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A B S T R A C T  
   

The nonlinear behavior analysis and chaos control for Duffing-Holmes chaotic system is discussed in 
this paper. In order to suppress the irregular chaotic motion, an optimal backstepping controller is 
designed. The backstepping method consists of parameters with positive values. The improper 
selection of the parameters leads to inappropriate responses or even may lead to instability of the 
system. In this paper, the Unified particle swarm optimization (UPSO) algorithm is utilized to 
determine the convenient and optimal values of the parameters. The minimized objective function via 
UPSO algorithm is a weighted sum of the Integral of Time multiplied Absolute Error (ITAE) and 
squared control signal. Fast control of chaos in a very short time and having more limited control 
signal for this purpose, are the great advantages of the proposed controller. Numerical simulations 
show the high performance of this method for chaos elimination in Duffing-Holmes system. 
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1. INTRODUCTION1 
 
Chaos in control systems and controlling chaos in 
dynamical systems have both attracted much interest in 
recent years. A chaotic system has complex dynamical 
behaviors that possess some special features, such as 
excessive sensitivity to initial conditions, broad 
spectrums of Fourier transform, bounded and fractal 
properties of the motion in the phase space, and so on. 

Chaotic phenomena can be found in many scientific 
and engineering fields such as biological systems, 
electronic circuits, power converters, chemical systems, 
and so on [1]. Chaotic systems have irregular, complex 
and unpredictable dynamic behavior. Since the 
pioneering work of Ott, Grebogi, and Yorke [2] 
proposed the well known OGY control method, the 
control of chaotic systems has been widely studied. 
Recently, quite a few techniques and approaches have 
been successfully applied to chaotic motion control 
under different conditions and requirements [3-5]. 

The backstepping approach is one of the most 
popular nonlinear techniques of control design. It is 
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capable of generating a globally asymptotically 
stabilizing control laws to suppress and synchronize 
chaotic system [6-14]. The idea of backstepping design 
is to select recursively some appropriate functions of 
state variables as pseudo-control inputs for lower 
dimension subsystems of the overall system. Each 
backstepping stage results in a new pseudo-control 
design, expressed in terms of the pseudo-control designs 
from preceding design stages. When the procedure is 
terminated, a feedback design for the true control input 
results, which achieves the original design objective by 
virtue of a final Lyapunov function, which is formed by 
summing up the Lyapunov functions associated with 
each individual design stage. 

Particle Swarm Optimization (PSO) is a swarm 
intelligence algorithm that is used mainly for numerical 
optimization tasks [15]. PSO gained increasing 
popularity in recent years due to its ability to solve 
efficiently and effectively a plethora of problems in 
science and engineering. Unified Particle Swarm 
Optimization (UPSO) was recently introduced as a 
modification of PSO that aggregates its local and global 
variant, combining their exploration and exploitation 
abilities without imposing additional requirements in 
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terms of function evaluations. Convergence in 
probability was proved for a version of the new method 
and preliminary experimental results on both static and 
dynamic benchmark problems suggested that UPSO is 
superior to both the global and local variant of the 
standard PSO. In UPSO’s main scheme, a new 
parameter, called the unification factor, was introduced 
in order to control the influence of the local and global 
PSO variants in the UPSO scheme [16]. UPSO 
Algorithm is used in this paper in order to determine the 
intelligent backstepping controller parameters. In the 
proposed controller, the backstepping method 
parameters are chosen such that the time response of 
system states converges to zero in a short time, i.e. the 
system chaos is controlled faster. Besides, more limited 
control signal is needed for stabilization of system states 
and chaos control. 

The organization of this article is as follows. Section 
2 describes the backstepping method. PSO and UPSO 
are described in Section 3. The proposed optimal 
backstepping control design is given in Section 4. In 
Section 5, simulation results are provided to validate the 
effectiveness of the proposed method. The conclusions 
of this paper are presented in Section 6. 

