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A B S T R A C T  
   

This paper presents a systematic approach to design a Lyapunov based super twisting differentiator. 
The differentiator will be shown convergent in a finite time whilst the relevant time is accurately 
estimated.  This differentiator is the main part to establish the sliding surface in higher order sliding 
mode. The differentiator is used in the prescribed control structure to regulate pressures of hydrogen 
and oxygen of a nonlinear Polymer Electrolyte Membrane Fuel Cells (PEMFCs) to prolong the stack 
life. The aim of the control strategy is to minimize and keep the deviation between the pressures of 
hydrogen and oxygen. The deviation forms a sliding surface, where its appropriate differentiation is 
required in the control law. It is the reason for reconstructing finite time derivatives in a closed-loop 
control.  Finally, simulation result and a comparative study verify the performance of the proposed 
differentiator and the control structure to provide convergent estimator in finite time. 
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NOMENCLATURE   

2
PH ref

 
Reference partial pressure of hydrogen  2H OA out  Purged water mass flow rate 

2
PO ref

 
 Reference partial pressure of oxygen 2O in  Inlet mass flow rate of oxygen into the cathode 

2
PH

 
Partial pressure of hydrogen 2N in  Inlet mass flow rate of nitrogen into the cathode 

2
PH OA

 
Partial pressure of water in anode side 2O used  Reacted mass flow rate of oxygen 

2
PO

 
Partial pressure of oxygen 2O out

 
Outlet flow rate of oxygen 

2
PN

 
Partial pressure of nitrogen 2N out  Outlet flow rate of nitrogen 

2
PH OC

 
Partial pressure of water in cathode side 2H OC produced

 
Reacted water mass flow rate 

2H in
 

Inlet mass flow rate of hydrogen 2H OC in  Water mass flow rate into the cathode 

2H used
 

Reacted mass flow rate of hydrogen 2H OC out  Water mass flow rate out  

2H out  Outlet flow rate of hydrogen 2H Ombr  Water flow rate across membrane 

2H OA in  Water mass flow rate into the anode T  Convergence time of any trajectory 

2H Ombr  Water flow rate across membrane u fT
 

Uniform convergence time 

1δ  Sliding surface .f tT  Finite  time of compact set 

2δ  Derivative of sliding surface Q  Positive definite matrix 

maxu  Maximum value of control signal P  Symmetric and positive definite matrix 
,m Mα α  

Controller parameter { }max
Pλ

 
Maximum Eigen value of P matrix 

σ  Positive constant for Lyapunov function { }min Pλ
 Minimum Eigen value of P matrix 
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1. INTRODUCTION 
 
A fuel cell (FC) is an electrochemical energy resource 
to convert chemical energy into electrical and thermal 
energy.  There are types of fuel cells which can generate 
electrical power ranging from mW to MW [1]. 
Efficiency of PEM fuel cells operation is dependent on 
the control mechanism. This justifies studying new 
alternatives control specifically of the higher order. 
Investigating and implementing advanced controllers 
may significantly improve PEM fuel cells efficiency 
and lifetime. This needs for a proper PEMFC model in a 
multi-input multi-output (MIMO) representation. A 
small signal model was primarily developed by Lu-Ying 
Chiu in 2004 through linearization about the operating 
point. Due to wide range and variety of disturbance a 
linear control is failed to provide a satisfactory 
performance[2] . Purkrushpan et al. [3-5] derived a 
PEMFC model to consider flow characteristics, 
dynamics of the compressor, manifold (anode and 
cathode), reactant partial pressures and membrane 
humidity. The linear model of PEMFC is obtained 
through a Jacobean linearization using a Taylor series 
expansion at a nominal operating point.  In addition to 
uncertainties in parametric coefficients for each cell on 
kinetic and electrochemical foundations, the 
linearization technique also produces another kind of 
uncertainty. Accordingly, in some control applications 
e.g. in sensor-less based one, the model may be 
insufficient. Furthermore, it fails to achieve a 
satisfactory performance under large disturbances.  

W. K. Na and the colleagues in [6, 7] presented a 
nonlinear controller for their nonlinear model.  

Simulation studies showed performance of the 
proposed nonlinear control with respect to that of linear. 
However, the proposed nonlinear controller could not 
guarantee the robustness against operational parametric 
uncertainties. 

An H ∞  robust control based on feedback 
linearization technique is suggested to regulate anode 
and cathode sides pressure[8]. This technique provided 
better transient responses whilst guaranteeing a stable 
operation for the system. Recently, Winston Garcia-
Gabin and co-workers in [9] proposed a robust control 
approach  through a sliding mode control to control the 
oxygen excess ratio.  Since this important factor is 
regulated via compressor input voltage, any fluctuation 
in the input signal causes an immediate fluctuation on 
the stoichiometry regime which degrades the overall 
performance of the stack. Meanwhile, pressure drop at 
two sides of the membrane should be kept less than a 
critical value depending on the employed material 
(usually less than 500 mbars). Therefore, the fluctuation 
may generate physical damage on the membrane 
between the anode and the cathode. These constraints 
motivated researchers to design high order sliding mode 

instead of normal one i.e. SMC. This includes a robust 
control of air feed motor-compressor of PEMFC which 
is addressed in [10-13]. Talj et al. [10, 11] developed a 
robust controller based on high order sliding mode to 
regulate the oxygen excess ratio of fuel cell through a 
turbo compressor. A super twisting algorithm (STA) has 
been used to stabilize the system against chattering in 
[12, 13].   

