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A B S T R A C T  
   

A redundancy allocation problem (RAP) is a well-known NP-hard problem including the selection of 
elements and redundancy levels to maximize the system reliability under various system-level 
constraints. In many practical designing situations, reliability apportionment turns to be complicated 
because of the presence of several conflicting objectives that cannot be combined into a single-
objective function. As in telecommunications, manufacturing and power systems are becoming more 
and more complex. It is becoming increasingly important to develop efficient solutions to the RAP, 
while requiring short developments schedules and very high reliability. In this paper, a new hybrid 
multi-objective imperialist competition algorithm (HMOICA), based on imperialist competitive 
algorithm (ICA) and genetic algorithm (GA) is proposed in multi-objective redundancy allocation 
problems. In the multi-objective formulation, system reliability is maximized in which cost and volume 
of the system are minimized simultaneously. In addition, a response surface methodology (RSM) is 
employed for parameter tuning of ICA. The proposed HMOICA has also been validated by some 
examples with analytical solutions. It shows its superior performance compared to a non-dominated 
sorting genetic algorithm (NSGA-II) and Pareto archive evolution strategy algorithm (PAES). 
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1. INTRODUCTION1 

 
In many practical designing situations, reliability 
apportionment is complicated because of the presence 
of several (mutually) conflicting objectives which 
cannot be combined into a single-objective function. For 
instance, a designer needs to minimize cost, weight and 
volume of system, as well as maximizing system 
reliability simultaneously. Therefore, a multi-objective 
function becomes an important aspect in the reliability 
design of engineering systems. The reliability of a 
multi-stage system can be improved using more reliable 
components and adding redundant components in 
parallel. Redundancy allocation problem (RAP) [1, 2], a 
well known reliability optimization problem, is essential 
to design any kind of high-tech complicated system 
including many components and very stringent 
reliability requirements such as electrical power 
                                                        
1 * Corresponding Author Email: tavakoli@ut.ac.ir (R. Tavakkoli-
Moghaddam) 

systems, transportation systems, safety systems, 
telecommunication systems, satellite systems and so on.  
Basically, it involves allocating redundant components 
into the system to obtain an optimal system design 
configuration. As we consider more components, the 
cost of the system increases. This trade-off requires the 
problem evaluation in the multi-objective context. In 
multi-objective problems, a set of Pareto solutions are 
obtained instead of single optimal solution. As 
complexity of problem increases, exact algorithms 
usage may be inefficient. Then, using a multi-objective 
meta-heuristic algorithm (e.g., genetic algorithm, tabu 
search, ant colony, particle swarm or other problem 
specific heuristics) is more appropriate to approximate 
the Pareto solutions of the problem.   

Regarding the reliability allocation category, Hwang 
et al. [1] developed mathematical models for three 
criteria, named (1) minimum replacement cost-rate, (2) 
maximum availability and (3) lower bound on mission 
reliability. The corresponding solutions are obtained 
using three methods for multi-criteria decision making, 
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named as (1) strictest-selection, (2) lexicographic, and 
(3) the waltz technique, respectively. A multiple 
objective formulation of a reliability allocation problem 
to maximize system reliability and minimize system 
cost has been considered by Sakawa [2] using surrogate 
worth tradeoff methods. Inagaki et al. [3] used 
interactive optimization to design a system with 
minimum cost and weight and maximum reliability.  
Sakawa [4] solved a multiple objective reliability and 
RAP using an approximate technique based on the 
surrogate worth trade-off method. Nakagawa [5] 
suggested a combined strategy of narrowing the feasible 
region, generating Pareto-optimal solutions, and finally 
selecting the best Pareto-optimal solution based on the 
designers' experiences. Later on, Sakawa [6] dealt with 
the mixes integer programming problem (reliability and 
redundancy allocation) and used a combination of the 
surrogate worth of trade-off method and the dual 
decomposition method while still treating the integer 
variables as continuous variables.  

Sakawa [7] proposed a technique called SPOT, 
which is basically an interactive decision-making 
procedure of choosing a preferred solution from a set of 
Pareto-optimal solutions. Misra and Sharma [8] 
provided and exact yet efficient search method to solve 
a wide variety of reliability design problems involving 
integer programming formulation. Misra and Sharma 
[9] proposed a mathematical formulation of a combined 
reliability and RAP with multi-objective optimization 
considering mixed types of redundancy.  

Dhingra [10] presented a multi-objective reliability 
apportionment problem for a series system. His problem 
was a nonlinear mixed integer programming problem 
subjected to several design constraints. Sasaki et al. [11] 
used a fuzzy multiple objective 0-1 linear programming 
method by making use of tolerance in the system 
control parameters. Tabu search meta-heuristic 
algorithm was used to provide solutions to the system 
reliability optimization problem of redundancy 
allocation.  

