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A B S T R A C T  
   

In this paper derivation of the second differentiation of a general yield surface by implicit time 
stepping method along with its consistent elastic-plastic modulus is studied. Moreover, the explicit, 
trapezoidal implicit and fully implicit time stepping schemes are compared in rate-dependant plasticity. 
It is shown that implementing fully implicit time stepping scheme in rate-dependant plasticity predicts 
more accurate experimental results than other schemes. 
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1. INTRODUCTION 1 
 
Viscoplasticity describes the rate-dependent inelastic 
behavior of solids. Rate-dependence in this context 
means that the deformation of the material depends on 
the rate at which loads are applied. The inelastic 
behavior of viscoplasticity is a plastic deformation and 
means that the material undergoes unrecoverable 
deformations when a certain load level is reached. Rate-
dependent plasticity is usually an important task 
because of its transient plasticity calculations. The main 
difference between the rate-independent plastic and 
viscoplastic material models is that the latter exhibits 
not only permanent deformations, but continues to 
undergo a creep flow as a function of time under the 
applied load. Some studies of the previous researchers 
on the mentioned subject are reviewed here. 

Krieg and Krieg [1] investigated the accuracy of the 
integration of the constitutive equations for an isotropic 
elastic-perfectly plastic von Mises material. Simo and 
Taylor [2] demonstrated the concept of consistency 
between the tangent operator and the integration 
algorithm. Dodds [3] derived an extension of elastic-
plastic-radial return algorithm and a consistent tangent 
operator which satisfy the requirements for stable, 
accurate and efficient numerical procedure for plane 
stress condition with mixed hardening. Gratacos et al. 
[4] investigated the generalized midpoint rule for the 
                                                        
*Corresponding Author Email: farzad_moayyedian@yahoo.com (F. 
Moayyedian) 

time integration of elastic-plastic constitutive equations 
for pressure-independent yield criteria. Kadkhodayan 
and Zhang [5] proposed a new efficient method, the 
consistent DXDR method, to analyze general elastic-
plastic problems. In recent years, Kang [6] proposed a 
visco-plastic constitutive model to simulate the 
uniaxial/multiaxial ratcheting of cyclically stable 
materials. Kumar and Nukala [7] presented a return 
mapping algorithm for cyclic viscoplastic constitutive 
models. Ding et al. [8] developed a stress integration 
scheme to analyze a three-dimensional sheet metal 
forming problems. Liang et al. [9] presented a design 
sensitivity analysis method including geometry, elasto-
visco-plastic material and boundary conditions 
parameters. Khosroshahi and Sadrnejad [10] proposed a 
framework including damage progress for simulating 
behavior of concrete under multiaxial loading for the 
constitutive model based on the semi-micromechanical 
aspects of plasticity. Romano and Diaco [11] introduced 
a consistent tangent stiffness to improve the asymptotic 
convergence rate of the iterative correction algorithm 
for analysis of elastoplastic structures. Rezaiee-Pajand 
and Sinaie [12] investigated the strain space 
formulation. Numerical examples were analyzed using 
the traditional linear method and their suggested 
schemes using von Mises yield criterion and Prager's 
linear hardening rule. Karrech et al. [13] introduced a 
comprehensive model that was capable to describe the 
behavior under cyclic loading. Voyiadjis et al. [14] 
developed a thermodynamic consistent, small-strain,  
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non-unified model to capture the irregular rate 
dependency including strain controlled inelastic 
responses of polymers at the glassy state. Graham et al. 
[15] presented a specimen that can be tested in 
combined tension and torsion to achieve low triaxiality 
over a range of Lode angle. Two important factors in 
time stepping schemes are accuracy and stability. In 
explicit time stepping schemes the time interval plays a 
crucial role in stability and accuracy, i.e. a very large 
time interval cannot guarantee the stability and accuracy 
of the algorithm. On the other hand, in implicit time 
stepping schemes, even by choosing a large time 
interval, the stability is guaranteed. In fact, this is the 
main advantage of implicit to explicit time stepping 
algorithms. However, choosing a large time interval 
may not give proper accuracy. 