The super twisting algorithm usage was raised from 
distinct robust features of the sliding mode techniques. 
This STA provides a control signal smoother with 
respect to the standard first-order sliding mode. 
Laghrouche and Matraji designed (in 2010) and applied 
(in 2012) a higher order sliding mode robust controller 
to regulate sides’ pressure of Membrane Electrode 
Assembly (MEA). In this report, derivative terms of the 
sliding surface is provided by the Levant differentiator. 
However, there is no estimation of the convergence time 
of the used differentiator towards the surface given [14, 
15].  

An aim is to control anode and cathode pressure 
such that the pressure drop P∆ of MEA is stabilized. 
This, subsequently, reduces sudden pressures exerted to 
MEA and increases the life time. In the present study, a 
second-order sliding mode controller (SOSMC) with 
twisting algorithm will be used. However, this HOSM 
controller needs availability of higher-order derivatives 
of sliding variable. Lack of instant derivatives of sliding 
variables ( ), ,..., rS S S&  is a major problem to implement 
HOSM controller. Theoretical differentiator is sensitive 
to the output and the sliding surface noise. An efficient 
recursive structure differentiator is proposed by Levant 
[16, 17]  which is continued to be developed by Usai et 
al. [18] by presenting a sub-optimal based one.  

These differentiators construct derivatives of the 
sliding variables. Since the estimation will be used in a 
control topology, the action time of the controller has be 
known in advance. However, this is a drawback of that 
differentiator when they offer no estimation of the 
convergence time. 

 
1. 1. MAIN Contribution      In the current research, a 
step by step algorithm is proposed to design the 
differentiator. Furthermore, a Lyapunov function is 
candidate to proof of the convergence as well as making 
the estimation of the convergence time possible.  

The designed differentiator is used within a second 
order sliding mode controller based on twisting 
algorithm. The performance of the proposed procedure 
is verified when it is used to minimize deviations 
between the hydrogen and oxygen partial pressures in a 
PEMFC.  

Indeed controller needs information about the time 
derivative of the sliding manifold  S . Accordingly a 
second order sliding mode controller in combination 
with a routine procedure of differentiator as an output-
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feedback controller is designed.  This procedure uses a 
second order sliding mode to estimate successive 
derivatives of the measured error signal up to n–1 order.  
An overall configuration is as shown in Figure 1. 
Another novelty is determining the estimation time of 
derivatives i.e. finite time convergence is guaranteed. 
This facility allows the designer to sufficiently apply a 
controller when this time ends. This makes the whole 
system stabilized in a finite time. Strong Lyapunov 
functions for super-twisting algorithms have also been 
presented.  In this approach the necessary laws to 
candidate designing Lyapunov function are presented.  
The presented Lyapunov function is synthesized for 
uniform convergence to origin and also estimation of 
finite time convergence. Finally, the waiting and 
elapsed time for estimation of derivatives have been 
determined. Indeed, the proposed technique offers the 
following benefits: 
1. The controller works in a wide range of the operating 

range of the fuel cell without restriction to a particular 
linearized operation point.  

2. It is found robust against uncertainty and in noisy 
circumstances with respect to other traditional 
alternatives.  

3. Anode and cathode pressure is controlled using a 
systematic super twisting differentiator which makes a 
prior estimation of the convergence time possible. 

4. Fast enough with respect to the Levant differentiator 
and also others works [14, 15]. 

The paper is organized as follows:  
Section 2 introduces a model for PEMFC. In Section 3 
second order sliding mode controller is described. 
Furthermore, a higher order sliding mode controller is 
design in this section. Section 4, presents a step by step 
differentiator as a systematic approach. Simulation 
results and comparative study of second order sliding 
mode control with respect to other controllers of its kind 
is presented in Section 5. Finally, a conclusion closes 
the work in Section 6. 
 
 
2. NONLINEAR DYNAMIC MODEL OF PEM FUEL 
CELL 
 
This study mainly is a nonlinear control of pressure of 
anode and cathode gases of a specific PEMFC model. 
 
 

 
1y

 
1,y ref

 
1S

 

1S&

 

1u&
 

1v

 
Figure 1. Proposed control structure 

Accordingly, a nonlinear state space model of PEM fuel 
cell is developed.  Partial pressure of hydrogen, oxygen, 
nitrogen and vapor on both electrodes in the PEM fuel 
cell system are theoretically derived.  These are chosen 
as five states; gas (moist hydrogen) in anode and gases 
(oxygen, nitrogen and vapor) in cathode, namely

2 2 2 2 2
[ ]

A CH H O O N H OP P P P P . The following assumptions are 
made to construct a model for PEM FC. 
1-The amount of nitrogen in the cathode is constant 
whilst the required oxygen flow rate is determined by 
the nitrogen-oxygen flow ratio (79/21).   
2-The stack temperature is kept constant at80 C° [6, 7]. 
 
