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A B S T R A C T  
   

In the present study, a three-step multi-objective optimization algorithm of cyclone separators is utilized 
for the design objectives. First, the pressure drop (∆p) and collection efficiency (η) in a set of cyclone 
separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of 
Data Handling (GMDH) type neural networks are regarded to model the ∆p and η as the required 
functions of geometrical characteristics. Finally, a multi-objective (MO) algorithm based on hybrid of 
Particle Swarm Optimization (PSO), multiple crossover and mutation operator are used for Pareto based 
optimization of cyclones considering two conflicting objectives ∆p and η. By comparing the Pareto results 
of MOPSO with that of multi-objective genetic algorithms (NSGA II) regarding Pareto based multi-
objective optimization of the obtained polynomial meta-models, it is shown that there are some interesting 
and important relationships as useful optimal design principles involved in the performance of cyclone 
separators. 
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NOMENCLATURE    

u velocity Greek Symbols 
x position ρ density 
P pressure ν viscosity 
Ne number of effective turns Subscripts  
Vin inlet velocity p particle 
VP velocity pressure i,j,k 1,2,3 
Y Inlet width t turbulent 
X Inlet height   
R Reynolds stress tensor Superscripts  
D50 Cut-point - mean variables 
   set of decision variables ٭ 
 Ŧ٭ set of objective functions   

 
1. INTRODUCTION 1 

 
Cyclones are widely used in filtration and separation 
industry because of their simple setup and low cost 
maintenance. A number of studies were provided which 
                                                        
*Corresponding Author Email: mahmoodabadi@sirjantech.ac.ir  (M. 
J. Mahmoodabadi) 

some of them can be more concerned. Stairmand [1] 
presented one of the most popular design tools which 
suggested that the cylinder height and exit tube length 
are 1.5 and 0.5 times of the cyclone body diameter for 
the design of a high efficiency cyclone, respectively. 
Leith et al. [2] and Bhatia et al. [3] discussed the effects 
of the cone opening size on pressure drop and collection 
efficiency. Zhu et al. [4] conducted detailed experiments 
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on cyclones of different height and different vortex 
finder length and found that like other important 
dimensions such as body diameter and gas exit tube 
diameter, the cyclone height and vortex finder length 
can considerably influence the separation efficiency of 
the cyclones. Ravi et al. [5] investigated an MO 
optimization process on cyclone separators by using the 
NSGA algorithm. They tried to minimize the pressure 
drop and maximize the collection efficiency in cyclone 
separators. They did not use CFD in their optimization 
procedure and used analytical function for pressure drop 
and collection efficiency. Rongbiao et al. [6] suggested 
that the flow rate has a strong influence on the 
collection efficiency and the reduction in cone size 
results in higher collection efficiency without significant 
increase of pressure drop. Shalaby et al. [7] used Large 
Eddy Simulation (LES) for CFD modeling of gas-solid 
flow in cyclones and they obtained good compatibility 
with experimental results. Safikhani et al. [8] obtained 
detailed flow information by CFD simulation for three 
standard cyclone separators with different geometries. 
They discussed the effects of different geometrical 
parameters on the pressure drop and collection 
efficiency. Safikhani et al. [9] investigated an MO 
optimization algorithm on cyclones using genetic 
algorithms. They finally determined 5 optimum 
cyclones which had minimum pressure drop and 
maximum collection efficiency. 

Both pressure drop and collection efficiency in 
cyclones are important objective functions which must 
be optimized simultaneously in such a real world 
complex multi-objective optimization problem. These 
objective functions are either obtained from experiments 
or computed using very timely and high-cost 
Computational Fluid Dynamic (CFD) approaches, 
which cannot be used in an iterative optimization task 
unless a simple but effective meta-model is constructed 
over the response surface from the numerical or 
experimental data. Therefore, in the present study, 
modeling and optimization of the parameters are 
investigated by using Grouped Method of Data 
Handling (GMDH) type neural networks and Multi-
Objective Particle Swarm Optimization method 
(MOPSO) in order to minimize the pressure drop and 
maximize the collection efficiency.  