Mahaparta and Roy [12] considered multi-objective 
reliability optimization problem for system reliability, in 
which reliability enhancement is involved with several 
mutually conflicting objectives. In this paper, a new 
fuzzy multi-objective optimization method is introduced 
and is used for the optimization decision making of the 
series and complex system reliability with two 
objectives. Salazar et al. [13] illustrated the use of 
multi-objective optimization to solve three types of 
reliability optimization problems. These problems have 
been formulated as single objective mixed-integer non-
linear programming problems with one or several 
constraints and solved using mathematical programming 
techniques or special heuristics.  

Tian and Zuo [14] proposed physical programming 
as an effective approach to optimize the system 
structure within this multi-objective optimization 

framework and genetic algorithm (GA) was used to 
solve the proposed physical programming. Coit and 
Konak [15] proposed multiple weighted objectives 
heuristic for system reliability optimization. This 
heuristic was based on a transformation of problem into 
a multi-objective optimization problem and then 
ultimately, transformation into a different single 
objective problem.  

Zhao et al. [16] developed the multi-objective ant 
colony system (ACS) to provide solutions for the 
reliability optimization problem of series-parallel 
systems. This type of problem involves selection of 
components with multiple choices and redundancy 
levels that produce maximum benefits, and is subjected 
to the cost and weight constraints at the system level. 
Tavakkoli-Moghaddam et al. [17] proposed a GA for a 
RAP for the series-parallel system when the redundancy 
strategy can be chosen for individual subsystems. It is 
demonstrated that genetic algorithm is an efficient 
method for solving this type of problems.  

Sajadi and Soltani [18] presented a heuristic 
approach to solve a general framework of serial-parallel 
redundancy problem where the reliability of the system 
is maximized subject to some general linear constraint. 
Computational results show that their proposed heuristic 
approach could provide some promising reliabilities, 
which are fairly close to optimal solutions in a 
reasonable amount of time. Azaron et al. [19] used 
genetic algorithm to solve a multi-objective discrete 
reliability optimization problem in a k dissimilar-unit 
non-repairable cold-standby redundant system. They 
applied a genetic algorithm to solve this multi-objective 
problem with double string using continuous relaxation 
based on reference solution updating.  

Wang et al. [20] proposed RAP as a multi-objective 
optimization problem, in which the reliability of system 
and related designing cost are considered as two 
different objectives. They utilized non-dominated 
sorting genetic algorithm II (NSGA-II) to solve multi-
objective redundancy allocation problem (MORAP) 
under a number of constraints. Li et al. [21] proposed a 
two-stage approach for solving multi-objective system 
reliability optimization problems. In this approach, a 
Pareto optimal solution set was initially identified at the 
first stage. Quite often there are a large number of 
Pareto-optimal solutions, and it is difficult, if not 
impossible, to efficiently choose the representative 
solutions for the overall problem.  

To overcome this challenge, an integrated multi-
objective selection optimization (MOSO) method is 
utilized at the second stage. Liang and Lo [22] 
developed a variable neighborhood search (VNS) 
algorithm to solve the MORAP. The performance of the 
proposed multi-objective VNS algorithm (MOVNS) 
was verified using three sets of complex instance with 5, 
14 and 14 subsystems, respectively.  
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Zio and Bazzowe [23] considered the multi-
objective optimization of system redundancy allocation 
and used recently introduced Level Diagrams technique 
for graphically representing the resulting Pareto front 
and set. Soylu and Ulusoy [24] considered a bi-
objective redundancy allocation problem on a series-
parallel system with component level redundancy 
strategy. Having found the Pareto solutions, they 
applied a well-known sorting procedure, namely 
UTADIS, to categorize the solutions into preference 
ordered. Lins and Droguett [25] considered a multi-
objective genetic algorithm coupled with discrete event 
simulation to solve RAPs in systems subjected to 
imperfect repairs.  

Laxminarayan Sahoo et al. [26] formulated four 
different multi-objective reliability optimization 
problems with the help of interval mathematics and 
proposed order relations of interval valued numbers. 
Then, these optimization problems were solved by 
advanced GA and the concept of Pareto optimality. 
Sadjadi and Soltani [27] developed a honey bee mating 
optimization algorithm which could efficiently compete 
with the other existing methods in the literature.  
Chambari et al. [28] developed a bi-objective RAP 
(BORAP). The model included non-repairable series-
parallel systems in which the redundancy strategy was 
considered as a decision variable for individual 
subsystems. To solve the model, two effective multi-
objective meta-heuristics, namely NSGA-II and multi-
objective particle swarm optimization (MOPSO) were 
proposed. 