2. 2. The Anode and Cathode Pressure Model    
According to the ideal gas principal and mole 
conservation rule, partial pressure of each gas is 
balanced by the gas inlet flow rate minus the gas 
consumption and the gas outlet flow rate as given by [3, 
5-7]:  

(1) 2
2 2 2( )H

in used out
A

dP RT H H H
dt V

= − −  

(2) 2
2 2 2( )H OA

Ain A out mbr
A

dP RT H O H O H O
dt V

= − −  

where 
2 2

[ ]H H OA
P P  is partial pressure of hydrogen and 

water in the anode side  respectively, 2H in  the inlet mass 
flow rate of hydrogen, 2 usedH  the reacted mass flow rate 

of hydrogen, 2outH  the outlet flow rate of hydrogen , 

2 A inH O  the water mass flow rate into the anode, 2 mbrH O  
the water flow rate across membrane, and 2 A outH O  the 
purged water mass flow rate.  State equations on the 
anode side are also given as: 

(3) 2 2

2 2 2
2 2

[ ( ) ]
2 2

H H
H a a H fc a a H fc

A H H O A

dP PRT N N
Y U K I U K I

dt V F F P P
λ λ= − − −

+
 

(4) 

2

2
2 2

2
2 22

2 2

[(

( ) )]

H O A a vs
a a H

H H O a vsA

H O A
a a H fc fc

H H O A

dP PRT U K
dt V P P PA

P
U K C I C I

P P

ϕ
λ

ϕ

λ

=
+ −

− − −
+

 

Cathode mole conservation implies [3, 5-7]: 

(5) 2
2 2 2( )O

in used out
C

dP RT O O O
dt V

= − −
 

(6) 2
2 2( )N

in out
C

dP RT N N
dt V

= −  

(7) 2
2 2 2 2( )

H O C
C in C produced C out mbr

C

dP RT H O H O H O H O
dt V

= + − +  
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where 
2 22

][ O N H OC
P P P  are partial pressures of oxygen, 

nitrogen and water in the cathode side respectively, 
2 2[ ]in inO N  are inlet mass flow rate of oxygen and 

nitrogen into the cathode, 
2 usedO  is reacted mass flow 

rate of oxygen, 
2 2[ ]out outO N  are outlet flow rate of 

oxygen and nitrogen, 
2 ProducedCH O  is the reacted water 

mass flow rate, 
2 2 ][ C in C outH O H O  are the water mass flow 

rate into the cathode and out the cathode, 2 mbrH O  is the 
water flow rate across membrane. Similarly, state 
equations on the cathode side are expressed as: 

(8) 2 2
2

2 2 2

[ ( ) ]
4 4

O O
O C C air fc C C air fc

C O N H OC

dP PRT N N
Y U K I U K I

dt V F F P P P
λ λ= − − −

+ +

 

(9) 2 2
2

2 2 2

[ ( ) ]N N
N C C air C C air

C O N H OC

dP PRT
Y U K U K

dt V P P P
λ λ= −

+ +

 

(10) 

2

1

2 2 2

2
1

2 2 2

2 2

(

( ) )

H O C C vs
C C air fc

C O H O N C vsC

H OC
C C air fc fc fc

O H O NC

dP PRT U K C I
dt V P P P P

P
U K C I C I C I

P P P

ϕ
λ

ϕ

λ

= +
+ + −

− + + +
+ +

 

In the following a general MIMO nonlinear state 
space representation incorporating disturbance is 
developed: 

(11) 
1 1 2 2

1 1

2 2

( ) ( ) ( ) ( )

( )

( )

x f x g x u g x u p x d

y h x

y h x

= + + +

=

=

&

 

(12) 

21

2 2
111 2

3 2
232 2

4 2

5
2

( )
, ,

( )

H

H O A
Ha

O
C O

N

H OC

Px
Px

Ph xxyU
x x P U

U Ph xxy
x P
x P

= = = = = =

                                            

 

where x∈ℝ5 is the system state, U the input vector, y the 
output vector, and f(x) and g(x) are n-dimensional 
smooth vector fields. d represents the disturbance 
variables whilst stack current is considered as a 
measurable disturbance (d=Ifc).  Vector P(x) is 
coefficient of disturbance.   

(13) ( ) 0 , fcf x d I= =

 

(14) 

2 1

1 2

1

1 2 1 2 1 2
( ) ( )

0
0
0

a H a

A A

a a vs a

H A a vs A

k Y k x
V V x x

k P k x
g x R T V x x P V x x

ϕ
λ ϕ

−
+

−
= + − +

 
 
 
 
 
 
 
 
 
 

 

(15) 

( )

32

3 4 5
2

2 4

3 4 5

5

3 4 5 3 4 5

0
0

( )

c O c

C C
air

c N c

C C

c C vs c

C C vs C

k Y k x
V V x x x

g x R T k Y k x
V V x x x

k P k x
V x x x P V x x x

λ

ϕ

ϕ

−
+ +

=

−
+ +

−
+ + − + +

 
 
 
 
 
 
 
 
 
 
 
   

(16) 

1 1 1

1 2

2 2 2

1 2

1 31

3 4 5

1 5 2 51 2

3 4 5 3 4 5

( )

( )

( )

2 2 ( )

( ) ( )

0

A A

A A

C C

C C C C

C C x
V V x x

C x C
V x x V

P x RT C xC
V V x x x

C x C xC C
V V x x x V x x x V

− +
+

−
+

=
− +

+ +

− − +
+ + + +

 
 
 
 
 
 
 
 
 
 
 
 
   

 
 
3. BASIC CONCEPTS OF HIGH ORDER SLIDING 
MODE CONTROL  

 
This technique is used to provide a robust control under 
uncertainties in parameters and unknown perturbations.   
The first step in SMC is to define a sliding surface ( )S t

such that the process slides to its desired value.  In fact, 
the sliding surface represents the system behavior 
during the transient period. In the standard SMC, term 

( )S t& is discontinuous.  This is the main reason why high 
frequency switching appears in the output signal 
(chattering effect). In order to avoid chattering, a high 
order sliding mode control (HOSMC) may be used [17, 
19-21].  HOSMC acts in terms of higher order time 
derivative of the system, instead of using a first 
derivative of deviation as in SMC.   
 