System identification and modeling of complex 
processes using input-output data have always attracted 
many research efforts. In fact, system identification 
techniques are applied in many fields in order to model 
and predict the behavior of unknown and/or very 
complex systems based on given input-output data [10]. 
In this way, soft-computing methods [11] which 
concern computation in an imprecise environment, have 
gained significant attention. The main components of 
the soft computing, namely, fuzzy logic, neural 
network, and evolutionary algorithms have shown great 
ability in solving complex non-linear system 

identification and control problems. Many research 
efforts have been expended to make use of evolutionary 
methods as effective tools for system identification [12]. 
Among these methodologies, Group Method of Data 
Handling (GMDH) algorithm is a self-organizing 
approach by which models of growing complexity are 
generated based on the evaluation of their performances 
on a set of multi-input-single-output data pairs (Xi, Yi) 
(i=1, 2, …, M). The GMDH was first developed by 
Ivakhnenko [13] as a multivariate analysis method for 
modeling and identification of complex systems which 
can be used to model complex systems without having 
specific knowledge of the systems. The main idea of 
GMDH is to build an analytical function in a feed 
forward network based on a quadratic node transfer 
function [14] whose coefficients are obtained by using 
the regression technique. In recent years, however, the 
use of such self-organizing networks leads to successful 
application of the GMDH-type algorithm in a broad 
range of areas in engineering, science, and economics. 

Particle Swarm Optimization (PSO), first introduced 
by Kennedy et al. [15], is one of the modern heuristic 
algorithms. It was developed through simulation of a 
simplified social system, and has been found to be 
robust in solving continuous nonlinear optimization 
problems [15-16]. The PSO technique can generate a 
high-quality solution within short calculation time and 
stable convergence characteristic as compared with  
other stochastic methods [17-18]. In this paper, for 
increasing the convergence of the population and to 
escape the local minima, PSO is merged with multiple 
crossover and mutation operator. Furthermore, over the 
last decade, the multi-objective PSO has been utilized to 
solve various types of multi-objective engineering 
optimization problems [19-21]. 

In the present study, firstly, the pressure drop (∆p) 
and the collection efficiency (η) in a set of cyclones are 
numerically investigated by using CFD techniques. 
Next, GMDH type neural networks are used to obtain 
polynomial models for the effects of geometrical 
parameters of the cyclones on both ∆p and η. Finally, 
the obtained simple polynomial models are used in a 
Pareto based MOPSO to find the best possible 
combinations of ∆p and η, known as the Pareto front. 
The Pareto results of MOPSO are also compared with 
that of multi-objective genetic algorithms (NSGAII). 
 

 
2. THE CFD SIMULATION AND VALIDATION OF 
THE RESULTS 
 
2. 1. The CFD Simulation     The CFD simulations are 
performed by using FLUENT. Inlet mass flow boundary 
condition is used at the cyclone inlet and a fully 
developed boundary condition is used at the outlet [8, 
22]. The SIMPLE method is used for the pressure–



1091                              M. J. Mahmoodabadi et al. / IJE TRANSACTIONS C: Aspects   Vol. 26, No. 9, (September  2013)   1089-1102 

velocity coupling. Turbulence fluctuations are simulated 
by using Reynolds Stress Transport Model (RSTM) due 
to its accuracy [23], and velocity fluctuations are 
simulated by using the discrete random walk (DRW). 
The Lagrangian method is used for tracking of the 
particles in the simulations; and grid refinement tests are 
conducted in order to make sure that the solutions do 
not dependent on the grid. Collection efficiency 
statistics are obtained by releasing a specific number of 
particles at the inlet of the cyclones and by monitoring 
the number escaping through the underflow. The range 
of particles size is 0.1-10 μm of a material whose 
density is equal to 2500 kg/m3. The computation 
continues until the solutions converge into a total 
residue of less than 0.0001. 

To test for grid independency, three grid types with 
increasing grid density are studied. The computational 
results of 3 grid types are compared in Table 1. It was 
observed that the maximum difference among the 
results is less than 4%, so that the grid template 186,222 
is used for all computations in the present study. Figure 
1 shows the details of the computational grid for the 
cyclones. 
 
2. 2. The De inition of the Objective Functions   
The pressure drop and collection efficiency in cyclones 
are important objective functions which have to be 
optimized simultaneously. The collection efficiency 
statistics are obtained by releasing a specified number of 
particles at the inlet of the cyclones and by monitoring 
the number escaping through the underflow. The first 
theory for collection efficiency in conventional cyclones 
was developed by Shepherd et al. [24]. It is based on the 
assumption of a plug flow. In order to calculate the 
efficiency, first the particle size with 50% collection 
efficiency (Dp50%) needs to be determined according 
to the following equation: 

pine
P VN

YD
ρπ

µ
2

9
%50 =  

(1) 

The collection efficiency for any other particle size 
(DPj) can then be determined by: 

2%50 )(1

1

Pj

p

D
D

+
=η

 

(2) 

Many empirical models have been proposed for the 
pressure drop in the conventional cyclones [24-27]. In 
Wang’s model, the total pressure loss in the cyclone is 
obtained by summing up the five pressure drop 
components as follows: 

∆P total=∆P e+∆P k+∆P f+∆P r+∆Po (3) 

where, the components of Equation (3) are explained in 
Table 2.  