Safaie et al. [29] investigated the performance of a 
particle swarm optimization (PSO) algorithm with 
annealing-based PSO(APSO) to solve redundant 
reliability problem with multiple component choices 
(RAP-MCC). This problem aims to choose an optimal 
combination of components and redundancy levels for a 
system with a series-parallel configuration that 
maximizes the overall system reliability. Chern [30] 
showed that simple RAP in series system with linear 
constraints is NP-hard. This concept has promoted 
recent researches to develop meta-heuristic methods to 
achieve approximate solution of acceptable quality in 
reasonable computational time.  

Meta-heuristics can also be used to solve complex 
discrete optimization problems. These methods provide 
more flexibility and require fewer assumptions on the 
objective function and the associated constraints. 
Imperialist competitive algorithm (ICA) is a new meta-
heuristic introduced by Atashpas-Gargari and Lucas 
[31] to solve continuous optimization problems.  

According to all of the above, it is concluded that 
one or double objective function models have been 
mainly developed in the area of RAP. But in the real 
world, problems with more than two objective functions 
may be defined. Therefore, the novelty in this paper is 
to consider three main objective functions to develop 

such kinds of models as mentioned above. In addition, 
for the first time, imperialist competitive algorithm has 
been extended while the tuning process of operators is 
being utilized using response surface methodology 
(RSM). This context provides an ability to consider 
three states of system including stand-by, active 
redundancy and no redundancy in an integrated and 
uniformed model. We propose a new hybrid meta-
heuristic method based on the ICA and GA to find near 
optimal solution for the above mentioned problem. We 
do necessary modifications on the ICA to use it for our 
discrete problem.  
 
 
2. PROBLEM FORMULATION 
 
The multi-objective model of the series-parallel 
redundant reliability system with s sub-systems and two 
separable linear constraints is considered and presented 
as the following integer nonlinear programming 
problem [20, 32]. In this model, the components within 
the same subsystem are of the same type. 
 
2. 1. Notations 
s              Number of subsystems 

ni 
Number of components used in subsystem i 
(i=1,2,…,S) 

N Set of ni (n1,n2,… ,ns) 

nmax, i Upper  bound  for ni 

mi 
Number of available component choices for a 
subsystem i (i=1,2,…,s) 

zi Index of component choice used for a subsystem i 
(i=1,2,…,s) 

z              Set of zi (z1, z2,..., zs) 

t Mission time 

R(t; z, 
n) 

System reliability at time t for designing vectors z 
and n 

ri(t) Reliability at time t for the j-th available component 
for subsystem i     Scale for the exponential distribution 

C, V System-level constraint limits for cost and volume 

cij, wij, 
Vij 

Cost, weight and volume for the j-th available 
component for the subsystem i 

 
 
2. 2. Mathematical model 

Max [Min [(1- 1 −           )   × (     )   ×  
(∑             (     ! ) )   ]] 

(1) 

Min ∑ ∑                  (2)  



R. Azizmohammadi et al.  / IJE TRANSACTIONS C: Aspects   Vol. 26, No. 9, (September  2013)   1031-1042                           1034 
 Min ∑ ∑                  (3) 

s.t. 

zi1+zi2+zi3=1 
(4)  

λi=∑             (5)    ≤M    (6) ∑ ∑                ≤    (7)   ∑ ∑                ≤    (8) ∑ ∑                ≤    (9)   = ∑           (10) ∑         = 1  (11) 

yij=0 OR 1 (12) 

zi =0 OR 1 (13) 

zi2=0 OR 1 (14) 

zi3=0 OR 1 (15) 

M is very large  number     ≥ 0 & integer; n ≥ 0 & integer ;    ≥ 0 & integer  
(16) 

With respect to Equation (1), the main objective is to 
determine the redundancy strategy, component type and 
the quantity of components in each subsystem to 
achieve maximization of minimum reliability in system. 
Objectives are to minimize the cost and volume of 
system, in Equations (2) and (3), respectively. Equation 
(5) shows calculation of exponential parameter in the i-
th sub-system. Equation (6) ensures that if the j-th 
component does not belong to the i-th sub-system, it is 
not considered in calculation. Equations (7) to (9) 
consider the available cost, volume and weight, 
respectively. Equation (10) shows the number of 
component in the i-th sub-system. Constraints (11) and 
(12) show that     has just two values. If the j-th 
component belongs to i-th sub-system     is 1; 
otherwise, is 0. Constraints (12) and (13) show three 
states of system. If zi1=1 system is in active redundancy 
mode. If zi2=  1 system is in  no-redundancy and if 
zi3=1 system is in stand-by mode. Constraint (16) 
shows number of components in each sub-system and 
number of component are integer bigger than 0.   