3. 1. Control Objective and Sliding Surface      The 
first stage to design a nonlinear SOSM based control 
system is to reformulate the model according to the 
requirements of the SOSM design procedure. A control 
objective will be established and accordingly a sliding 
surface is defined in second stage. The objective is to 
control hydrogen and oxygen partial pressures to avoid 
unwanted pressure fluctuations. This protects MEA 
from collapsing by minimizing the pressure drop P∆ , 
between the anode and the cathode, even under different 
load conditions.  The control objective is expressed as 
follows: 

(17) 1 2 22 2 2
( , ) , ( , )H refH O O refS x t P P S x t P P= − = −

 
where 1( , )S x t  and 2 ( , )S x t  are the sliding variables that 
must be steered to zero and 2 2

,H ref O refP P  are the 

hydrogen partial pressure and oxygen partial pressure 
reference, respectively. The sliding variable S has a 
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vector of relative degree of one with respect to the 
control inputu . Consider a single-input single-output 
nonlinear system: 

(18) ( ) ( ). , ( , )x f x g x u y S x t= + =&  

where nx ∈   as state variable and u ∈   denotes input, 
such that { }, ,1i i MAXx x i n< ≤ ≤  and { }MAXu u≤ . 
Functions ,f g are smooth uncertain functions, ( , )S x t  is 
an output function or sliding variable.  
 
3. 1. 1. Definition 1. [22, 23]      Given the sliding 
variable ( , )S x t , its “second order sliding manifold” is 
defined by: 

(19) { }2 ( , ) ( , ) 0S S x t S x t= = =&  

In order to establish sliding mode on this manifold, a 
control problem is to force ( , )S x t and ( , )S x t& to zero, by 
applying a discontinuous control on ( , )S x t&& . Since the 
relative degree is found one with respect to the sliding 
variable, they are expressed as: 

(20) 
[ ] [ ]

[ ]

. ( ) ( ).

. ( ) ( ). . ( , , ) ( , , ) .

S S f x g x u
x

S S f x g x u S u x u t x u t v
x u

ϕ γ

∂
= +

∂
∂ ∂   = + + = +   ∂ ∂

&

&& & & &

 

where discontinuous control is applied on v u= & , while 
system (17) is controlled by u . ( , , )x u tϕ  and ( , , )x u tγ for 
the PEMFC systems are smooth functions to force S to 
zero in finite time.  It is also supposed that: 

0
0, ( , , ) , 0 ( , , )

m M
t x u C t x uϕ ϕ γ> ≤ < Γ ≤ ≤ Γ .

 
According to local coordinate [ ]1 2, ,T TS Sδ δ  

 = &  then a 

second order sliding mode problem in (20) becomes 
finite time stabile for the following uncertain second 
order system: 

(21) 1 2

2 ( , , ) ( , , ) .x u t x u t v

δ δ

δ ϕ γ

=

= +

&

&
 

 
3. 2. Twisting Algorithm     There are several 
algorithms which ensure finite time stabilization of 
system (21). Twisting algorithm [19, 22, 24] belongs to 
class of second order sliding mode when the relative 
degree is two. This means that trajectories S and S&

converge to the origin in finite number of rotations.  
This algorithm is defined by the following control law 
[19, 22, 24], where umax is an allowable maximum value 
of u: 

(22) ( )
( )

max

1 1 2 max

1 1 2 max

if abs( )
if 0 and abs( )

if 0 and abs( )
m

M

u u u
v sign u u

sign u u

α δ δ δ

α δ δ δ

− >


= − ≤ ≤
− > ≤

 

Corresponding, sufficient conditions to achieve a  finite 
time convergence to the sliding manifold S  is given by 
Levant 1993 [22] as: 

(23)           0 ,     . .< < > − > +m M m m M M m
m

C K C K C
K

α α α α α  

It is seen that control law (22) needs information of 
[ ]1 2, ,T TS Sδ δ  

 = & which requires information about  the 

time derivative of the sliding manifoldS .  
 