The main aim of the present study is to obtain a 
simplified matrix formulation of a general yield 
criterion for an implicit time stepping scheme in a 
global finite element method and comparing three time 
stepping scheming methods in rate-dependent plasticity.  
The current proposed method is obtained based on the 
development of  techniques given in references [16-20] 
and [21-25] in FE and plasticity theories, respectively. 
To show the capability of the method, it is implemented 
for an internally elastic-viscoplastic pressurized thick 
walled cylinder with perfectly plastic and linear-
isotropic hardening behavior. The provided program is 
coded in Compaq Visual Fortran Professional Edition 
6.5.0.  

There are two novel points in the current study for 
viscoplastic materials.. First, the analytical derivation of 
the first and the second differentiation of a general 
criterion, and second, the comparison between the time 
stepping schemes for different criteria and also using 
perfect and linear hardening behaviors of materials. 
Figure 1 shows the flowchart of the program for two-
dimensional elastic-viscoplastic applications for a 
global finite element program [16]. 
 
 
2. GENERAL FORM OF A YIELDING CRITERION 
 
The general form of a yield surface for isotropic 
materials is     ,   ′ ,   ′  , where    is the first invariant of 
stress and   ′  and   ′  are the second and the third 
invariants of deviatoric stresses, respectively. Whereas    indicates the dependence of the yield surface to the 
hydrostatic pressure and   ′  and   ′  show the dependence 
of the yield surface to deviatoric stresses. Introducing   
as the angle of loading in deviatoric plane we have [16]: sin 3 = −  √    ′   ′      (1) 

The angle of   represents the direction of the loading 
vector in the deviatoric plane, see Figure 2. For an 
isotropic material it would be sufficient if the yield 

surface is studied only in the region of −   ≤  ≤ +   . 
Hence, because the Lode parameter is defined as  = −√3     , the yield surfaces can be studied in −1 ≤  ≤ +1. Then, for the pure shear we have  =  =0, for pure tension  = −    and  = +1 and for pure 
compression  = +    and  = −1. The four well-known 
yield surfaces can be shown in the following form for 
the computational convenience, where    is the uniaxial 
yield stress,   is the hardening parameter,   is the angle 
of internal friction and   is the cohesion [16], Table 1. 
Drucker-Prager yield surface has a form of circular 
cone. In order to make the Drucker-Prager circle 
coincide with the outer apices of the Mohr-Coulomb 
hexagon at any section, it can be shown that:  =      √ (      )  ,         ′ =       √ (      ),  (2) 

where the parameters   and  ′ were employed in 
Drucker-Prager criterion as it shown in Table 1. In 
Figure 2 the presentation of the four criteria can be 
observed in deviatoric plane. 
 
 
 
3. CALCULATION OF THE FIRST AND SECOND 
DIFFERENTIATION OF A YIELDING CRITERION 
 
To employ the implicit time stepping scheme along with 
the consistent elastic-plastic modulus in global finite 
element method, we need to compute the first and the 
second differentiation of the yield surface,        ⃗  and        ⃖   ⃗  as 
below. The symbols    ⃗   and  ⃖ ⃗  are used for  6 × 1 vector 
and 6 × 6 matrix in three dimensional stress space, 
respectively. 

 
3. 1. Calculation of the First Differentiation    From 
Equation (1) it can be shown that:    3 =     ′ ,   ′  ,  (3) 

therefore, any yield criterion can take the following 
form:  =     ,   ′ ,  .  (4) 

 
 
 

TABLE 1. Four famous yield criteria [16]. 

Tresca 2(  ′ )      =   ( ),  
von Mises √3(  ′ )  =   ( ),  
Mohr-Coulomb 

        + (  ′ )         −  √          =      ,  
Drucker-Prager    + (  ′ )  =  ′.  
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Figure 1. Flow sequence for the two-dimensional elasto-
viscoplastic stress analysis program [16] 

 
 
Figure 2. Presentation of four yield surfaces in   plane [16], ( ) von Mises and Tresca surfaces, ( ) Drucker-Prager and 
Mohr-Coulomb surfaces. 
 