 
2. BACKSTEPPING METHOD 
 
Considering the following n-order system with strict- 
feedback form: 

1 2 1 2 1

1 2 3 1 2 3

 , 1 i n-1( , , ..., ) ( , , ..., )

( , , , ..., ) ( , , , ..., )
i i i i i i

n n n n n

x f x x x g x x x x

x f x x x x g x x x x u
+ ≤ ≤= +

= +

&

&
 (1) 

where ,nx R u R∈ ∈ . With (0) 0if =  and (0) 0ig ≠  for 
1,...,i n= . if  and ig  are smooth functions, and are 

differentiable. 
Step 1. Considering the first subsystem of (1), 2x  is 
taken as a virtual control input and choose: 

( )2 1 1 1
1 1

1
( )

( )
x u f x

g x
= −

 
(2) 

The first subsystem is changed to be 1 1x u=& . Choosing 

1 1 1u k x= −  with 
1 0k > , the origin of the first subsystem 

1 0x =  is asymptotically stable, and the corresponding 
Lyapunov function is 2

1 1 1( ) 2V x x= , (2) is changed to: 

( )2 1 1 1 1 1 1
1 1

1
( ) ( )

( )
x x k x f x

g x
φ= = − −  (3) 

Step 2. Take 3x  as a virtual control input and the 

1 2( , )x x  subsystem is changed to (5). 

( )3 2 2 1 2
2 1 2

1
( , )

( , )
x u f x x

g x x
= −  (4) 
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x u

= +

=

&
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 (5) 

which is in the form of backstepping method, so the 
control law 2u  is as follows: 

( )1 1
2 1 1 2 2 1 1 1 1 1 1 2

1 1

( ) ( ) ( ) ( )[ ]
∂ ∂

= − − − + +
∂ ∂

V
u g x k x x f x g x x

x x

φ
φ  

(6) 

where 2 0k > . This control law asymptotically stabilizes 

1 2( , ) (0, 0)x x =  and Lyapunov function is as (7). 
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2 1 2 1 1 2 1 1

1
( , ) ( ) ( )

2
V x x V x x xφ= + −  (7) 

Substituting (6) into (4) gives: 
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Step n:  Actual control law u  where can asymptotically 
stabilize (1), is as follows: 
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where 0nk > . This control law asymptotically stabilizes 

1( ,..., ) (0,..., 0)nx x =  and Lyapunov function is as (10). 

2
1 1 1 1 1 1 1( )

1
( , ..., ) ( , ..., ) ( , ..., )

2− − − −= + −n n n n n n nV x x V x x x x xφ  (10) 

 
 

3. OPTIMIZATION METHOD 
 

3. 1. Particle Swarm Optimization       Assume that 
each particle is considered in the d -dimensional space, 

1 2( ) ( ( ), ( ), ..., ( ))i i i iDX t X t X t X t=  denotes the ith 
particle's position, 1 2( ) ( ( ), ( ), ..., ( ))i i i iDV t V t V t V t=  denotes 
the ith particle's velocity. The best previous position of 
the ith particle Pbest is represented as 

1 2( ) ( ( ), ( ), ..., ( ))i i i iDP t P t P t P t=  and the best particle 
amongst all particles in the population Gbest is 
represented as 1 2( ) ( ( ), ( ), ..., ( ))g g g gdP t P t P t P t= . The 



1301                                        R. Gholipour et al.  / IJE TRANSACTIONS B: Applications   Vol. 26, No. 11, (November 2013)  1299-1306 

velocity and position updating equations of the PSO, for 
d=1, 2, …, D are given below [17]: 

1 1

2 2

( 1) * ( ( ) * * ( ( ) ( ))

* * ( ( ) ( )))
id id id id

gd id

V t V t c r P t X t

c r P t X t

χ+ = + − +

−
 (11) 

 

( 1) ( ) ( 1)id id idX t X t V t+ = + +  (12) 

where χ  is constriction factor, given by: 