2. 3. De inition of the Design Variables   The design 
variables in the present paper are: the dimensionless 
length of vortex finder (S/D), dimensionless diameter of 
vortex finder (De/D), dimensionless length of upside 
cyclone (Lup/D) and dimensionless length of downside 
cyclone (LDown/D). The design variables and their range 
of variations are shown in Figure 2 and Table 3, 
respectively. The different design variables are selected 
by dividing (S/D), (De/D), (Dup/D), and (DDown/D) into 3 
equal parts. By changing the geometrical independent 
parameters according to Table 3, various designs will be 
generated and evaluated by CFD. Consequently, some 
meta-models can be optimally constructed by using the 
GMDH type neural networks, which will be further 
used for the multi-objective Pareto based design of such 
cyclones.  
 
 
TABLE 1. The comparison of the dimensionless pressure 
drop and the collection efficiency for 3 different grid numbers. 
Total No. of Cells ∆p /0.5v2 η (%) 

186,222 10.98 53.07 
202,318 11.02 51.42 
284,756 11.13 53.12 
Max Diff (%) 1.348 3.200 
 
 
TABLE 2. The components of Wang’s pressure drop theory. 

Component Definition 

∆P e=C2VPin Entry loss, C2≈1 
∆P k= VP in-VP out Kinetic Energy Loss 

∆P f= C VP in 
Frictional Loss, 
C1D3D=0.14,C2D2D=0.28,C1D2D=0.15 

∆Pr= ρV2
in(R/r0-1) Rotational loss, r0=radius of the vortex interface, 

R=cyclone body radius 

∆P 0=C3VP out 
Pressure loss in the inner vortex and exit tube, 
C3≈1.8 

 
 

 
Figure 1. The details of the computational grid for the 
cyclones 
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Figure 2. Design variables for the cyclone-optimization 
problems 
 
 

 
Figure 3. The comparison of CFD prediction and 
experimental data of Konig [28] for pressure drop. 
 
 

TABLE 3. Design variables and their range of variations 
Design Variable From To 

S/D 0.900 1.725 

De /D 0.125 0.600 

Lup /D 0.875 2.775 

LDown /D 0.875 2.775 

  
 
2. 4. Validation of the CFD Results   To attain the 
confidence about the simulation, it is necessary to 
compare the simulation result with the available data. 
The comparison of CFD prediction and experimental 
data of Konig [28] for the pressure drop is shown in 
Figure 3. As seen, our numerical procedure predicts the 
pressure drop with the acceptable deviation from the 
experimental data of Konig [28] and CFD simulations 
of Shalaby et al. [7], but with increasing the flow rate 
differences of numerical prediction and experimental 

data. This numerical error could contribute and cause 
the increase of flow complexity in high flow rates.  

The comparison of CFD prediction and experimental 
data of Konig [28] for collection efficiency is shown in 
Figure 4. It is obvious that our numerical simulations 
can properly adapt with the pattern of experimental 
efficiency curve.   

Tangential and axial velocities are important factors 
for the particle collection in the cyclones. Figures 5 and 
6 compare the tangential and axial velocity of CFD 
prediction and experimental data. As seen, the CFD 
curves of the present study agree well with the 
experimental data of Fraser et al. [29] and the CFD 
simulations of Shalaby et al. [7]. Samples of numerical 
results obtained by using CFD are shown in Table 4; 
moreover, the velocity vector and pressure contour in 
one of these CFD simulations are shown in Figure 7. 
 
 
 

 
Figure 4. The comparison of CFD prediction and 
experimental data of Konig [28] for collection efficiency. 
 
 

 
Figure 5. Comparison between the tangential velocity of CFD 
prediction and experimental data. 
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Figure 6. The comparison between the axial velocity of CFD 
prediction and experimental data. 
 
 

 
Figure 7. The velocity vector and pressure contour in the CFD 
simulations. 
 
 
TABLE 4. Samples of numerical results obtained by using 
CFD. 

Num 
Input Data  Output Data 

S/D De /D Lup /D LDown /D  ∆p /.5ρ v2 η (%)
 

1 0.900 0.125 0.875 0.875  13.155 83.775 

2 1.325 0.125 1.500 0.875  15.121 88.801 

3 1.725 0.125 0.875 1.500  14.486 90.921 

4 1.725 0.125 1.500 1.500  14.051 89.103 

5 1.725 0.125 2.775 1.500  11.944 85.539 

6 0.900 0.600 0.875 2.775  7.801 44.594 

7 1.725 0.600 1.500 2.775  9.574 49.940 

8 0.900 0.250 1.500 2.775  8.697 48.028 

9 0.900 0.250 2.775 2.775  7.393 46.099 

10 1.325 0.250 2.775 2.775  8.760 49.862 

… … … … …  … … 

80 1.725 0.250 2.775 2.775  9.354 52.689 

81 1.725 0.600 2.775 2.775  8.138 47.943 

The results obtained in such CFD analysis can now 
be used to build the response surface of both collection 
efficiency and pressure drop for those different 81 
geometries using GMDH type polynomial neural 
networks. Such meta-models will, in turn, be used for 
the Pareto-based multi-objective optimization of the 
cyclones. A post analysis using CFD is also performed 
to verify the optimum results by using the meta-
modeling approach. Finally, the solutions obtained by 
the approach of this paper exhibit some important trade-
offs among those objective functions which can be 
simply used by a designer to optimally compromise 
among the obtained solutions. 