 
4. STEP BY STEP SUPER TWISTING 
DIFFERENTIATOR 

 
In order to implement the controller in (22), a first time 
derivative of output error (sliding surface) is required.  
However, it can be estimated in a finite time by using a 
second order universal sliding differentiator. A first kind 
of robust discontinuous differentiators is extensively 
investigated [16, 17]. Levant in 1998 and 2003 showed 
that the super twisting differentiator is robust and 
accurate and a finite time convergent one. The idea 
behind the routine designed differentiator was first 
introduced by Usai et al. [18]. An algebraic 
observability was used to synchronize chaos by using a 
suboptimal algorithm. As a restriction, this algorithm 
needs a peak holder which is hard in implementation. 
Furthermore, the algorithm offers no estimation of the 
convergence time. However, the differentiator will be 
developed here based on super twisting algorithm for 
the first time.  The idea includes a single super twisting 
based differentiator to generate successive derivatives of 

( )f t signals in n-1 steps (Figure 2). Main advantage of 
this design is a real-time and robust estimation of 

( ) , ( ) ,f t f t& && … and ( ) ( )nf t made available. Functions 

1 ( )x f t= ,
 1 ( )x f t= && , 2 ( )x f t= &&&  to ( ) ( )n

nx f t=&  are base 
signals of ( )f t  for n steps of differentiation according to 
Equation (24). An aim is here to estimate signals

( ) , ( ) ,f t f t& && …and ( ) ( )nf t  after a finite and predetermined 
time.   

(24) 

1 2

2 3

( 1)
1

( )

( )

( )

( )

( )

n
n n

n
n

x x f t

x x f t

x x f t
x f t

−
−

 = =

 = =


 = =
 =

&&

&&&

M

&

&

 

This technique uses super twisting algorithm together 
with some extra injection terms as in the following 
form: 

(25) 

1

1
2

2 1 1 1 1 1

1
2

1 3 2 2 2 2 22

1
1 2

2 1 1 1 1 1

1
2

1

ˆ ˆ| | ( )ˆ

ˆ ˆˆ .[ | | ( )]

ˆ ˆ ˆ[ | | ( )]
ˆ

ˆ ˆ[ | | ( )]

−
− − − − − −

−

 
+ − −       + − −    =  

 
  + − −   

+ − − 

%&

& % % %

M M

&
% % %

&

% % %

n
n n n n n n n

n

n n n n n n

x x x sign x xx

E x x x sign x xx

x E x x x sign x x
x

E x x sign x x

λ

λ

λ

θ λ

1 2 1 1

1 3 1 22

2 1 11

1 1

ˆ ( )
ˆ .[ ( )]

.[ ( )]ˆ
.[ ( )]ˆ

− −−

−









  + 
   +   
   ⇒ =   
  + 
   +    

& %

& %

M M

& %

%&

n n nn

n nn

x x e
E x ex

E x ex
E ex

ϕ

ϕ

ϕ

θ ϕ

 

In Equation (25), iE is:  
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- if 1iE =  then ˆ| | | |jj je x x= − ≤∈%  
- if 0iE =  then ˆ| | | |j j je x x= − >∈%  
where ∈ is a small positive constant.  It should be noted 
that 0iE =  indicates the error of that step is not 
converging either ∈or zero. Therefore, jumping to the 
next step to estimate next signal is not taken.   
Alternatively, if 1iE = , the estimation error of the signal 
in that step reaches zero or∈ . Therefore, the process 
proceeds to the next step for estimating the next signal. 
In addition to proving stability through Lyapunov 
function, additional terms are added to differentiators to 
provide faster finite time.  It will be shown that 
convergence time is limited by a constant. These terms 
are defined in functions of 

1 1( )eϕ and 2 1( )eϕ of 
differentiator in (25). This is summarized in the 
following form to indicate systematic procedure of 
designing the differentiator with linear terms for 
improving the convergence rate: 

 (26) 
2

1 2 1 1 1

2 2 1

ˆ ( )

( )

x x k e
x k e

ϕ

ϕ

 = +


=

& %

&%

 
1
2

1 1 1 1 1
1

21 2
2 1 1 1 1

( ) | | . ( ) .

( ) 3( ) . . | | . ( )
2 2

e e sign e e

sign ee e e sign e

ϕ µ

ϕ µ µ


= +


 = + +


 

By adding these linear terms in case X is far from the 
origin, a more powerful force for attracting estimation 
signals to the origin is generated.  These terms work 
well when the state X is far from its estimated value (the 
equilibrium points for the error). For 0µ > super twisting 
path converges to origin from 0x after a finite time T.  In 
case these accelerating terms are added to the super 
twisting algorithm, error dynamic equation becomes: 

(27) 
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2 2 2 1 1

1 1 2 2 1

0 0 1
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(28) 
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Figure 2. Step by step differentiator based on super twisting 
algorithm 

4. 2. Proof of Finite Time Convergence using the 
Proposed Differentiator      Two Lyapunov functions 
are candidate to achieve a uniform convergent when the 
differentiator is used in the super twisting algorithm. 
- Another function to converge in a finite time from any 
compact set towards the origin in any path [Moreno].  
- A Lyapunov function to converge in a finite time from 
any arbitrary initial conditions into a compact set 
including the origin.   

A linear method to derive the Lyapunov function is 
primarily proposed by Moreno in 2008 and 2009 [9, 
10]. In this regard the time of convergence i.e. . 1f tT is 
found by (29) to achieve the first derivative of 0( )f t . 
However, in order to find time of providing the second 
derivative ( )f t&&  and appropriate time of convergence i.e. 

. 2f tT another design of Lyapunov is needed. This 
algorithm is proceeded until total time of convergence 
of an n-order differentiator i.e. 

. 1f tT ,
. 2f tT  ,… and

 .f t nT  is 
achieved. Since the whole time for the differentiator is 
limited by summation of those, finite time of 
convergence is determined. 