1 22

2
 , =c ,  >4

2 4
cχ ϕ ϕ

ϕ ϕ ϕ
= +

− + −

 
(13) 

  
 

3. 2. Uni ied Particle Swarm Optimization  
 UPSO harnesses the two PSO variants (i.e. the local 
and global PSO variants) in a unified scheme that 
combines their exploration and exploitation capabilities. 
Let iX  be the ith particle of the swarm, g  the index of 
the best particle in the whole swarm and 

ig  the index of 
the best particle in the neighborhood of iX . Also, let 

( 1)i tΨ +  be the velocity update of iX  for the global 

PSO variant, ( 1)iL t +  the velocity update of iX for the 
local PSO variant, and t the iteration counter. Then, 
from Equation (11), it holds that: 
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( 1) * ( ( ) * * ( ( ) ( ))

* * ( ( ) ( )))    
i id id id

gd id

t V t c r P t X t
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′
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The aggregation of the search directions defined by 
Equations (14) and (15) results in the main UPSO 
scheme, 

( 1) * ( 1) (1 ) * ( 1),  u [0,1]i i iU t u t u L t+ = Ψ + + − + ∈  (16) 
 

( 1) ( ) ( 1)               id id idX t X t U t+ = + +  (17) 

The parameter u  is called the unification factor and it 
balances the influence of the global and local search 
directions. The standard global PSO variant is obtained 
by setting u=1  in Equation (16), while u=0  results in 
the standard local PSO variant. All intermediate values 
of u (0,1)∈  define composite UPSO variants that 
combine the exploration and exploitation properties of 
the global and local PSO variant. Indeed, the value 
u=0.5  proved to be the best, with unification factors 
higher than 0.7 exhibiting poor performance [16]. The 
flowchart of the UPSO algorithm is given in Figure 1.  

 
Figure 1. Flowchart of the UPSO algorithm 

 
 
4. PROPOSED OPTIMAL BACKSTEPPING  
CONTROLLER 
 
An optimal backstepping controller is formed using 
UPSO Algorithm for the optimization of the 
backstepping controller key parameters. The proposed 
controller structure is shown in Figure 2. In this 
structure, xi (i=1, 2, …, n) are the state variables of the 
strict-feedback system, ki (i=1, 2, …, n) the 
backstepping controller parameters and u is the control 
signal produced by the optimal backstepping controller. 
In this structure, the state variables and the control 
signal are the inputs of the fitness function and establish 
the fitness function form. The output of the fitness 
function is the input of the UPSO. The UPSO Algorithm 
obtains the proper and optimal values of the parameters 
by minimizing the fitness function. 

Here, the utilized objective function is similar to that 
of the reference [18]. The objective function is 
formulized as below: 

2
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Figure 2. The structure of the proposed controller 

 
 
where tf is the final time with respect to second, u the 
control signal, n the system degree, and xi (i=1, 2, …, n) 
are the system state variables, and xdi (i=1, 2, …,n) the 
desired trajectories of xi (i=1, 2, …, n). According to the 
goal of stabilizing and chaos control of the system, xdi 
(i=1, 2, …, n) is considered to be equal to zero. The 
fitness function form consists of two terms: The first 
term is the Integral of Time multiplied Absolute Error 
(ITAE) and the second term is the squared control 
signal. By minimizing the first term using UPSO 
Algorithm, the system states converge to zero in a short 
time, i.e. the system chaos is controlled in a short time. 
And by minimizing the second term, more limited 
control signal is required to control of chaos and to 
stabilize the system. The weights w1 and w2 are 
considered to be equal in this design procedure, in order 
to assume equal values for the two mentioned 
objectives, i.e. the minimization of the system error is as 
important as the limitation of the control effort. In fact, 
in the proposed controller, the backstepping method 
parameters are chosen such that the time response of 
system states converges to zero in a short time, i.e. the 
system chaos is controlled faster. Besides, more limited 
control signal is needed for stabilization of system states 
and chaos control. 
 
