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A B S T R A C T  
   

The effect of magnetic field on an incompressible (Kuvshiniski-type) viscoelastic rotating fluid heated 
from below in porous medium is considered. For the case of stationary convection, magnetic field and 
medium permeability have both stabilizing and destabilizing effect on the thermal convection under 
some conditions whereas rotation has a stabilizing effect on the thermal convection. In the absence of 
rotation, medium permeability has a destabilizing effect while magnetic field has a stabilizing effect on 
the thermal convection in a Kuvshiniski viscoelastic rotating fluid. It is also found that presence of 
magnetic field and rotation introduce oscillatory modes in the system, whereas in their absence 
principle of exchange of stabilities is satisfied in the system. Graphs also have been plotted by giving 
some numerical values to the parameters. 
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NOMENCLATURE   

d  Depth of layer, [m] Tk  Thermal diffusivity, [m2/s] 

a  Dimensionless wave number, [ - ] ν  Kinematic viscosity, [m2/s] 

g  Acceleration due to gravity, [m/s2] λ  Coefficient of viscoelasticity, 

g  Gravity field, [m/s2] ρ  Density, [kg/m3] 

k  Wave number, [1/m] ∇  Del operator, 

,x yk k  Horizontal wave numbers, [1/m] ∂  Curly operator, 

n  Growth rate, [1/s] D  Derivative with respect to ( / )z d dz=   

Q  Chandrasekhar number, [-] Greek Symbols 

AT  Taylor number, [-] α  Coefficient of thermal expansion, [1/K] 

R  Modified Rayleigh number for porous medium, [-] β  Uniform temperature gradient, [K/m] 

T  Temperature, [K] 'T  Perturbation in temperature, [K] 

t  Time, [s] p  Fluid pressure, [pa] 

(0,0, )ΩΩ  Rotation vector having components (0, 0, )Ω , 'p  Perturbation in pressure p , psi 

( , , )x y zH h h h  Magnetic field having components ( , , )x y zh h h  'ρ  Perturbation in density ρ  

, ,u v w Component of velocity after perturbation ∈  Medium porosity 
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1. INTRODUCTION 
 
The thermal instability of a fluid layer heated from 
below plays an important role in geophysics, 
oceanography, atmospheric physics, etc., and has been 
investigated by many authors, e.g., Be´nard [1], 
Rayleigh [2], Jeffreys [3]. A detailed account of the 
theoretical and experimental studies of so-called 
Be’nard convection in Newtonian fluids has been given 
by Chandrasekhar [4]. Bhatia and Steiner [5] have 
considered the effect of a uniform rotation on the 
thermal instability of a viscoelastic fluid and have found 
that rotation has a destabilizing influence, in contrast to 
the stabilizing effect on a Newtonian fluid. Sharma [6] 
has studied the thermal instability of a layer of 
Oldroydian fluid acted on by a uniform rotation and 
found that rotation has destabilizing and stabilizing 
effects under certain conditions.  

The stability of flow of a single-component fluid 
through a porous medium taking into account the Darcy 
resistance has been considered by Lapwood [7] and 
Wooding [8]. The Darcy equation describes the 
incompressible flow of a Newtonian fluid of viscosity 
µ  through a macroscopically homogeneous and 
isotropic porous medium of permeability 1k  . If q  is 
the filter velocity of the fluid, the resistance term 

( )1− µ k q  replaces the usual viscous term in the 
equations of fluid motion. There is mounting evidence, 
both theoretical and experimental, that suggests that 
Darcy’s equation sometimes provides an unsatisfactory 
description of the hydrodynamic conditions, particularly 
near boundaries of a porous medium. Beavers et al. [9] 
have experimentally demonstrated the existence of shear 
within the porous medium near a surface where the 
porous medium is exposed to a freely flowing fluid, thus 
forming a zone of shear-induced fluid flow. Darcy’s 
equation, however, cannot predict the existence of such 
a boundary zone, as no macroscopic shear term is 
included in this equation (Joseph and Tao [10]). To be 
mathematically compatible with the Navier-Stokes 
equations and physically consistent with the above-
mentioned experimentally observed boundary shear 
zone, Brinkman proposed the introduction of the term  

( ) 2− µ ε ∇ q  in addition to ( )1− µ k q  in the equations of 
fluid motion. The elaborate statistical justification of the 
Brinkman equations has been presented by Saffman 
[11] and Lundgren [12]. 