3.  PROPOSED HYBRID MULTI-OBJECTIVE 
IMPERIALIST COMPETITIVE ALGORITHM  
 
The exact techniques for reliability, optimization 
problems are not necessarily desirable because of the 
existence of some difficulties to obtain the exact 
techniques. Although imperialist competitive algorithm, 
abbreviated as ICA, was basically introduced in the 
social sciences, it has been recently applied in the field 
of engineering. Hence, in addition to develop 
mathematical model, comparing the results to other 
well-known techniques in terms of comparison metrics 
and running time is also considered in this paper. A 
major focus of this paper is to attempt reliability 
optimization using the proposed hybrid multi-objective 
imperialist competitive algorithm (HMOICA). This 
algorithm can be considered as a very practical tool to 
solve such complex problems successfully. 
 
3. 1. Generating Initial Empires     Each solution in 
the imperialist competitive algorithm (ICA) is in a form 
of an array. Each array consists of variables which 
should be optimized. In GA terminology, this array is 
called chromosome. However, in this paper, we use the 
term "country" for this array. In an N-dimensional 
optimization problem, a country is a 1×N array. This 
array is defined by: country=[P1,P2,P3,…,PN], where 
Pi is the variable to be optimized. Each variable in a 
country denotes a socio-political characteristic of a 
country. From this point of view, the algorithm searches 
for the best country that is the country with the best 
combination of socio-political characteristics (e.g., 
culture, language and economic policy) [33]. After 
generating countries, a non-dominance technique and 
crowding distance are used to rank and select the 
population fronts, and then the members of front one are 
saved in archive. Consequently, the best solutions in 
terms of the non-dominance and crowding distance are 
selected from population as the imperialists and the 
remaining countries are colonies. For calculating the 
cost value of each imperialist, the value of each 
objective function is obtained for each imperialist. 
Then, the cost value, if each objective function is 
computed by:   , =

   ,       ,       ,      ,      ,       ,    (17) 

where Ci,n is the normalized value of  objective function 
i, for imperialist n,   ,    is the value of the objective 
function I for imperialist n,    ,    ,  ,      ,   and  ,      ,    are 
the best, maximum and minimum values of objective 
function I in each iteration, respectively. Finally, the 
normalized cost value of each imperialist Cn is obtained 
by:   = ∑   ,       (18) 
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where r is the number of objective function. The power 
of each Imperialist is calculated after obtaining the 
normalized cost as shown below and the colonies 
distributed among the imperialist according to power of 
each imperialist country.   =    ∑             (19) 

Then, the initial number of colonies of an empire will be 
as follows: 

NCn=round{  ,    } (20) 

where NCn is the initial number of colonies of the n-th 
imperialist, and Ncol is the number of all colonies. We 
randomly select NCn of colonies and give them for each 
imperialist. Imperialist with bigger power has a greater 
number of colonies and vice versa. 
 
3. 2. Moving the Colonies of an Empire toward the 
Imperialist (Assimilating)     After dividing colonies 
between imperialists, colonies are moved toward their 
related imperialist. This movement is shown in Figure 1, 
in which X is the distance between colony and 
imperialist. α is a random variable with a uniform (or 
any proper) distribution between 0 and β×X , in which β 
is a number greater than 1. The direction of movement 
is shown by ө, which is a uniform distribution between -
 .ץ and ץ
 
3. 3. Crossover between Colonies     Moreover, 
colonies share their information by crossover to do 
themselves better. The best colonies have the most 
chance than others to share its information because 
colonies are selected in this section by tournament 
selection. The population percent, which is sharing 
information, is shown by P-Crossover. 
 
3. 4. Exchanging Positions of the Imperialist and 
a Colony     First, the best colony which is nominated to 
replace imperialist with, is located at the top of list, 
known as in front one, in term of crowding distance. 
 
 

 
Figure 1. Moving colonies toward the imperialist with a 
random angle ө 

If the imperialist do not be dominated by the best 
colony, the second colony will be selected regarding to 
crowding distance. This procedure is continued until in 
front one gets empty, and imperialist will be substituted 
to colony which has high crowding distance. Front one 
list is sorted according to crowding distance while the 
high is nominated as imperialist. 
 