 

 

By differentiating Equation (4): 

       ⃗ =               ⃗ +      ′    ′      ⃗ +            ⃗ .  (5) 

Differentiating Equation (1) gives: 

       ⃗ =  √            ′       
′      ⃗ −    ′    ′       ′      ⃗  .  (6) 

Inserting Equation (6) into Equation (5) and with the aid 
of Equation (1) and after some simplification, it is found 
that: 

       ⃗ =            ⃗ +      ′      ⃗ +      ′      ⃗ ,  (7) 

where values of   ,    and    and vectors of           ⃗ ,          ⃗  and          ⃗   are tabulated in Appendix I. 

 

 
3. 2. Calculation of the Second Differentiation  

Considering        ⃗ =  ⃗(  ,   ,   ,  ⃗) , it is found that: 

       ⃖   ⃗ =          ⃗ ⊗          ⃗ +      ′    ⃗ ⊗    ′      ⃗ +        ⃗ ⊗        ⃗ +      ⃖ ⃗  .  (8) 

Inserting Equation (6) in Equation (8) and with the aid 
of Equation (1) we have:  

       ⃖   ⃗ =   ΄    ⃗ ⊗          ⃗ +   ΄    ⃗ ⊗    ′      ⃗ +   ΄    ⃗ ⊗    ′      ⃗ +      ⃖ ⃗   (9) 

Now, the last term in the right-hand side of Equation (9) 
can be found by the aid of Equation (7) as following: 

INVAR: 
Evaluate the 

Effective Stress 
level. 

DIMEN:  Preset the variables 

INPUT: Define the input data, geometry, boundary 
conditions and material properties  Inputs data 

START 

LOADPS : (Evaluate the equivalent nodal forces for 
pressure loading, gravity loading, etc. 

ZERO: Set to zero arrays required for accumulation of 
data 

INCREM: Apply the incremental load  

STIFVP: Calculate the element 

TI
M

E 
ST

EP
PI

N
G

 L
O

O
P 

LO
A

D
 IN

C
R

EM
EN

T 
LO

O
P 

TANGVP: Evaluate  ⃖⃗ 
FRONT:Solve the simultaneous equations 

system by the frontal method  

+ ⃗   , 

STEPVP 
Evaluate quantities at the  end of time 
step: 
a)         ⃗   =     ⃖  ⃗ : ( ⃡ .        ⃗  −  ̇         ⃗    ), 
b)  ⃗   =  ⃗ +        ⃗  , 

c)  ⃗     =  ⃗   +   ̇       ⃗    , 
 d)      . 
Calculate residual forces and pseudo 
loads for next time step: 

a)    ⃗    = ∫  ⃡     ⃗      

b)        ⃗    =∫  ⃡    :      ⃖       ⃗ .   ̇            ⃗         +        ⃗    +    ⃗    . 

YIELDF & 
FLOWVP 

Determine the flow 
vector, 
a) The flow vector,        ⃗    

 

b)   ̇            ⃗ =  <  >       ⃗    
 

OUTPUT: Print the results for this load increment 

END 
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     ⃖ ⃗ =           ⃖    ⃗ +       ′    ⃖    ⃗ +       ′    ⃖    ⃗  ,  (10) 

where vectors   ΄    ⃗ ,   ΄    ⃗  and   ΄    ⃗  and also matrices         ⃖    ⃗ ,     ′    ⃖    ⃗  

and     ′    ⃖    ⃗   are presented in Appendix II. After some 
simplifications, the general form of the second 
differentiation of any yield surface as     ,   ′ ,   ′   takes 
the following form: 

       ⃖   ⃗ =        −                 ⃗⊗ ⃗+        −                 ⃗⊗  ⃗+   ⃗⊗  ⃗-√        (   )        ⃗⊗  ⃗- √        (   )        ⃗⊗ ⃗+     ⃖ ⃗ +      ⃡, 
(11) 

where vectors  ⃗,  ⃗ and  ⃗ along with matrices  ⃖ ⃗  and  ⃡ 
are presented in Appendix III. 
 
 
 
4. VISCOPLASTIC FLOW RULE 
 
A common explicit form of an associated viscoplastic 
strain rate is offered by the following viscoplastic flow 
rule:   ̇       ⃗ =  <  ( ) >        ⃗ ,  (12) 

where  =    , ε  ,    is a yield surface and   is a 
fluidity parameter controlling the plastic flow rate. The 
term  ( ) is a positive monotonic increasing function 
for  > 0 and the notation 〈 〉 implies that:  <  ( ) >  =  ( )      > 0<  ( ) >  = 0             ≤ 0   (13) 

Different functions for   have also been recommended 
as follows [16]: 

  ( ) =           − 1, ( ) =          ,    (14) 

where M and N are arbitrary prescribed constants. 
 