 
Theorem 1. [Moreno 25, 26]    Super twisting 
algorithm including additional terms in (27) and (28), 
initiating from 0x in a finite time . 1f tT converges to the 
origin.  

It should be noted that the time is assessed in the 
following considering two cases 0µ = as a STA and 1µ =

as STA together with additional terms: 

(29) 

{ } { }
{ }

{ }
{ }
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2
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 + >
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Theorem 2.     Lyapunov function for Equations (27) 
and (28) considering additional terms is presented in 
(30) to ensure a uniform convergence of system (27) 
and (28) in total time of convergence u fT as in (31).  

(30) 
2 2

2 2 1 1 2 2 2( ) . . . . ( ) .
2 2

V e k e e e sign e eσ σ= − +

(31) 
( )1 4

. 0
4 1 0

2.
( ) (0).exp( . ) .ln( ) ,

2. u f

f

C Cv t v t T v
C C v

v

ε
ε

ε

≤ − ⇒ − =

=

 

Total convergence time ( )u f f tT T T= +  is equal the 
convergence time ( )u fT to reach from any arbitrary initial 
condition to a compact set and a convergence time 
( )f tT  within the compact set. As seen in Figure 3, 
Equation (30) is always convex. Accordingly, it will be 
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shown that function 2 ( )V e  is positive definite and the 
derivative of 2 ( )V e is negative definite (see Appendix A). 
   
4. 2. Determination of Convergence Time, the N-
Step Super Twisting Differentiator    Systematic 
design finite time convergent differentiator will be 
achieved as in the following: 
First step 

1 2 1( , ) (0,0)e e e= →&  in a finite time of 1T . In second 
step 2 3 2( , ) (0,0)e e e= →& ; therefore, second differentiation 
tends to the real one in a finite time of 2T . Until ith 
step: 1( , ) (0,0)i i ie e e+= →& , and the convergence of the 
differentiation to the real signal is achieved in iT . 
Finally at (n-1)th step: 1 1( , ) (0,0)n n ne e e− −= →& , and the 
convergence is achieved in 1nT − . Accordingly, total time 
of convergence is achieved by a summation over the 
entire achieved time, i.e. 1

1

n

i
i

T T
−

=

= ∑ . 

 
 

 
Figure 3. Behavior of the Lyapunov candidate 

 
 

 
Figure 4. Load current variation profile 

 
 
5. SIMULATION RESULTS 

 
To verify the performance of the proposed control law 
(22) in presence of model uncertainties, external 
disturbances against in a wide range of current demand 
several simulations studies are performed in 
MATLABTM-Simulink environment.  During the 

simulation the temperature and the humidity of the 
system are kept constant and 1µ =  is set for the 
differentiator. The rest of parameters are tuned 
according to Table 1. The load disturbance is subjected 
to a variation of current from 0A to 47A as shown in 
Figure 4. Figures 5 and 6 display an absolute value of 
the difference between partial pressures of hydrogen 
and oxygen. Figure 5 uses a first order SMC to regulate 
pressure difference of O2 and H2 whilst Figure 6 
successfully gains the benefit of the twisting algorithm 
in combination with the prescribed differentiator. From 
these graphs one can see that the second order sliding 
mode (SOSM) controller with differentiator in Figure 6 
provides better response in terms of time indices, and of 
course, chattering. The achieved results are addressed in 
the following. 
 
 

TABLE 1. Parameters in the fuel cell model 
Parameter Value and definition 

N  Cell number :35 

R  Universal gas constant [J/mol-k] : 8. 314[J/mol-K] 

T  Temperature of fuel cell[K]: 353[K]  

F  Faraday constant [C/mole] : 96485[C/mole] 

α  Charge transfer coefficient: 0. 5 

m Constant in mass transfer voltage: 52.11 10−× [V] 

n  Constant in mass transfer voltage: 38 10−× 2 1[ ]cm mA−  

r  Area specific resistance: 42.45 10−× 2[ ]K cmΩ  

Afc
 Fuel cell active area: 232 2[ ]cm  

AV  Anode volume: 0. 005 3[ ]m  

CV  Cathode volume: 0. 01 3[ ]m  

ka  Anode conversion factor : 47.034 10 [ / ]mol s−×  

kc  Cathode conversion factor : 47.036 10 [ / ]mol s−×  

Pvs  The saturation pressure at the temperature 353[K] : 
32 [KPa]  

2
YO

 
Oxygen initial mole fraction : 0. 21  

2
YH

 
Hydrogen initial mole fraction : 0. 99 

2
YN

 
Nitrogen initial mole fraction : 0. 79 

cϕ  The  relative humidity on cathode 

aϕ  The  relative humidity on anode 

airλ  Air stoichiometry  

2Hλ  Hydrogen stoichiometry  

aU  Control  input in anode side 

CU  Control input in cathode side 

1 2
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F
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Figure 5. Variation of the pressure difference of O2 and H2 
using a first order sliding mode controller 

 
 

 
Figure 6. Variation of the inlet pressure difference of O2 and 
H2 using SOSM controller with differentiator 
 
 

 
Figure 7. Inlet hydrogen pressure with respect to desired level 
(3 bar) using SMC controller 
 
 

 
Figure 8. Inlet hydrogen pressure with respect to desired level 
(3bar) using SOSM controller with differentiator 
 
 
5. 1. Chattering Analysis    The second order sliding 
mode controller provides similar robustness and 

performance with respect to SMC (First order or 
standard sliding mode), but without chattering.  
Unfortunately, the inlet pressure difference of O2 and H2 
in Figure 5 shows chattering with high frequency which 
is usually harmful to physical systems.  In contrast, the 
second order sliding mode with differentiator attenuated 
the chattering phenomenon (Figure 6). 
 