3. 5. Total Power of an Empire     The total power of 
an empire is mainly affected by the power of the 
imperialist country; however, the power of the colonies 
of an empire has an indigent effect on the total power of 
the empire. Therefore, the equation of the total cost is 
shown below [34, 35].     = cost (            )+ ζ mean (colonies of empire ) (21) 

where    denotes the total cost of the n-th empire and 
zeta (ζ) is positive number which is less than 1. The cost 
of imperialist and colonies are calculated by Equations 
(17) and (18). The total power of the empire should be 
determined by the imperialist when the value of ζ is 
small. If it goes up, it will increase the role of the 
colonies in determining the total power of an empire. 
 
3. 6. Imperialistic Competition       The power of a 
weaker empire will reduce, and the power of more 
powerful ones will rise in the imperialistic competition. 
All empires competition is to take the possession of the 
weakest colony of the weakest empire. On the other 
hand, first choosing some (usually one) of the weakest 
colonies if the weak empire and then the possess of 
these colonies (or this colony) are given to the winner 
imperialist among all empires in the imperialistic 
competition. In this competition, the most powerful 
empires will not definitely possess these colonies; but, 
these empires will be probably more to possess them. 
This competition is modeled by just selecting one of the 
weakest colonies of the weakest empires and then for 
calculating the possession probability of each empire 
first the normalized total cost is obtained as follows:      =max{   }-    (22) 

where      is the normalized total cost of n-th empire, 
and     is the total cost of n-th empire. Having the 
normalized total cost, the possession probability of each 
empire is calculated by:    =     ∑              (23) 

Following that, the roulette wheel method is used to 
assign the mentioned colony to one of empires. 
 
3. 7. Revolution       In each decade, revolutions are 
performed on some of colonies, and all of the 
imperialists. The revolution rate in this paper is shown 
by P-Revolution. 
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3. 8. Archive Adaption       Ranking and sorting is 
done by the non-dominated and crowding distance for 
each empire. Then, the members of front one of each 
empire are selected in order to be added to the archive. 
Finally, if front one is kept, the members are selected after 
ranking and sorting solution in the archive. 
 
3. 9. Eliminating the Powerless Empires   
Powerless empires will collapse and their colonies are 
distributed among other empires in the imperialistic 
competition. In this paper, when an empire loses its 
colonies, we consider it is collapsed. 
 
3. 10. Stopping Criteria      In our proposed model, 
the state in which there is only one empire between all 
countries is considered as stopping criterion. 
 
 
4. EXPERIMENTAL RESULTS 
 
The performance of the proposed MOICA is compared 
to two well-known multi-objective evolutionary 
algorithms (MOEAs), namely NSGA-II and PAES.  
 
4. 1. NSGA-II    Non–dominated sorting genetic 
algorithm II (NSGA-II) is one of the most well-known 
and efficient multi-objective evolutionary algorithms 
introduced by Deb et al. [35]. Ranking and selecting the 
population fronts are performed by non-dominance 
technique and a crowding distance. Also, the algorithm 
uses crossover and mutation operators to generate 
offspring are combined together. Finally, the best 
solution in terms of non-dominance and crowding 
distance is selected from combined population as the 
new population. The non-dominated technique, the 
calculation of crowding distance, and crowding 
selection operator will be explained as follows. 

Assume that there are r objective functions. When 
the following conditions are satisfied, the solution X1 
dominates solution X2. If X1 and X2 do not dominate 
each other, they are placed at the same front. For all 
objective functions, solution X1 is not worse than 
another solution X2. For at least one of the r objective 
functions X1 is really better than X2. Front number 1 is 
made by all solutions that are not dominated by any 
other solutions. Also front number 2 is built by all 
solutions that are only dominated by solutions in front 
number 1. 

 
4. 1. 1. Crowding Distance      The crowding distance 
is a measure for density of solutions. The value of the 
crowding distance presents an estimate of density of 
solutions surrounding a particular solution. The measure 
of crowding distance is used in NSGA-II is shown in 
Equation (24). The solutions having a lower value of the 
crowding distance are preferred over solutions with a 
higher value of crowding distance. 

   =  ∑   ,       ,      ,      ,      ,      ,         (24) 

where r is the number of objective functions.   ,    is the 
k-th objective function of the(i+1)-th solution and   ,     
is the k-th objective function corresponding to the (i-1)-
th solution after sorting the population according to 
crowding distance of the k-th objective function.   ,      ,    and   ,       ,   are the maximum and minimum 
values of objective function k, respectively. 
 
4. 1. 2. Tournament Selection Operator     A binary 
tournament selection procedure has been applied for 
selecting solution for both the crossover and mutation 
operators. At first, select two solutions among the 
population size, then the lowest front number is selected 
if the two populations are from different fronts. If they 
become from the same front, the solution with the 
highest crowding distance is selected. 
 