 
4. 1. The Viscoplastic Strain Increment   With the 
strain rate law expressed by Equation (12) we can 
define a strain increment       occurring in a time 
interval    =     −    using implicit time stepping 
scheme as [16]:               ⃗ =     (1− )  ̇        ⃗ +    ̇             ⃗  . (15) 

For  = 0 the Euler time integration scheme is obtained 
which is also referred to as 'fully explicit' (or forward 

difference method) since the strain increment is 
completely determined from the existing conditions at 
time   . On the other hand, taking  = 1 gives a 'fully 
implicit' (or backward difference) scheme with strain 
increment being determined from the strain rate 
corresponding to the end of the time interval. The case  =    results in the so-called 'implicit trapezodial' 
scheme which is also known generally as the Crank-
Nicolson rule in the context of linear equation. To 
define   ̇     in Equation (15), the limited Taylor series 
expansion can be used [16]:   ̇             ⃗ =   ̇        ⃗ +    ⃖   ⃗ :           ⃗ ,  (16) 

where,    ⃖   ⃗ =   ̇         ⃗  =   ,  (17) 

where     is the stress change occurring in the time 
interval    =     −   . 
Thus Equation (15) can be written as:               ⃗ =   ̇        ⃗    +    ⃖  ⃗ ∶            ⃗ ,  (18) 

where,    ⃖  ⃗ =        ⃖   ⃗ .  (19) 
 
 
4. 2. Evaluation of Matrix       To use the fully 
implicit or semi-implicit (trapezoidal) time stepping 
scheme, the matrix    is required which in turn can be 
expressed in terms of    as indicated in Equation (17). 
Matrix    has to be explicitly determined for the yield 
surface assumed for material behavior. From Equations 
(12) and (17) we have:  ⃡ =          ⃖   ⃗ +              ⃗ ⊗        ⃗  ,  (20) 

where the symbol 〈 〉 on   and the superscript   are 
dropped for convenience. The only difficulty of 

computing  ⃡ for any criterion is deriving        ⃗  and 

especially        ⃖   ⃗  which is explained in detail in Section 3. 
 
 
 

5. COMPUTATIONAL PROCEDURE 
 
The essential steps in solving process can be 
summarized here. The solution begins from the known 
initial conditions at  = 0, which are the static elastic 
situation. At this stage   ,   ,    and    are known and     = 0. The time marching scheme described in the 
previous section is then employed to advance the 
solution by one time stepping at a time. The solution 
sequence can be observed in Table 2. 
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TABLE 2. The solution sequence adopted in the current  
study. 

Step 1 Suppose at time   =    we have an equilibrium 
situation and  ⃗ ,  ⃗ ,  ⃗ ,  ⃗   ,  ⃗  are known. The 
following quantities are calculated:  ⃡ =  ⃡ +  ⃡  ,     ⃖   ⃗ =   ⃗⃖  +  ⃡    

,  ⃡  = ∫  ⃡  :     ⃖   ⃗ :  ⃡   ,   ̇        ⃗ =  <  >        ⃗  
. 

Step 2 Compute  the displacement  

increments        ⃗  :        ⃗  =  ⃡    :        ⃗  ,        ⃗  = ∫  ⃡  :     ⃖   ⃗ .   ̇        ⃗      +        ⃗  . 

Step 3 Calculate the stress  

increment        ⃗  :        ⃗  =     ⃖   ⃗ :  ⃡ :       ⃗  −   ̇        ⃗     . 

Step 4 Determine the total displacements and stresses:  ⃗   =  ⃗ +        ⃗  ,   ⃗   =  ⃗ +        ⃗  . 

Step 5 Calculate the viscoplastic strain rate:   ̇             ⃗ =  <  >        ⃗    
. 

Step 6 Apply the equilibrium correction: First calculate  ⃡    using displacements  ⃗    and substitute stresses  ⃗    into equilibrium forces    ⃗     :    ⃗    = ∫  ⃡     ⃗     +  ⃗   , 
add these to the vector of incremental pseudo loads 
for use in the next time step:        ⃗    = ∫  ⃡    :      ⃖       ⃗ .   ̇             ⃗        +       ⃗    +    ⃗    . 