 
 

3. MODELING OF PRESSURE DROP AND 
COLLECTION EFFICIENCY USING GMDH TYPE 
NEURAL NETWORKS 
 
By means of the GMDH algorithm, a model can be 
represented as a set of neurons in which different pairs 
of them in each layer are connected through a quadratic 
polynomial and thus produce new neurons in the next 
layer. Such representation can be used in modeling to 
map inputs to outputs. The formal definition of the 
identification problem is to find a function f̂  that can 
be approximately used instead of actual one f  in order 
to predict output ŷ  for a given input vector 

),...,3,2,1( nxxxxX =  as close as possible to its actual 
output y . Therefore, given M observations of multi-
input-single-output data pairs so that 
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It is now possible to train a GMDH-type neural 
network to predict the output values 
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The problem is now to determine a GMDH-type 
neural network so that the square of difference between 
the actual output and the predicted one is minimized, 
that is: 
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General connection between input and output variables 
can be expressed by a complicated discrete form of 
Volterra functional series in the following form: 
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which is known as the Kolmogorov-Gabor polynomial 
[14]. This full form of mathematical description can be 
represented by a system of partial quadratic polynomials 
consisting of only two variables (neurons) in the 
following form: 

2
5

2
43210),(ˆ jxaixajxixajxaixaajxixGy +++++==  (8) 

There are two main concepts involved within 
GMDH-type neural networks design, namely, the 
parametric and the structural identification problems. In 
this way, some works by Jamali et al. [30] present a 
hybrid GA and singular value decomposition (SVD) 
method to optimally design such polynomial neural 
networks. The methodology in these references has been 
successfully used in this paper to obtain the polynomial 
models of ∆p and η. The obtained GMDH-type 
polynomial models have shown to have quite suitable 
prediction ability of unforeseen data pairs during the 
training process. This will be presented in the following 
sections. 

The input–output data pairs used in such modeling 
involve two different data tables obtained from CFD 
simulation discussed in Section 2. Both tables consist of 
four variables as inputs, namely (S/D), (De/D), (Lup/D) 
and (LDown/D) and outputs which are ∆p and η. The 
tables consist of a total of 81 patterns, which have been 
obtained from the numerical solutions to train and test 
such GMDH type neural networks. However, in order to 
demonstrate the prediction ability of the evolved 
GMDH type neural networks, the data in both input–
output data tables have been divided into two different 
sets, namely, training and testing sets. The training set, 
which consists of 61 out of the 81 input–output data 
pairs for ∆p and η, is used for training the neural 
network models using the method presented in Section 
2. The testing set, which consists of 20 unforeseen 
input–output data samples for ∆p and η during the 
training process, is merely used for testing to show the 
prediction ability of such evolved GMDH type neural 
network models. The GMDH type neural networks are 
now used for such input–output data to find the 
polynomial models of ∆p and η with respect to their 
effective input parameters. In order to genetically design 
such GMDH type neural networks described in the 
previous section, a population of 10 individuals with a 
crossover probability (Pc) of 0.7 and mutation 
probability (Pm) 0.07 has been used in the 500 
generations for ∆p and η. The corresponding polynomial 
representation for dimensionless pressure drop is as 
follows:   
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Similarly, the corresponding polynomial 
representation of the model for the collection efficiency 
is in the following form: 
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The appropriate behavior of such GMDH type neural 
network model for the pressure drop is also depicted in 
Figure 8 for the training and testing data. Such behavior 
has also been shown for the training and testing data of 
efficiency in Figure 9. It is evident that the evolved 
GMDH type neural network in terms of simple 
polynomial equations successfully model and predict 
the outputs of the testing data that have not been used 
during the training process. To determine the accuracy 
of GMDH modeling, we also use a criterion, namely, 
Root Mean Square Error (RMSE) which demonstrates 
the difference between CFD data and GMDH predicted 
data and can be calculated as follows: 

2 1
2( )

−
= ∑ C FD G M D Hf f

R M S E
N

 (11)
 

where N  is the pattern number and f is Δp or η. The 
comparison of RMSE for the training and testing data of 
the objective functions are shown in Table 5. As seen, 
the GMDH-type neural network predicts the objective 
functions with the acceptable deviation from CFD data. 
It should be noted that these polynomials are valid just 
for the design variables in the range of the present case 
study (Table 3). The models obtained in this section can 
now be utilized in the Pareto of the multi-objective 
optimization algorithm of the cyclone separators 
considering both the pressure drop and efficiency as the 
conflicting objectives. Such study may unveil some 
interesting and important optimal design principles that 
would not have been obtained without the use of a 
multi-objective optimization approach. 
 