4. 2. Pareto-Archive Evolution Strategy     The 
Pareto-archive evolution strategy (PAES) is a multi-
objective meta-heuristic algorithm [36, 37]. PAES uses 
a simple (1+1) local search evolution strategy to find 
diverse solution in Pareto optimal set. This algorithm 
begins by initialization of a single solution, which is 
evaluated using the multi-objective cost function. In 
each iteration, a new solution is generated by using 
mutation operator. Then, the new solution and current 
solution are compared together based on what is 
mentioned by Corneand Knowels [37]. Afterward, the 
new solution and archive are updated. This process is 
continued until the iteration number is met. 
 
 
5. PARAMETERS SETTING 
 
It is usual if the quality of an algorithm is significantly 
influenced by the values of its parameters. In this 
section, appropriate tuning of the parameters has been 
carried out for optimizing the behavior of the proposed 
algorithms. For this purpose, RSM is employed. RSM is 
defined as a collection of mathematical and statistical 
method-based experiential, which can be used to 
optimize processes. Regression equation analysis is 
used to evaluate the response surface model. First of all, 
parameters that statistically affect the algorithm results 
are recognized. To select the values that result in 
solutions with high quality, we consider problems in 
two different sizes including Small-S and Large-L sizes. 
In order to identify significant parameters, two levels 
for each parameter are considered. Each factor is 
measured at two levels, coded as −1 when the factor is 
at low level (L) and +1 when the factor is at high level 
(H). The coded variable are defined as follows: 
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(25)   =                  

where xi and ri are coded and real variables, 
respectively. h and l represent high and low levels of a 
factor.  

Factors and their levels are shown in Table 1. 
Having developed regression models for each problem 
size separately, tuned parameters of proposed MOICA 
have been shown in Table 2. 
 
 
TABLE 1. Parameters and their levels for small and large 
sizes 

Factors 

 Coded level 

 -1  0  +1 

 S L  S L  S L 

n-Pop  100 150  150 225  200 300 

N-imp  4 8  6 10  8 12 

PA  0.3 0.4  0.5 0.6  0.7 0.8 

PC  0.2 0.3  0.4 0.5  0.6 0.7 

PR  0.1 0.2  0.2 0.3  0.3 0.4 

ξ  0.1 0.1  0.15 0.15  0.2 0.2 

β  1 1  2 2  3 3 

 
 

TABLE 2. Tuned parameters of the proposed MOICA 

Factors 
 Optimal coded value  Optimal real value 

 S L  S L 

n-Pop  0.85 1  193 300 

N-imp  -0.2 -1  5 8 

PA  0.18 0.2  0.54 0.64 

PC  1 0.5  0.6 0.6 

PR  -0.8 0.19  0.12 0.32 

ξ  0.9 -0.5  0.195 0.125 

β  -0.2 0.15  1.8 2.15 

 
 

TABLE 3. Data of example parameters 
Parameter Value 

Cij U~[1,10] 

Wij U~[20,50] 

Vij U~[50,150] 

Cmax 80,300,500 

Vmax 160,600,1000 

Wmax 200,400,600 

t 1h     U~[0,1] 

6. NUMERICAL EXAMPLE 
 
The experiments are implemented for 45 problems. For 
all experiments, the following assumptions are held. 

 
6. 1. Data Generation     Table 3 shows the data 
generation of the parameters. 
 
6. 2. Comparison Metrics    To validate the reliability 
of the proposed ICA, four following comparison metrics 
are taken into account [38]. 
 
6. 2. 1. Quality Metrics    This metric is simply 
measured by putting together the non-dominated 
solutions found by algorithms and the ratios between 
non-dominated solutions are reported. 
 
6. 2. 2. Spacing Metric    We define the spacing metric 
(SM) by:   = ∑ |     |      (   )    (26) 

where di is the Euclidean distance between consecutive 
solutions in the obtained non-dominated set of solutions 
and  ̅ is the average of these distances. This metric 
provides an ability to measure the uniformity of the 
spread of the solution set points. Due to the 
discontinuous test problem, the trade-off surface of 
these problems has some holes and leads to difficulty in 
interpreting this metric. Our approach with this metric is 
identical to the number of non-dominated solutions on 
using the ANOVA method, except that the effects are 
investigated on the spacing metric. 
 
6. 2. 3. Diversi ication Metric     Diversification 
metric (DM) measures the spread of the solution set and 
is defined as: 

)27(  DM= ∑ max (    −     )      

where     −      is the Euclidean distance between non-
dominated solution     and non-dominated    . 
 
6. 2. 4. Mean Ideal Distance     It is used for 
measuring the closeness between Pareto solution and an 
ideal point (0, 0). This mean ideal distance (MID) 
metric is formulated as Equation (28). It is clear that 
less value of the MID is interested. In this equation n 
denotes the number of non-dominated set and f1i and f2i 
denote the first and second objective value of the i-th 
non-dominated solution, respectively. 