With the growing importance of non-Newtonian 
fluids in technology and industries, the investigations of 
such fluids are desirable. Sharma et al. [13] have 
discussed the problem of thermosolutal instability of 
Rivlin-Ericksen rotating fluid in porous medium. The 
problem of thermosolutal convection in Rivlin-Ericksen 
fluid in porous medium in the presence of uniform 

vertical magnetic field and rotation is considered by 
Sharma et al. [14]. Sharma and Rana [15] have studied 
the problem of thermal instability of a Walters’ (Model 
B’) elastico-viscous fluid in a porous medium in the 
presence of variable gravity field and rotation. 

Varshney and Dwivedi [16] have studied the 
unsteady effect on MHD free convection and mass 
transfer flow of a Kuvshiniski fluid through a porous 
medium with constant suction and constant heat and 
mass flux. Kumar and Singh [17] have studied the 
problem on a visco-elastic fluid heated from below in a 
porous medium and found that rotation has a stabilizing 
effect on the system and a Kuvshiniski visco-elastic 
fluid behaves like a Newtonian fluid in the problem. 

Kumar and Kumar [18] have studied the problem 
on a couple-stress fluid heated from below in 
hydromagnetics and found that rotation has a stabilizing 
effect while magnetic field has both stabilizing and 
destabilizing effects on the system. The instability of the 
plane interface between two viscoelastic Kuvshiniski 
superposed fluids in porous medium in the presence of 
uniform rotation and variable magnetic field has been 
considered by Kumar [19]. Bishnoi and Goyal [20] have 
studied the problem of Soret Dufour driven 
thermosolutal instability of Darcy-Maxwell fluid and 
found that the Dufour number enhances the stability of 
Darcy-Maxwell fluid for stationary convection while it 
has a stabilizing character for overstability. 

Keeping in mind the importance of non-Newtonian 
fluids, convection in a fluid layer heated from below, 
magnetic field and rotation, we propose to study the 
thermal convection in a (Kuvshiniski-type) viscoelastic 
rotating fluid in the presence of magnetic field through 
porous medium in the present paper. 

 
2. FORMULATION OF THE PROBLEM 

 
Consider a static state in which an incompressible, 
Kuvshiniski viscoelastic fluid layer of thickness d , is 
arranged, confined between two infinite horizontal 
planes situated at 0z =  and z d= , which is acted upon 
by a vertical magnetic field (0, 0, )HH , where  H is a 
constant, uniform rotation (0, 0, )Ω  and variable 
gravity field (0, 0, )g−g . This fluid particle layer is 
assumed to be flowing through an isotropic and 
homogeneous porous medium of porosity ∈  and 
medium permeability 1k . The fluid layer is heated from 
below leading to an adverse temperature gradient

( )0 1( )β = −T T d , where 0T
 

and 1T  are the constant 
temperatures of the lower and upper boundaries with

0 1T T> . Let , , , , , , ,Tp T kρ α ν λ η  and ( , , )u v wq  denote 
respectively pressure, density, temperature, thermal 
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coefficient of expansion, kinematic viscosity, 
coefficient of viscoelasticity, thermal diffusivity, 
electrical resistivity and velocity of the fluid. Following 
the Boussinesq approximations, the equations of 
motion, continuity and heat conduction of Kuvshiniski 
viscoelastic fluid in the presence of magnetic field 
(Kumar and Singh [17]) are:  
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(1) 

. 0∇ =q  (2)
 

2( . )d q
dt

η∈ = ∇ + ∈ ∇
H H H  (3) 

. 0∇ =H  (4) 

The equation of state is: 

[ ]0 01 ( )T Tρ = ρ − α −  (5) 

where the suffix zero refers to value at the reference 
level 0z = .  
The equation of energy (Joseph [21]) is:  

2( . ) T
TE q T k T
t

∂
+ ∇ = ∇

∂
 (6) 

where 
0(1 )( )=∈ + − ∈ ρ ρs sE c c  with 0 , , ,s sc cρ ρ  denote 

the density and heat capacity of the fluid and the solid 
matrix, respectively. 0ν = µ ρ  is the kinematic 
viscosity and 

0= ρTk k c  is the thermal diffusivity.  
 