 
5. AN ILLUSTRATED EXAMPLE 
 
5. 1. Duf ing-holmes Chaotic System       The point 
of interest considered in this study is a classical 
Duffing–Holmes chaotic system, and its nominal 
dynamic equations are described as [19]:  

1 2

3
2 1 2 1

( ) ( )

( ) ( ) 0.25 ( ) ( ) 0.3 cos( )

x t x t

x t x t x t x t t

=

= − − +

&

&

 (19) 

where , 1, 2ix i =  are the state variables, and t is the time 
variable. For the initial condition 1 2( , ) (0.2, 0.2)x x = , the 

chaotic motion of the system is illustrated in Figures 3 
and 4. 
 
5. 2. Controlling Duf ing-holmes Chaotic System 
    As shown in Figures 3 and 4, the system has a chaotic 
behavior, when no control signal is applied. In this 
section, the backstepping method is utilized for the 
control of chaos of the Duffing-Holmes system. For this 
purpose, a control signal u is added to Equation (19). 
The system (19) is rewritten, as following: 

1 2

3
2 1 2 1

( ) ( )

( ) ( ) 0.25 ( ) ( ) 0.3cos( )

x t x t

x t x t x t x t t u

=

= − − + +

&

&
 (20) 

     Backstepping method is used to set states 1 2,x x  to 
the origin point (0, 0) via the control signal u  
calculated with two steps. According to Section (1), the 
design procedure is as follows: 
Step 1. 2x  is taken as (23) to construct the joint 
Lyapunov function (22) for (21). 

1 2x x=&  (21) 

2
1 1 1( ) 2V x x=  (22) 

2 1 1 1 1( )x x k xφ= = −  (23) 

Step 2. Final control input and Lyapunov function are 
given in (25) and (26) for (24). 

1 2

3
2 1 2 1

( ) ( )

( ) ( ) 0.25 ( ) ( ) 0.3cos( )

x t x t

x t x t x t x t t u

=

= − − + +

&

&
 (24) 

3
1 2 1

1 2 1 1 2 2

( ) 0.25 ( ) ( ) 0.3 cos( )

(1 ) ( ) ( ) ( )

t t t t

t t

u x x x

k k x k k x

+ + − −

+ −

= −

+
 (25) 

 

2 2
2 1 2 1 2 1 1

1 1
( , ) ( )

2 2
V x x x x k x= + +  (26) 
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Figure 3. Chaotic motion (0-100 s) of states 

 
 

 
Figure 4. Chaotic attractor after 100 s 

 
 

 
Figure 5. The parameter values trajectory 

 
 

According to Equation (25), it is observed that the 
control signal consists of the parameters which are 
positive. The UPSO Algorithm obtains the proper 
values of the parameters via minimizing the fitness 
function. The parameters of the UPSO Algorithm are set 
to the following: 1 2.05c =  , 2 =2.05c  , 0.729χ =  , u=0.5
and population size= 20. For the computation of the 
local PSO components in UPSO, a neighborhood of 
radius 1 was used, in order to take full advantage of its 
exploration properties [16]. The sampling time in this 

simulation is 0.02. In proposed controller, the searching 
ranges for the backstepping parameters 1k  and 2k  are 
limited to [0, 10]. The backstepping parameters are 
obtained for 20 iterations. In this example ft  is equal to 
10 seconds. Besides, the weights w1 and w2 of fitness 
function are chosen as 0.5. n represents the system 
degree and is equal to 2 in this example. The parameters 
of backstepping controller are obtained by using UPSO 
Algorithm, as follows: 1 1.7431k = , 2 1.7194k = . The 
search process of UPSO Algorithm for finding the 
parameters is shown in Figure 5. Besides, the fitness 
value obtained by the algorithm is 0.8435. The 
trajectory of fitness variations with respect to algorithm 
iteration is shown in Figure 6. The time response of the 
states of Coullet system after applying the controller is 
shown in Figure 7. The controlled chaos of the system is 
demonstrated in Figure 8. Also, the control signal is 
illustrated in Figure 9. As shown in Figures 7 and 8, the 
UPSO Algorithm causes the time response of the states 
of the system converge to zero in a shorter time by 
minimizing the fitness function. In addition, according 
to Figure 9, it is observed that the proposed controller 
has created a limited control signal to chaos control of 
Coullet system. 
 