MID=∑                 )28(  

All algorithms studied in this paper are coded using 
MATLAB 7.9 and run on a personal computer with a 
1.8 GHz CPU and 1 GB main memory. 
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7. COMPUTATIONAL RESULTS 
 
The proposed MOICA is applied to a number of test 
problems and its performance is compared with NSGA-
II and PAES. Table 4 shows QM and SM comparison 
and Table 5 shows DM and MID comparison. Tables 4 
and 5 list the average values of the abovementioned 

comparison metrics and show that the proposed MOICA 
is superior to NSGA-II and PAES in each test problem.  

The main reason for existing difference between 
NSGA-II and MOICA in quality metric is an additional 
operator in MOICA, called Assimilation, comparing to 
NSGA-II. The above operator improves MOICA to 
search a wider solution space for obtaining better 
solutions. 

 
 

TABLE 4. QM and SM comparison 

Problem No. 
Quality metric (QM)  Spacing metric (SM) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 
P1 0.235 0 0.765  0.827 0.625 0.741 
P2 0.105 0 0.895  0.661 0.495 0.778 
P3 0.250 0 0.750  0.791 0.788 0.920 
P4 0 0 1  0.693 0.785 0.868 
P5 0 0 1  0.571 1.092 0.634 
P6 0 0 1  1.184 0.999 0.881 
P7 0.235 0 0.765  0.778 1.257 0.973 
P8 0.434 0 0.565  0.560 1.036 0.874 
P9 0.347 0.217 0.434  0.733 1.031 0.924 

P10 0.100 0 0.900  1.207 1.120 1.361 
P11 0.272 0 0.727  1.001 0.878 1.287 
P12 0.292 0 0.708  0.977 1.360 1.220 
P13 0.190 0 0.809  0.940 0.977 1.481 
P14 0.167 0.083 0.750  0.651 1.084 1.116 
P15 0.059 0.294 0.647  1.059 1.322 0.810 
P16 0 0 1  0.942 0.965 0.978 
P17 0 0 1  0.670 0.916 0.980 
P18 0.118 0 0.882  0.986 1.478 1.041 
P19 0 0 1  0.586 0.911 0.642 
P20 0 0 1  0.672 0.501 0.905 
P21 0 0 1  0.517 1.299 0.811 
P22 0 0 1  0.586 0.593 0.878 
P23 0 0 1  0.737 0.402 0.752 
P24 0.200 0 0.800  0.826 0.514 0.953 
P25 0 0 1  0.495 1.032 0.427 
P26 0 0.076 0.924  1.230 0.559 0.893 
P27 0 0 1  0.994 0.789 0.806 
P28 0 0 1  0.726 1.119 0.850 
P29 0 0 1  0.632 0.904 0.608 
P30 0 0 1  1.019 1.069 1.071 
P31 0.352 0 0.647  0.721 1.024 0.721 
P32 0.273 0 0.727  0.491 1.151 0.993 
P33 0 0 1  1.039 0.550 0.673 
P34 0 0 1  0.468 1.231 .653 
P35 0.5 0 0.5  1.037 0.509 1.364 
P36 0 0 1  0.013 0.199 1.177 
P37 0 0.250 0.750  0.499 0.298 0.568 
P38 0.333 0.0833 0.583  0.659 0.823 1.044 
P39 0 0 1  1.704 0.285 0.547 
P40 0 0 1  0.892 1.487 0.454 
P41 0 0 1  1.035 0.841 0.963 
P42 0 0 1  0.7051 1.000 0.580 
P43 0 0 1  1.069 0.062 0.711 
P44 0 0 1  0.633 0.968 0.392 
P45 0 0 1  1.240 0.357 1.028 
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TABLE 5. DM and MID comparison 

Problem No. 
Diversity metric (DM)  Mean ideal distance (MID) 