 
 
3. BASIC STATE AND PERTURBATION EQUATIONS 
 
In the undisturbed state, the fluid is at rest. Constant 
temperatures are maintained in the fluid and uniform 
rotation and magnetic field act in the vertical direction 
(say in z-direction), therefore the basic state we wish to 
examine its stability is characterized by: 

0(0, 0, 0), (0, 0, ), (0, 0, H), T T z= = Ω = = − βq Ω H  
with  0T (z ), p p(z)T z= ρ = ρ = − β   and

0 ( 1 z)ρ = ρ + αβ  
(7) 

The character of equilibrium is examined by 
supposing that the system is slightly perturbed so that 
every physical quantity is assumed to be the sum of a 
mean and fluctuating component such that later is 
assumed to be very small in comparison to their 
equilibrium state values. Here, we assume that the small 

disturbances are functions of space and time variables. 
Let; 

( ) ( ) ( ), , 0 , 0 , 0 , , ,x y zu v w u v w h h h′ ′ ′= + + + =  

( )0 , 0 , , , ,x y zh h H h T T T ρ ρ ρ′ ′ ′ ′ ′+ + + = + = +  

p p p ′= +  be the quantities after perturbations in fluid 
velocity ( )0,0,0qr , magnetic field H

r
, temperature T, 

density ρ  and pressure p, where pTwvu ′′′′′′ ρ,,,,  are 
the perturbations in , , , ,u v w T ρ and p  respectively. 
After linearizing the perturbation equations and 
analyzing the perturbations into normal modes, we 
assume that the perturbation quantities are of the form 

[ ] [ ]
{ }

z

x y

w, T ', h , , W (z), (z), K (z), Z(z), X(z)

exp ik x ik y nt

ζ ξ = Θ

+ +
 (8) 

where  xk  and 
yk  are the wave numbers in x and y 

directions, respectively and 2 2
x yk k k= +  is the resultant 

wave number of  propagation and n is the frequency of 
any arbitrary disturbance which is, in general, a 
complex constant. v u

x y
∂ ∂

ζ = −
∂ ∂

 
and y xh h

x y
∂ ∂ξ = −
∂ ∂

 are the 

z-components of the vorticity and current density, 
respectively. For the considered form of the 
perturbations in Equation (8), Equations (1) to (6) give: 

( )

( )

( )

2 2 2

2 2 2 2 e

1 0

2 2

n (1 n)(D k )W gk 1 n

H(D k ) (D k )W 1 n
k 4
2(D k )DK 1 n DZ

+ λ − = − αΘ + + λ
∈
  µν ν

− − − + + λ ∈ πρ 

− − + λ Ω
∈

 

(9) 

2 2

1

e

0

n (1 n)Z (1 n) (D k ) Z
k

H 2(1 n) DX (1 n) DW
4

 ν ν
+ λ = + λ − − ∈ ∈ 

µ
+ + λ + + λ Ω

πρ ∈

 
(10) 

2 2nX H.DZ (D k )X∈ = + ∈ η −  (11) 

2 2nK H DW (D k )K∈ = + ∈ η −  (12) 

2 2
TEn W k (D k )Θ = β + − Θ  (13) 

As both the boundaries are maintained at constant 
temperature, the perturbation in the temperature is zero 
and normal component of velocity must vanish at these 
boundaries. The appropriate boundary conditions are: 

0, 0W = Θ =    at  0z =   and  1z =  (14) 

Here, we consider the case of two free boundaries, 
where the tangential stresses vanish and therefore we 
have:  
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2

2 0W
z

∂
=

∂
    at  0z =   and  1z = . (15) 

On using the non-dimensional parameter a kd= , 
2

1 2
T

nd , p , p
k
ν ν

σ = = =
ν η

, 1
e 2

kp ,
d

=  
2F

d
λν

=  and  

D* dD=  and dropping (*) for convenience and 
eliminating the physical quantities , ,Z X  and K , the 
final stability governing equation is obtained as: 

{ {

( )