 
4. THE PARTICLE SWARM OPTIMIZATION 
HYBRIDIZED WITH MULTIPLE CROSSOVER AND 
MUTATION OPERATOR 

 
To overcome complexity and dimensionality of real-
world problems, it is needed to improve the efficiency 
and accuracy of PSO. Therefore, to improve the 
performance of PSO in this paper, it is combined with 
the multiple crossover and mutation operator to update 
the particles’ position. In this method, the multiple 
crossovers are developed to modify the converging 
process; and also the mutation operator is used to leap 
from any possible local optima. In the following, the 
concepts of the PSO, multiple crossover and mutation 
operator are introduced and in the next section, the 
hybrid of these operators is described. 
 
4. 1. The Concept of Particle Swarm Optimization   
Kennedy et al. [15] originally proposed the PSO 
algorithm for optimization. PSO is a population-based 
search algorithm based on the simulation of the social 
behavior of birds within a flock. Although originally 
adopted for balancing weights in neural networks [31], 

PSO soon became a very popular global optimizer, 
mainly in problems in which the decision variables are 
real numbers [32-33]. 
 
 
TABLE 5. The comparison of RMSE for objective functions. 

Objective Function Train Test 
Δp 0.08132 0.0731 
η 1.03701 1.0011 
 
 

 
Figure 8. The behavior of GMDH type neural network model 
for the pressure drop of the training and testing data. 
 
 

 
Figure 9. The behavior of GMDH type neural network model 
for the efficiency of the training and testing data. 

 
 
In PSO, particles are “flown” through the hyper-

dimensional search space. Changes to the position of the 
particles within the search space are based on the social-
psychological tendency of the individuals to emulate the 
success of other individuals. The position of each 
particle is changed according to its own experience and 
that of its neighbors. Let )(txi

→ denote the position of 
particle pi, at time step t. The position of pi is then 
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changed by adding a velocity )(tvi

→  to the current 
position, i.e.: 

)1()()1( ++=+
→→→

tvtxtx iii
 (12) 

The velocity vector reflects the socially exchanged 
information and, in general, is defined as the following 
formula: 

))(()()1( txxCrtvWtv ibestglobalii

→→→→

−+=+  (13) 

where ]1,0[∈r  is a random value, C is the social 
learning factor and represents the attraction that a 
particle has toward the success of its neighbors, W is the 
inertia weight which is employed to control the impact 
of the previous history of velocities on the current 

velocity of a given particle. bestglobalx
→

 is the position of 
the best particle of the entire swarm [34]. 

 

4. 2. The Concept of the Multiple Crossovers and 
Mutation Operator 
 
4. 2. 1. The Multiple Crossovers   Unlike the 
traditional crossover using only two chromosomes, a 
crossover formula that contains three parent 
chromosomes is used in this study. We assume that 

chromosome )(txi

→
 is randomly selected from the 

population. Also, let ]1,0[∈ρ  be a random 
number. If 

Crossoverp<ρ , then the following multiple 
crossovers are performed to generate a new 
chromosome, 

))()()(2()()( 21 txtxtxtxtx iiiii

→

−

→

−

→→→

−−+= σ  (14) 

where ]1,0[∈σ  is a random value. If Crossoverp≥ρ , the 
crossover operation is not performed. 
 
4. 2. 2. The Mutation Operator     The mutation 
operator provides a possible mutation on some chosen 

chromosomes )(txi

→
. Also, let ]1,0[∈ϑ  be a random 

number. If 
Mutationp<ϑ , then the following mutation 

operator is performed to generate a new chromosome, 

κξ ×+=
→→

)()( txtx ii  (15) 

where ]1,0[∈ξ  is a random value and κ  is a positive 
constant. If Mutationp≥ϑ , no crossover operation is 
performed. 
 

 
Figure 10. The flow chart of the hybrid of PSO, multiple 
crossovers and mutation operator. 
 
 
 
4. 3. The Hybrid of PSO, Multiple Crossover and 
Mutation Operator       The flow chart of the hybrid 
of PSO, multiple crossover and mutation operator is 
shown in Figure 10. In the start of each iteration, two 
random numbers between zero and one are considered    
( ρ  and ϑ ) for each particle. If Crossoverp<ρ  or 

Mutationp<ϑ , then the multiple crossovers or the 
mutation operator will be performed respectively. 
However, if  Crossoverp≥ρ  and Mutationp≥ϑ , this 
particle will be enhanced by PSO. 
 