 
 

 
Figure 6. The Objective function trajectory 

 
 

 
Figure 7. Controlled time response of the states 
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Figure 8. Controlled Chaotic attractor (0-100 s ) 

 
 

 
Figure 9. The control law u 

 
 
5. 3. Discussion      According to Figures 7 and 8, it is 
observed that the UPSO Algorithm leads to fast time 
response of the system states by minimizing the fitness 
function. Whereas, if the values of the parameters were 
chosen by trial and error, the time response of the 
system states converged to zero in a much longer time. 
In fact, the intelligent backstepping controller causes the 
system states to become stable in a shorter time and as a 
consequence, the system chaos is controlled in much 
shorter time.  In addition, according to Figure 9, it is 
observed that the proposed controller produces a limited 
control signal for the chaos control of Duffing system. 
And it is because the control effort is applied in the 
proposed objective function. In fact, the UPSO 
Algorithm via the minimization of the objective 
function, causes the system states to become stable in a 
shorter time, i.e. the system chaos is controlled in a very 
short time and also, more limited control signal is 
needed to control chaos. Fast control of chaos in a very 
short time and having more limited control signal for 
this purpose, are the great advantages of the proposed 
controller. 

 
 

6. CONCLUDING REMARKS 
 
In this paper, an intelligent backstepping controller has 
been proposed to control chaos in Duffing-Holmes 

system. In the proposed controller, the parameters of 
backstepping method are determined automatically and 
intelligently by UPSO algorithm without trial and error. 
A weighted sum of the Integral of Time multiplied 
Absolute Error (ITAE) and squared control signal is the 
minimized fitness function via the UPSO algorithm. In 
the proposed controller, the backstepping method 
parameters are chosen such that the time response of 
system states converges to zero faster, i.e. the system 
chaos is controlled in a short time. Besides, more 
limited control signal is needed for stabilization of 
system states and chaos control. The simulation results 
of Duffing Holmes chaotic system show the 
effectiveness of the proposed controller and the tuning 
process. 
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 چکیده
 

براي فرو . مقاله بحث شده استاین در  ،هولمس-آشوب براي سیستم آشوبی دافینگ رلرفتار غیر خطی و کنتتحلیل  
گام شامل پارامترهایی با مقادیر  روش پس. شود گام بهینه طراحی می پس  ي نشاندن حرکت آشوبی نامنظم، یک کنترل کننده

یا حتی ممکن است منجر به ناپایداري سیستم شده هاي نا مناسب  انتخاب نا مناسب پارامترها منجر به پاسخ. مثبت است
ي پارامترها استفاده  پارچه، براي تعیین مقادیر مناسب و بهینه در این مقاله، الگوریتم بهینه سازي اجتماع ذرات یک. شود
از انتگرال زمان  پارچه، یک مجموع وزنی سازي اجتماع ذرات یکشده توسط الگوریتم بهینه  کمینهتابع هدف . شود می

کنترل سریع آشوب در یک زمان خیلی کوتاه و داشتن سیگنال . در قدر مطلق خطا و مربع سیگنال کنترلی است ضرب
بالاي رامدي هاي عددي کا شبیه سازي. پیشنهادي هستند ي کنترلی محدود براي این کار از مزیت هاي بزرگ کنترل کننده

  .دهند هولمس نشان می -آشوب در سیستم دافینگ این روش را براي حذف
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