5. 2. Tracking Analysis    Trajectories tracking of inlet 
oxygen pressure in response to the reference pressure 
are shown in Figures 7 and 8 using SMC and SOSM 
controller with differentiator, respectively.  Results are 
found encouraging due to narrow band of the error in 
Figure 8.   

Figures 9 and 10 show the required control signals 
against the load variations which are generated by SMC 
and SOSM controller with differentiator respectively. 
The hydrogen flow rate using SMC varies between 0 
[slpm] to 15 [slpm], while the input signal in the second 
controller causes the hydrogen flow rate to vary from 0 
[slpm] to 3.5 [slpm]. It is observed that the hydrogen 
flow rate in SMC has much more variations. 
Furthermore, hydrogen consumption is more than that in 
the case of the SOSM controller against the load 
variation. 

Figures in 11 show derivatives of the error during 
estimations procedure, i.e. ,S S& using the proposed 
differentiator.  It is shown that the convergence speed of 
estimation of the differentiator ,S S& is provided in a 
finite time of less than 0.24 second. 
 
 
 

 
Figure 9. Control signal using SMC  

 
 

 
Figure 10. Control signal which is provided by  SOSM 
controller with differentiator 
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Figure 11. Estimations of S differentiate with step by step 
differentiator 
 
 

 
Figure 12. Estimations of the surface differentiation by the 
Levant differentiator 
 
 

 
Figure 13. The H2 pressure signal of under noisy 
circumstance 

 
  

5. 3. Comparative Study of Super Twisting and 
the Levant Differentiator     Performance of the 
proposed super twisting differentiator will be compared 
with that of the Levant in terms of the time indices. The 
convergence time of using the proposed differentiator is 

fast as shown in Figure 11 i.e. 0.24 second with respect 
to 3.8 seconds in the Levant's (Figure 12). Two linear 
terms are added to the super twisting algorithm to 
provide more convergence time together with more 
robustness. This extra degree of freedom provides a 
strong attraction force when states are far from the 
origin. The further from the origin, the more forces are 
acted by the added terms. Therefore, fast convergence 
together with further robustness for wider range of 
uncertainty is provided. 
 
5. 4. Pressure Control using SOSM Controller with 
Differentiator and Feedback Linearization 
Technique under Noisy Circumstances: a 
Comparative Study      In order to investigate the 
capability of the proposed configuration, a practical 
instrumentation noise is added to the measurement. 
Characteristic of the noisy data is seen in the following 
table. 

These noisy data are applied to states of hydrogen 
pressure (x1), and oxygen pressure (x3). Before 
simulation and as a practical treatment, data are passed 
through a low pass 2nd-order Butterworth filter with 30 
Hz cut off frequency. Thereafter, hydrogen pressure (x1) 
is seen under noisy circumstances in Figure 13. The 
outcome of using feedback linearization (Figure 14) is 
compared with SOSM based twisting algorithm with 
differentiator (Figure 15). From these graphs, 
performance of the proposed controller SOSM 
controller with differentiator is found satisfactory in 
presence of noisy data. However, the SOSM controller 
is more robust with respect to the feedback linearization 
against the noise in the tracking duty. 

  
 
 

TABLE 2. Statistics of the applied measurement noise 
Mean 
=0.0023237 Variance=0.13362 Co-variance=0.0179 

PSD =0.22 Signal/Noise(SNR) 
=28 dB 

The Distribution: 
Gaussian 

 
 

Figure 14. The H2 pressure control under noisy situation using 
feedback linearization technique 
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Figure 15. The H2 pressure control under noisy situation using 
SOSM controller with differentiator 
 
 

 
Figure 16. Variation of the pressure difference of O2 and H2 
under noisy situation using feedback linearization technique 
 

 

 
Figure 17. Variation of the pressure difference of O2 and H2 
under noisy situation using SOSM controller with 
differentiator 

  
  

In the following, control pressure difference (∆P of x1 
and x3) of oxygen and hydrogen using two techniques of 
feedback linearization and SOSM will be shown. 
Similar results are achieved confirming performance of 
the SOSM with respect to the feedback linearization 
when lower pressure oscillations are acted on two sides 
of MEA. 

 
 

6. CONCLUSION 
 

High order sliding mode controller keeps P∆  in a lower 
range to protect the membrane from damage.  , , 
Therefore, it prolongs the life of the fuel cell stack.  A 
pressure control technique for PEMFC was designed in 

this paper.  An analytical study is given to proof the 
validity of the finite time convergence. Significance of 
the proposed controller is shown through numerical 
simulation. Performance of the control is also 
investigated in presence of external disturbance. Super 
Twisting algorithm is found to have the following 
advantages:  
• It guarantees an extended range of operation, in spite 
of the highly nonlinear nature of the plant.  
 • Robust against chattering. 
• Structure of the algorithm is routine and feasible.   
Furthermore, a differentiator was introduced to provide 
a finite time convergence. This permits the controller to 
take part quickly, as soon as the differentiator 
reconstructs the necessary state(s). Performance of the 
super twisting algorithm and also with combination of 
the proposed differentiator is shown through simulation. 
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Appendix A 
 
 
Lemma 1.  
 