4. 4. The Hybrid of PSO and Multiple Crossovers 
and Mutation Operator for Multi-Objective 
Problems     Optimization problems that have more 
than one objective function are common in every field 
or area of knowledge. In such problems, the objectives 
conflicting with each other are optimized normally, 
which means that there is no single solution for these 
problems. Instead, we aim to find proper "trade-off" 
solutions that represent the best possible compromises 
among the objectives. PSO is a heuristic search 
technique [17] that simulates the movements of a flock 
of birds which aim to find food. The relative simplicity 
of PSO and the fact that it is a population-based 
technique have made it a natural candidate extended for 
multi-objective optimization. Moore and Chapman 
proposed the first extension of the PSO strategy for 
solving multi-objective problems in an unpublished 
manuscript in 1999 [35]. After this early attempt, a great 
interest in extending PSO has been aroused among 
researchers, but interestingly, the next proposal was not 
published until 2002. Nevertheless, there are currently 
different proposals of multi-objective PSOs reported in 
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the specialized literature. The problems are of the 
following type : 

Minimize )](),...,(),([:)( 21

→→→→→

= xfxfxfxf k
 (16) 

Subject to: 

mixgi ,...,2,10)( =≤
→

 

 

(17) 

pixhi ,...,2,10)( ==
→

 (18) 

where T
nxxxx ],...,,[ 21=

→
 is the vector of decision 

variables, kiRRf n
i ,...,1,: =→  are the objective 

functions and pjmiRRhg n
ji ,...,1,,...,1,:, ==→  

the 
constraint functions of the problem. To describe the 
concept of optimality, we will introduce next a few 
definitions, as follows: 

• Dominance: Given two vectors kRyx ∈
→→

,  we say 

that 
→→

≤ yx  if ii yx
→→

≤  for ni ,...,1=  and that
→

x

dominates 
→

y  (denoted by 
→→

yx p ) if 
→→

≤ yx  and
→→

≠ yx . 
• Non-Dominance: We say that a vector of decision 

variables nRx ⊂∈
→

χ  is non-dominated with respect 

to χ , if there does not exist another χ∈′
→

x  such that

)()(
→→→→

′ xfxf p . 
• Pareto-optimal: We say that a vector of decision 

variables nRFx ⊂∈
→

∗  (F is the feasible region) is 
Pareto-optimal if it is non-dominated with respect 
to F. 

• Pareto Optimal Set: The Pareto-optimal Set ∗p is 

defined by: }|{ optimalparetoisxFxp −∈=
→→

∗ . 
• Pareto Front: The Pareto Front ∗pF is defined by: 

}|)({ ∗
→→→

∗ ∈∈= pxRxfpF k . 
Thus, the Pareto optimal set of the set F of all the 
decision variable vectors are determined in such a way 
that satisfies Equations (16) and (17). However, note 
that all the Pareto optimal set is not normally desirable 
or achievable in practice (e.g., it may not be desirable to 
have different solutions that map to the same values in 
the objective function space). In order to apply the PSO 
strategy for solving multi-objective optimization 
problems, the original scheme obviously has to be 
modified. The solution set of a problem with multiple 
objectives does not consist of a single solution (in the 
global optimization). Instead, in multi-objective 
optimization, we aim to find a set of different solutions 
(the so-called Pareto optimal set). When solving single-

objective optimization problems, bestglobalx
→  is used as 

a leader to update particles’ position. However, in the 
case of multi-objective optimization problems, each 
particle might have a set of different leaders from which 
just one can be selected in order to update its position. 
Such a set of leaders is usually stored in a different 
place from the swarm, that we will call "external 
archive": This is a repository in which the non-
dominated solutions found so far are stored. However, if 
all non-dominated solutions are retained in the archive, 
then the size of the archive increases very quickly. This 
is an important issue because the archive has to be 
updated at each generation. Thus, this update may 
become very expensive, computationally, if the size of 
the archive grows too much. Therefore, the archive 
tends to be bounded, which makes necessary the use of 
an additional criterion to decide which non-dominated 
solutions to retain. 

In this paper, it is an adopted ε-elimination 
technique to prune the archive. In this approach, the 
entire particles in the archive have a neighborhood 
radius that is equal to ε and if a particle has a distance 
fewer than ε to another, the particle will be eliminated in 
the objective function space. Here, the following 
equation is used to determine ε: 

generationmaximum
t

×
=

σ
ε  (19) 

where t is the time step and σ  is a positive constant. 
The contents of the external archive are also reported as 
the final output of the algorithm. In this paper, we 
describe a leader selection technique that is based on the 
density measures. For this propose, a neighborhood 
radius for each particle in archive is defined. Then, the 
number of these particles’ neighborhoods is calculated 
in the objective function space. The particle that has 
fewer number of neighborhood is preferred as leader. 