Step 7 Check to see if the viscoplastic strain rate    ̇             ⃗  is 
small enough at each Gaussian integrating point 
throughout the structure (i.e. to within a specified 
tolerance), if so, steady state conditions are 
achieved  and the solution is either terminated or 
the  next load increment is applied. If   ̇             ⃗  is  non-
zero, return to Step 1 and repeat the  entire 
procedure for the next time step. 

6. RESULTS AND DISCUSIONS 

 
In this part an internally pressurized elastic-viscoplastic 
thick walled cylinder as illustrated in Figure 3 is 
investigated. The mechanical properties are assumed as 
follows: Young modulus of elasticity ( = 21000     2⁄ ), Poisson' ratio ( = 0.3), yield 
stress (  =   = 24.0      ⁄ ), plastic modulus ( ′ = 0.0     2)⁄ , fluidity parameter ( =0.001/   ), inner radius of the cylinder ( =100   ) and outer radius of the cylinder ( =200   ), and the flow function  ( ) =   .In order to 
verify the developed computer code, the explicit and 
implicit trapezoidal and the fully implicit time stepping 
schemes along with the von Mises criterion and 
associated flow rule are used. An explicit time stepping 
algorithm  Θ = 0  is initially employed and the 
variation of radial displacement at the inner surface with 
time can be observed in the curves of Figure 4. In the 
first one, the load increment  = 14      ⁄  is 
applied in one load step for two time steps = 0.01 and 
0.05. As it is seen, the reduction of accuracy is apparent 
with the larger time stepping which overestimating the 
viscoplastic strain rates. In the second one, the load 
increment  = 14      ⁄  is applied in two load steps, 
i.e. 12      ⁄  and 2      ⁄  for  = 0.01. As it is 
seen the convergence of two curves is acceptable (see 
Figure 4).  

The initial time stepping was chosen as 0.1 days and 
the steady state convergence tolerance parameter was 
taken as 0.1 % as in Ref. [16]. The problem was then 
resolved, using the implicit trapezoidal time stepping 
scheme  Θ = 0.5  and the full implicit or backward 
difference scheme  Θ = 1 . Good agreements between 
the three time integration schemes are evident in Figure 
5.   

Figure 6 shows the steady state hoop stress 
distributions for the time integration schemes Θ = 0 and 
Θ = 1. The results presented in Figures 4-6 are quite 
close to those of Ref. [16]. In the following, different 
investigations and comparisons are presented including 
comparison between the explicit, implicit trapezoidal 
and fully implicit time stepping schemes for both 
independent and dependent criteria to hydrostatic 
pressure. It is noted that in Ref. [16] only the solution 
for von Mises criteria was presented, however, with the 
current calculation approach, the second differentiation 
of a yield criterion the solution for any yield criterion 
can be achieved. 
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Figure 3. Mesh employed in the elastic-viscoplastic 
analysis of an internally pressurized thick cylinder under 
plane strain conditions. 
 
 

 
Figure 4. Variations of displacement with time at the inner 
surface for an elastic-viscoplastic cylinder subjected to an 
incrementally internal pressure. 
 
 

Figure 5. Comparison of various time integration schemes 
for internally pressurized cylinder. 

Figure 6. Distribution of steady state circumferential stress 
in an elastic-viscoplastic internally pressurized cylinder. 
 
 

Figure 7. Variations of circumferential strain with time at 
the inner surface, using von Mises criterion. 
 
 
 

In the following, different investigations and 
comparisons are presented including comparison 
between the explicit, implicit trapezoidal and fully 
implicit time stepping schemes for both independent 
and dependent criteria to hydrostatic pressure. It is 
noted that in Ref. [16] only the solution for von Mises 
criteria was presented, however, with the current 
approach of calculating the second differentiation of a 
yield criterion the solution for any yield criterion can be 
achieved. Figures 7-8 show the variation of 
circumferential strain of the inner surface    = 1  with 
time and also the steady state circumferential stress 
distributions for  1 ≤   ≤ 2  for explicit, implicit 
trapezoidal and fully implicit time stepping schemes 
while the von Mises criterion, perfect-plastic material 

α  
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and linear isotropic hardening  behavior,  ′ =     , are 
used and the geometry of the cylinder is assumed to be   = 2.   