{{

2 2 2 2

2 2 2 2 2
2 1

2 2 2 2 2
2

2 2 2 2 2
2

2 2 2 2
2

(1 ) ( ) ( )

( ) ( )

( )( )

( )

(1 ) ( )

e

e

e

e

F D a D a
p

D a p Q D D a E p
p

D a p D a W Ra

D a D a p Q D
p

D a p W Q F D a

p

  ∈
+ σ σ − − − σ − −   

  
∈ − − − σ + − − σ

  
− − σ − −

  ∈  σ − − − − − σ +       
 − − σ + + σ σ − −  

∈ − 


2 2 2 2 2
2 1
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2
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1

( ) ( )

( ) (1 )( )

( ) 0
A

D a p Q D D a E p

D a D W T F D a p

D a E p D W

− − σ + − − σ

− + + σ − − σ

− − σ =

 

(16) 

Here, 4( )= ∈ α β ν TR g d k  is the modified 
Rayleigh number for porous medium, 2 4 2(4 )= νAT d  
is the Taylor number and 2 2

0( 4 )= µ πρ νηeQ H d  is the 
Chandrasekhar number. The boundary conditions (14) 
and (15) for the problem transform to: 

20, 0W D W= =     at 0z =   and  1z =  (17) 

The proper solution of Equation (17) characterizing the 
lowest mode is: 

0 sinW W z= π  (18) 

where 0W  is constant. Substituting Equation (18), 
Equation (16) gives: 
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(19) 

where  

1

2
2

1 4 2 4 2, , , ,A
i e A

TR aR i P P T xσ
= σ = = π = =

π π π π
  

4. RESULTS AND DISCUSSION 
 
4. 1. Stationary Convection  
 
For the case of stationary convection, when the 
instability sets, the marginal state will be characterized 
by 0σ = . Thus, putting 0σ =  in Equation (19), we get: 

11 1

1

1

(1 ) 1 (1 ) (1 )

1 (1 )

A
xR x x Q T x

x P

x x Q
P

−

+  ∈  = + + + + + +    
 ∈  + + + +   

   

 
(20) 

which express the Rayleigh number 1R  as a function of 
the parameters 

11, ,AQ T P  and dimensionless wave 
number x . Here, the viscoelastic parameter F

 
vanishes 

with σ
 
 and thus Kuvshiniski fluid behaves like an 

ordinary Newtonian fluid. Further, to study the effect of 
magnetic field, rotation and medium permeability, we 
study the behavior of 

1 1 1, AdR dQ dR dT  and 
1dR dP  

analytically. 
From Equation (20), we have: 

11
2

1
1

(1 )(1 ) 1
(1 ) 1

AT xdR x
dQ x

x x Q
P

 
 ++  = −  ∈   + + + +      

 
(21) 

which shows that magnetic field has 
stabilizing/destabilizing effect on the thermal 
convection in a Kuvshiniski visco-elastic fluid under the 
conditions  

1

2

1(1 ) (1 ) 1AT x x x Q
P

 ∈  + < + + + +    
 

 Or  
1

2

1(1 ) (1 ) 1AT x x x Q
P

 ∈  + > + + + +    

. 

But for the permissible values of various parameters, the 
said effect is stabilizing only if 

1

2

1(1 ) (1 ) 1AT x x x Q
P

 ∈  + < + + + +    
 

In the absence of rotation
 1

( 0)AT = , Equation (21) 
becomes: 

1

1

(1 )dR x
dQ x

+
=

 
(22) 

which clearly shows that magnetic field has a stabilizing 
effect on thermal convection in a Kuvshiniski visco-
elastic fluid through porous medium in the absence of 
rotation. From Equation (20), we have 

1

2
1

1

(1 )

(1 ) 1A

d R x
d T x x x Q

P

+
=

 ∈  + + + +    

 
(23) 
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which clearly shows that rotation has a stabilizing effect 
on thermal convection in a Kuvshiniski visco-elastic 
fluid through porous medium. 
From Equation (20), we have: 

1

22
1

12

(1 ) (1 ) (1 ) 1 1
−  + ∈ ∈ = + + + + + −        

A
dR x T x x x Q
dP PP x

 
(24) 

which shows that medium permeability has 
stabilizing/destabilizing effect on thermal convection in 
a Kuvshiniski visco-elastic fluid under the conditions  

1

2

1(1 ) (1 ) 1AT x x x Q
P

 ∈  + > + + + +    
 

or 
1

2

1(1 ) (1 ) 1AT x x x Q
P

 ∈  + < + + + +    
. 