 
 

5. MULTI-OBJECTIVE OPTIMIZATION OF CYCLONE 
SEPARATORS USING THE HYBRID OF PSO, 
MULTIPLE CROSSOVERS AND MUTATION 
OPERATOR 

 
In order to investigate the optimal performance of the 
cyclone separators in different geometrical parameters, 
the polynomial neural network models obtained in 
Section 3 are now deployed in a multi-objective 
optimization procedure. In the MO hybrid algorithm, 
the inertia weight W is nonlinearly decreased over time 
by the following equation: 

5.0
211 )()(

generationmaximum
tWWWW ×−−=  

(20) 

and C  is nonlinearly increased over time as follows: 
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2)()(
generationmaximum
tCCCC fii ×−−=

 
(21) 

where 25.0,75.0 21 == WW , ,0=iC  and 5.2=fC . The 
related variables used in the multiple crossovers and 
mutation operator are: ,7.0=Crossoverp  ,2.0=Mutationp  

and 05.0=κ . Furthermore, the term )(tv i

→

 is limited to 
the range ]1,1[ +−  and if the velocity violates this range, 
a random number from ]1,0[  is multiplied by it. Based 
on the observation of the movement of the Pareto front, 
the population size is set to 100 and the maximum 
iteration is also set to 100. The two conflicting 
objectives in this study are ∆p and η which have to be 
simultaneously optimized with respect to the design 
variables (S /D), (De/D), (Lup/D) and (LDown/D). The 
multi-objective optimization problem can be formulated 
in the following form: 

 

Maximizethe Collection Efficiency (η) = ),,,(1 D
L

D
L

D
D

D
Sf Downupe  

Minimize the Pressure Drop (∆p) =  ),,,(2 D
L

D
L

D
D

D
Sf Downupe  

Subject to   725.19.0 1 ≤=≤
D
Sx

             
 (22) 

6.0125.0 2 ≤=≤
D
D

x e   

775.2875.0 3 ≤=≤
D

L
x up   

775.2875.0 4 ≤=≤
D

Lx Down

 
 

The variable in Equation (22) is the maximum or 
minimum value having a standard cyclone. Figure 11 
depicts the obtained non-dominated optimum design 
points as a Pareto front of those two objective functions. 
There are five optimum design points, namely, A, B, C, 
D and E whose corresponding design variables and 
objective functions are shown in Table 6. These points 
clearly demonstrate tradeoffs in objective functions, 
pressure drop and collection efficiency, from which an 
appropriate design can be compromisingly chosen. It is 
clear from Figure 11 that all the optimum design points 
in the Pareto front are non-dominated and could be 
chosen by a designer as an optimum cyclone separator. 
Evidently, choosing a better value for any objective 
function in the Pareto front would cause a worse value 
for another objective. The corresponding decision 
variables of the Pareto front shown in Figure 11 are the 
best possible design points so that if any other set of 
decision variables is chosen, the corresponding values 
of the pair of objectives will locate a point inferior to 
this Pareto front. In fact, such inferior area in the space 
of the two objectives is bottom/right side of Figure 11.  
In Figure 11, the design points A and E stand for the 

best pressure drop and the best collection efficiency, 
respectively. Moreover, the other optimum design 
points, B and D can be simply recognized from Figure 
11. The design point, B exhibits important optimal 
design concepts. In fact, optimum design point B 
obtained in this paper exhibits an increase in the 
pressure drop (about 6.1%) in comparison with that of 
point A, while its efficiency improves about 20.3 % in 
comparison with that of A. Similarly, optimum design 
point D exhibits a decrease in efficiency (about 14.5%) 
in comparison with that of point E, while its pressure 
drop improves about 38 % in comparison with that of E. 
Table 6 shows the maximum and minimum collection 
efficiency obtained from the minimum and maximum of  
(De/D), (Lup/D), and (LDown/D). These results are 
compatible with those of Zhu et al. [4] and Lim et al. 
[36]. It means that a decrease in De/D, Lup/D, and 
LDown/D leads to an increase in the collection efficiency 
and pressure drop. It is now desired to find a trade-off 
optimum design point compromising both objective 
functions. This can be achieved by the method 
employed in this paper, namely, the mapping method 
(normalization method).  
 