For real numbers 0, 0, 0, 1, 1a b c p q> > > > >  , concerning 
1 1 1
p q

+ =  , the following inequality is held: 

(A. 1) .
p q

p qa ba b c c
p q

−≤ +  

 
A. 1 Proof of Theorem 1.    (i) It is primarily shown 
that 

2 ( )V e  is positive definite.  Applying Young’s (A. 1) 
inequalities to 

2 ( )V e  in (30), yields: 

(A. 2) 
2 2

2 2 2 21 1
2 2 1 2 1 2( ) . . .

2 2 2 2
V e k e e e eγ γσ σ − 

≥ + − + 
 

 

A simple factorization implies: 
2 2

2 21 1
2 2 1 2( ) ( . ). ( ).

2 2 2 2
V e k e eγ γσ σ −

≥ − + −

 In order to make 2 ( )V e positive, it is necessary to have: 

2
1

2

2
1

. 0
2 2

0
2 2

k γσ

γσ −

 
− >  

   ⇒
  − >    

 2 2
2 21 1

1 1
2 2

, ,
k k
γ γ

σ σ γ σ γ− − 
> > ⇒ >  

 

 

It expresses a bound to make the positivity of the 
Lyapunov candidate 

2 ( )V e valid. 
(ii) Here, it is shown that the derivative of 

2 ( )V e along 
with the trajectories of (27) and (28) becomes negative. 

 
(A.3) 
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1 1 2 1 1
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( ) 21. . . . . .2 2 2 1 1 2 12
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A use of the inequality (A.1), assuming 0iγ∀ >  yields: 

(A. 4) 

2 2
2 21 1

1 2 1 23 | | . . | | . | | , 2 , 2
2 2

e e e e p qγ γ −

= ≤ + = =
 

1 3 3 33
32 2 2 2

1 2 1 3 2
2 35 | | . | | | | , 3 ,

3 3 2
e e e e p qγ

γ
−

= ≤ + = =  

Therefore, the Lyapunov function is bounded by the 
following norm: 
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(A. 5) 
{ }
{ }

3 3
2 2

2 1 1 1 2 2 2

121 1 2 22
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2 3 4
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V e C e e e C e

C C CV e e e e
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β β

β

α α

β β

≤ − − + +
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 
=

=

&
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where: 

(A. 6) 

( ) ( )

( )

( )

2
2 2 1

1 2 1 2 2 1 2

2
2 1

2 2 1 2

3
33

1 2 1 2 1 2 3

3 3
22 2

2 1 3 2 3 3 1 4 1 2 1

. . . . . . . .
2
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2
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γ
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γ
β µ σ µσ γ

β γ µ σ γ β ς β σ ς ς

−

− −

 
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 
 

= − + − 
 
 

= − + − + 
 
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A solution of the differential Equation (A. 5) is given 
by: 

(A. 7) 

( )

1

1 1 0

2

1 14

2 4 41

1 1

4 4

1 4

4 1 0

( )
( )( ) . ( )

2. ( ) 2.
( ) .

2

ln( ( )) ( ) (0). exp ( . )
2. 2.

2.( ) (0).exp ( . ) , . ln( )
2.

f

V e e
C CC v tv t v t
C v t CCV e e

C Cv t v t v t
C C

C Cv t v t t v
C C v

v

εε

ε

 ≤ ⇒ ≤ − ⇒ ≤ −
 ≤ −

⇒ ≤ − ⇒ ≤ −

⇒ ≤ − ⇒ ≤ −

=

&
&

&
 

This confirms that system (27) and (28) forces the error 
states to get in the level set{ }2 ( )e V e ε<    in a time less 
than ( )1 0,t vε .          
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 چکیده
 

  

. گیر با الگوریتم سوپرتویستینگ بر مبناي تابع لیاپانف ارائه شده استبراي طراحی مشتق مند قانونروش یک در این مقاله 
ه بگیر این مشتق. تخمین زده شده است ، که زمان مربوطه دقیقاًشود می گیر در زمان محدود همگرانشان داده شد که مشتق

گیر در ساختار کنترلی پیشنهادي براي تثبیت فشار این مشتق. لغزشی مرتبه بالاست حالتعنوان قسمت اصلی از کنترل 
. کار گرفته شده استه با هدف طولانی کردن طول عمر پشته ب PEMهیدروژن و اکسیژن در سیستم غیرخطی پیل سوختی 

مشتقات مطلوبی از . میزان حداقل ممکن استه ستراتژي کنترلی، حفظ اختلاف فشار بین هیدروژن و اکسیژن، بهدف از ا
سطح لغزش در قانون کنترلی مورد نیاز است که این امر دلیلی براي بازسازي مشتقات زمان محدود در کنترل حلقه بسته 

گیر و ساختار کنترلی پیشنهادي در همگرایی کارایی مشتق نتایج شبیه سازي و مطالعات، تاییدي بر ،سرانجام. می باشد
  .تخمین در زمان محدود است

  
doi: 10.5829/idosi.ije.2013.26.11b.11 

 
 