NSGA-II PAES MOICA  NSGA-II PAES MOICA 

P1 1.397 0.996 1.574  0.633 0.632 0.518 

P2 1.102 1.067 1.414  0.704 0.597 0.581 

P3 0.652 0.208 1.414  0.873 0.608 0.242 

P4 0.404 1.125 0.664  0.712 0.872 0.348 

P5 0.203 1.232 0.444  0.339 0.708 0.230 

P6 1.323 1.270 1.087  0.776 0.696 0.523 

P7 0.714 1.268 0.896  0.440 0.674 0.399 

P 8 0.958 1.029 1.169  0.518 0.845 0.538 

P 9 1.063 1.075 1.161  0.575 0.751 0.621 

P10 1.295 0.436 1.381  0.601 0.437 0.247 

P11 0.960 0.943 1.297  0.663 0.762 0.718 

P12 1.105 0.775 1.314  0.536 0.577 0.511 

P13 0.559 0.911 1.414  0.482 0.576 0.287 

P14 0.566 1.012 1.279  0.697 0.731 0.632 

P15 1.160 0.954 1.178  0.762 0.547 0.485 

P16 1.103 0.860 1.478  0.781 0.846 0.500 

P17 0.484 1.021 1.010  0.297 0.481 0.379 

P18 0.733 1.267 0.947  0.479 0.646 0.276 

P19 0.699 0.696 1.184  0.579 0.860 0.554 

P20 0.470 0.122 1.00  0.492 0.992 0.125 

P21 0.110 1.095 0.417  0.519 0.743 0.250 

P22 0.362 0.249 1.043  0.959 0.806 0.365 

P23 0.815 0.443 1.367  0.672 0.519 0.174 

P24 1.066 0.484 0.808  0.692 0.832 0.336 

P25 0.709 1.189 0.749  0.509 0.846 0.364 

P26 1.203 0.445 1.041  0.643 0.563 0.257 

P27 1.081 0.605 0.600  0.696 0.758 0.222 

P28 0.321 1.184 0.891  0.275 0.668 0.250 

P29 0.561 1.109 0.723  0.643 0.832 0.127 

P30 0.604 1.246 0.820  0.518 0.737 0.220 

P31 0.918 1.136 0.751  0.491 0.753 0.459 

P32 0.173 1.009 1.051  0.456 0.724 0.256 

P33 0.724 0.552 0.912  0.847 1.021 0.210 

P34 0.231 0.649 0.656  0.832 1.349 0.243 

P35 1.039 0.512 1.080  0.449 0.749 0.440 

P36 1.042 0.422 1.164  0.798 0.852 0.099 

P37 0.869 1.290 0.834  0.727 0.761 0.397 

P38 0.442 1.042 1.016  0.310 0.364 0.230 

P39 1.174 0.255 0.367  0.673 0.606 0.147 

P40 0.187 1.100 0.562  0.394 0.872 0.027 

P41 1.131 0.855 0.955  0.653 0.590 0.275 

P42 0.289 1.146 0.680  0.467 0.830 0.275 

P43 1.047 0.232 1.191  0.590 0.207 0.340 

P44 0.585 0.958 0.657  0.571 0.880 0.175 

P45 1.058 0.724 0.895  0.624 0.523 0.218 
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8. CONCLUSION 
 
In many practical designing situations, reliability 
apportionment is complicated because of the presence 
of several conflicting objectives which cannot be 
formulated into a single-objective function. In this 
paper, we proposed new hybrid multi-objective 
imperialist competition algorithm (HMOICA) based on 
the ICA and GA for the first time in multi-objective 
RAPs. The proposed HMOICA is validated via 
examples with analytical solutions and shows its 
superior performance when compared to non-dominated 
sorting genetic algorithm (NSGA-II) and Pareto archive 
evolution strategy algorithm (PAES). In this paper, we 
have proposed a method for a RAP as closer as to real-
world cases. However, there are still some gaps to 
address some constraints, such as use of more than one 
type components in each sub-system, using fuzzy set 
theory for weight, cost and volume of components and 
the like that can be considered for future research 
directions. 
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APPENDIX: 

  

 
Figure A-1. Pseudo code of the MOICA. 
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 چکیده
 

  

باشد که شامل انتخاب اجزاء و سطوح افزونگی براي بیشینه می NP-Hardتخصیص اجزاء مازاد یکی از مسائل معروف 
ها،  به دلیل وجود توابع هدف چندگانه در اکثر طراحی. هاي مختلف سیستم استنمودن قابلیت اطمینان  تحت محدودیت

سازي قابلیت اطمینان و در این مدل، سه هدف شامل بیشینه. شوددي قابلیت اطمینان سخت و دشوار میمتضاد، سهم بن
هاي گیرد که براي حل آن، یک الگوریتم تلفیقی چندهدفه جدید برپایه الگوریتمسازي حجم و هزینه مد نظر قرار میکمینه

علاوه بر این از رویه شناسی . شودزاء مازاد پیشنهاد میژنتیک و رقابت استعماري براي اولین بار در مسائل تخصیص اج
الگوریتم پیشنهادي در مقایسه با دو الگوریتم . شودسطح پاسخ براي تنظیم عملگرهاي الگوریتم پیشنهادي استفاده می

NSGA-II و PAES از کارایی بالاتري برخوردار است.  
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