 
TABLE 6. The values of objective functions and their 
associated design variables of the optimum points. 
Point S/D De /D

 
Lup /D

 

LDown /D
 

∆p /.5ρ v2 η (%) 

A 0.900 0.500 2.775 2.775 6.475 45.549 

B 0.900 0.600 2.775 2.011 7.076 56.095 

C 1.170 0.125 2.775 1.297 9.831 79.990 

D 1.725 0.125 2.775 0.905 12.516 89.374 

E 1.725 0.125 0.900 0.875 16.277 97.138 

 
 
 

 
Figure 11. The obtained non-dominated optimum design 
points as a Pareto front of those two objective functions based 
on proposed hybrid algorithm. 
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In this method, the values of objective functions of 
all non-dominated points are mapped into interval 0 and 
1. Using the sum of these values for each non-
dominated point, the trade-off point simply is one 
having the minimum sum of those values. 
Consequently, optimum design point C is the trade-off 
point obtained from the mapping method. 

The Pareto front obtained from the proposed method 
(Figure 11) has been superimposed with the Pareto front 
of multi-objective genetic algorithm, NSGA II [37], and 
the corresponding CFD simulation results in Figure 12. 
It can be clearly seen from this figure that the proposed 
Pareto front lies on the best possible combination of the 
objective values of CFD data and achieves better 
objective functions than NSGA II for the present case 
study (cyclone separators), which demonstrate the 
effectiveness of this investigation in obtaining the 
optimal Pareto front.  

In a post numerical study, the design points of the 
obtained Pareto front have been re-evaluated by CFD. It 
should be noted that the optimum design points of the 
MOPSO method are not included in the training and 
testing sets using GMDH-type neural network which 
makes such re-evaluation sensible. The results of such 
CFD analysis re-evaluations have been compared with 
those of numerical results using GMDH polynomials in 
Table 7. As seen, the optimum GMDH data agree well 
with the CFD results. Shi et al. [38] found that for the 
optimization problems with a large number of 
parameters and objective functions, a limited number of 
CFD evaluations are not sufficient. However, such a 
good agreement between network and CFD re-
evaluation data in this paper is due to the large number 
of CFD simulations. 

In fact, we have studied a problem with two 
objective functions and four design variables with 81 
different designs which are sufficient to cover the 
domain of different designs.  
 
 

 
Figure 12. The comparison among the Pareto front obtained 
from the proposed method, NSGA II, and the corresponding 
CFD simulation results. 

TABLE 7. Re-evaluation of the obtained optimal Pareto front 
using CFD. 

Points 
∆p /.5ρ v2 η (%) 

GMDH CFD Error (%) GMDH CFD Error (%) 

A 6.475 6.201 -4.41 45.549 43.234 -5.35 

B 7.076 6.821 -3.73 56.095 53.919 -3.89 

C 9.831 10.042 2.10 79.990 82.030 2.56 

D 12.516 12.933 3.22 89.374 92.851 3.77 

E 16.277 16.090 -1.16 97.138 98.336 1.35 

 
 
6. CONCLUSION 
 
Two different polynomial relations for the collection 
efficiency and pressure drop have been found by 
evolved GS-GMDH type neural networks using some 
experimentally validated CFD simulations for input–
output data of the cyclone separators. The derived 
polynomial models have been used in the MOPSO 
optimization process; therefore, some interesting 
informative optimum design aspects have been revealed 
for the cyclones. The Pareto front of the hybrid of 
MOPSO and NSGA II methods have been compared. It 
was illustrated that MOPSO Pareto front lies on the best 
possible combination of the objective values of CFD 
data and achieves better objective functions than NSGA 
II for the present case study.  
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  چکیده
 

   

هاي سیکلونی و به منظور رسیدن به  اي براي جداکنندهدر این تحقیق، یک الگوریتم بهینه سازي چند هدفی سه مرحله
سیکلونی  ي جداکننده ي در یک مجموعه ηو بازده مجموع  p∆ابتدا افت فشار . هاي طراحی در نظر گرفته شده است هدف

به  η و p∆براي مدل سازي  GMDHعصبی نوع  سپس، دو مدل متا بر اساس شبه .شود به صورت عددي محاسبه می
بهینه  ي از یک الگوریتم چند هدفی بر پایه. هاي هندسی در نظر گرفته شده است عنوان توابع مورد نیاز و با توجه به ویژگی

ها و با توجه به دو تابع هدف متضاد  سازي تجمعی ذره، ادغام چندگانه و عملگر جهش براي بهینه سازي پارتویی سیکلون
و الگوریتم  MOPSOسازي چندهدفه پارتویی دو مدل متا به دست آمده از  با مقایسه نتایج بهینه. استفاده شده است
  .هاي سیکلونی به دست آمده است طراحی بهینه در عملکرد جداکننده ، روابط مهمی برايNSGA IIژنتیک چند هدفه 
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