But for the permissible values of various parameters, the 
medium permeability has a stabilizing effect contrary to 
its general destabilizing influence if 

1

2

1(1 ) (1 ) 1AT x x x Q
P

 ∈  + > + + + +    
 

In the absence of rotation
 1

( 0)AT = , Equation (24) 
becomes: 

2
1

2
(1 )dR x

dP xP
+ ∈= −  (25) 

which confirms that medium permeability has a 
destabilizing effect on thermal convection in a 
Kuvshiniski visco-elastic fluid through porous medium 
in the absence of rotation as derived by Kumar and 
Singh [17]. 
In the absence of magnetic field 

1( 0)Q = , Equation (24) 
becomes: 
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(26) 

which shows that medium permeability has 
stabilizing/destabilizing effect on thermal convection in 
a Kuvshiniski visco-elastic fluid in the absence of 
magnetic field (as derived by Kumar and Singh [17]) 
under the conditions  

1

2

(1 ) 1AT o r x x
P
∈ > < + + + 

 
. 

 
 
4. 2. Stability of the System and Oscillatory 
Modes     Multiplying Equation (9) by *W  and 
integrating over the range at z  and making use of 
Equations (10) to (13) with the Equation (8) and 
boundary conditions (17), we get: 
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where *σ  is the complex conjugate of σ . All the 
integrals 1I  to 10I  are positive definite. Putting 

iiσ = σ  in Equation (27) and equating the imaginary 
parts, we obtain: 
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(28) 

In the absence of magnetic field and rotation, Equation 
(28) becomes: 

2

1 2 1 4
1 0T

i
e

g k aF FI I Ep I
p

   α
σ + + + =  ∈ ∈ νβ  

 
(29) 

From Equation (29), it is obvious that all the terms in 
the bracket are positive definite. Thus, i 0σ =  which 
means that oscillatory modes are not allowed in the 
system and principle of exchange of stabilities (PES) is 
satisfied in the absence of magnetic field and rotation in 
the system. So, we can say that oscillatory modes are 
introduced due to the presence of magnetic field and 
rotation. 
 
 
5. NUMERICAL COMPUTATION 
 
Now, the critical thermal Rayleigh number for the onset 
of instability is determined numerically using Newton-
Raphson method by the condition 

1 0=dR dx . As a 
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function of x , R1  is given by Equation (20) which 
attains its minimum when 

1 0=dR dx  with x  
determined as a solution of equation by putting 

1 0=dR dx  in powers of x . Equation (20) will give 
the required critical thermal Rayleigh number R1 for 
various values of critical wave number x . In Figure 1 
and Figure 2, the critical Rayleigh number R1 increases 
with increase in magnetic field parameter Q1 which 
shows that magnetic field has a stabilizing effect on the 
thermal convection. In Figure 3 and Figure 4, the 
critical Rayleigh number R1 increases with increase in 
rotation parameter 

1AT  which shows that rotation has a 
stabilizing effect on the thermal convection. In Figure 5, 
the critical Rayleigh number R1 decreases with increase 
in medium permeability P which shows that medium 
permeability has a destabilizing effect on the thermal 
convection. In Figure 6 and Figure 7, the critical 
Rayleigh number R1 increases with increase in medium 
permeability P which shows that medium permeability 
has a stabilizing effect on the thermal convection for the 
permissible range of values of various parameters. 

 
 

 
Figure 1. Variation of critical Rayleigh number R1 with 
magnetic field Q1 for a fixed 0.5∈= , 0.005P =  and 

1
100,1000,10000AT = . 

 
 

 
Figure 2. Variation of critical Rayleigh number

 
R1 with 

magnetic field Q1 for a fixed 0.5,∈=
1

100AT =  and     

0.01, 0.05, 0.10P = .  

 
Figure 3. Variation of critical Rayleigh number R1 with 
rotation parameter 

1AT  for a fixed
 0.5, 0.005P∈= =  and    

1 100, 200,300Q = .  
 
