< |6| + |ezl p=2,q=2

(A. 4)

3

2 3
‘6‘2+—}/‘2‘€2‘ p= 3 q==

sea F Jef <t 1ef :

Therefore, the Lyapunov function is bounded by the
following norm:
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3 3
Vi@ <=Cpfel-Br-le P +Ba-les [P +Cs e

. C C 28, L 2C
=0 Sl - S 2o - 2 . 9)
C,=min{a,,a,}

C, :max{Bg,BA}
where:

a :[_(kz#2 _cb'.k,.kz-,u)—(0'.1(2 +k1-,u—0'.k2,u2)'%]

1

2

a, [[1 ~(ok, + ko —G-kz-#z)%z] (A. 6)

Bi=
2 3 =2 k
ﬁzzg'kl'ysz —uok,y,’ ’ﬁsz(?*’g]’ﬂ::c(gl —kz),g:L

A solution of the differential Equation (A. 5) is given
by:

G v G

=>v)<- vi) 2.C,

vers-Sef

v(t)=>

31n(v(l))£—f—é43v(l)£v(0).exp(—;—c“A. t) (A~ 7)

2C,

= V(I)SV(O).CXP(—%. t) = t(ev,)<- .ln(Vi)
Ly 0

1

vV, =¢

This confirms that system (27) and (28) forces the error
states to get in the level set{e|vz(e)<g} in a time less

than t(e.v,)-
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