 

 
Figure 4. Variation of critical Rayleigh number R1 with 
rotation parameter 

1AT  for a fixed 0.5,∈= 1 100Q =  and    

0.01, 0.05, 0.10P = . 
 
 

 
Figure 5. Variation of critical Rayleigh number

 
R1 with     

medium permeability P  for a fixed 0.5∈ = ,
1

100AT =  and       

1 50,150, 250Q = . 
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Figure 6. Variation of critical Rayleigh number R1 with 
medium permeability P for a fixed  0.5,∈=

1 50Q =  and      

1
2000, 5000,8000AT = . 

 
 
 

 
Figure 7. Variation of critical Rayleigh number R1 with 
medium permeability P for a fixed 

10.5, 50Q∈= =  and    

1
5000,8000,10000AT = . 

 
 

6. CONCLUSIONS 
 
With the growing importance of non-Newtonian fluids, 
magnetic field and rotation in chemical technology and 
industries, investigations on (Kuvshiniski-type) 
viscoelastic fluid are desirable. In the present paper, we 
have investigated the effect of magnetic field on a 
(Kuvshiniski-type) viscoelastic rotating fluid heated 
from below in porous medium. Dispersion relation 
governing the effects of magnetic field, rotation and 
medium permeability is derived. The main results from 
the analysis of the paper are as follow: 
(i) For the case of stationary convection, a Kuvshiniski 

viscoelastic fluid behaves like an ordinary 
Newtonian fluid. 

(ii) Magnetic field has a stabilizing effect on the 
thermal convection as is evident from the Equation 
(21) along with Figure 1 and Figure 2 for the 
permissible range of values of various parameters. 
In the absence of rotation, magnetic field clearly 
has a stabilizing effect on the thermal convection as 

is evident from Equation (22). Thus, the effect of 
increasing the magnitude of rotation parameter is to 
destabilize the system. 

(iii) For the case of stationary convection, the rotation 
has a stabilizing effect on the thermal convection as 
can be seen from Equation (23), and graphically, 
from Figure 3 and Figure 4. 

(iv) Medium permeability is found to have both 
stabilizing/destabilizing effects on the thermal     
convection as is evident from the Equation (24) 
along with Figure 5, Figure 6 and Figure 7 for the 
permissible range of values of various parameters. 
In the absence of rotation, medium permeability 
clearly has a destabilizing effect on the thermal 
convection as is evident from the Equation (25) as 
derived by Kumar and Singh [17]. In the absence of 
magnetic field medium permeability has both 
stabilizing/destabilizing effect on the thermal 
convection as is evident from the Equation (26) for 
the permissible range of values of various 
parameters as derived by Kumar and Singh [17]. 

(v) The oscillatory modes are introduced due to the 
presence of magnetic field and rotation in the 
system, whereas in their absence principle of 
exchange of stabilities (PES) is satisfied. 
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  چکیده

 
  

 یطدر مح یراز ز که (Kuvshiniski-type)یر تراکم ناپذ یسکوالاستیکو یچرخش یالس يبر رو یسیمغناط یداناثر م
یري محیط و نفوذپذ یسیمغناط یدانم پایدار، ابجایی حرارتیج حالت در. شده است بررسی می شودحرارت داده  متخلخل

که چرخش اثر  صورتیدر  دارد، ابجایی حرارتیدر جپایدارکنندگی کنندگی و هم ناپایداراثر در شرایط یکسان هم 
که  یدر حال گی دارد،کنندناپایداراثر  محیط یريعدم چرخش، نفوذپذ حالتدر . ابجایی حرارتی داردجپایدارکنندگی روي 

 همچنین، .است یسکوالاستیک کوشینیسکیو یچرخش یالس انتقال گرما در رويپایدار کنندگی اثر  يدارا یسیمغناط یدانم
اصل  غیاب آنها، که در یدر حال می شود، یستمدر س ینوسان يحالت ها موجب ایجاد و چرخش یسیمغناط یدانحضور م

  .ندپارامترها نمودار ها رسم شدبه  يعدد یرمقادبا دادن . ارضا می گردد یستمدر س پایداري تبادل
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