Figure 7 shows that with increasing time and 
development of plastic zone the differences between the 
results of three time stepping schemes increase. 
Moreover, the results of the trapezoidal implicit and 
fully implicit are more close to each other than those of 
explicit schemes. Furthermore, the circumferential 
strains predicted by the implicit time stepping scheme 
are larger than those predicted by the others. In addition, 
the steady hoop stresses predicted by the fully implicit 
time stepping scheme are smaller than those of the 
others, Figure 8.   

The results show that the hardening increases the 
difference between three time stepping schemes. 
Figures 9-14 show the same parameters based on 
Tresca, Mohr-Coulomb and Drucker-Prager criteria, 
respectively. In using Mohr-Coulomb criterion, it is 
assumed that     = 0.879. The linear isotropic 
hardening is assumed and the hardening module is taken 
as  ′ =  20⁄  and  ′ =  10√3⁄   for Mohr-Coulomb 
and Drucker-Prager criteria, respectively. The results 
show the same trend as explained for Figures 7 and 8, 
previously. Moreover, it is seen that the difference 
between the three time stepping schemes in Mohr-
Coulomb and Drucker-Prager criteria are larger than 
those of Tresca and von-Mises criteria, respectively. In 
other words, when the yielding criteria are dependent on 
the hydrostatic pressure, the difference between the 
results obtained from the explicit, implicit trapezoidal 
and fully implicit time stepping schemes become more 
significant than those of the hydrostatic pressure 
independent yielding criterion. Furthermore, for non-
linear isotropic hardening case this difference increases 
compared to perfect-plastic one. 

The results obtained by the explicit, implicit 
trapezoidal and fully implicit time stepping schemes in 
steady state condition and experimental results are 
compared in Figure 15. This figure demonstrates the 
internal pressure in overstrain of 100% (      ⁄ = 1) 
at external surface of the vessel with respect to the 
variation of ratio of external radius/internal radius, (  ⁄ ), for perfect-plastic material and von Mises 
criterion. The figure shows that using the fully implicit 
time stepping scheme could predict the experimental 
results more accurately. It is also observed that the 
difference between the numerical simulations and 
experimental data is maximum in    ⁄ = 1.6 and is 
minimum in    ⁄ = 2.4. 

 
Figure 8. Distributions of steady state circumferential stress 
using von Mises criterion. 
 

 
Figure 9. Variations of circumferential strain with time at the 
inner surface, using Tresca criterion. 
 

 
Figure 10. Distributions of steady state circumferential stress 
using Tresca criterion. 
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Figure 11. Variations of circumferential strain with time at the 
inner surface, using Mohr-Coulomb criterion. 
 

 
Figure 12. Distributions of steady state circumferential stress 
using Mohr-Coulomb criterion. 
 
 

 
Figure 13. Variations of circumferential strain with time at the 
inner surface, using Drucker-Prager criterion. 

 

 
Figure 14. Distributions of steady state circumferential stress 
using Drucker-Prager criterion. 

 

 
Figure 15. Comparison between the explicit, implicit 
trapezoidal and fully implicit time stepping schemes in steady 
state condition and experimental results. 

 
  

7. CONCLUSIONS 
 
The trapezoidal implicit and fully implicit time stepping 
schemes and also explicit time stepping schemes for 
different yield criteria along with the derivation of the 
second differentiation of the yield surface were studied. 
the results can be summarized as follows: 
1- Applying more loads and development of plastic 

zone make the difference between the results more 
apparent. 

2- The hydrostatic pressure dependent yield criteria 
were too sensitive in using time stepping schemes. 

3- Implementing fully implicit time stepping scheme 
in rate-dependant plasticity predicts the 
experimental results more accurately than the other 
schemes. 



649                                       F. Moayyedian and M. Kadkhodayan / IJE TRANSACTIONS C: Aspects   Vol. 26, No. 6, (June  2013)   641-652 
 

8. REFERENCES 
 
1. Krieg, R. and Krieg, D., "Accuracies of numerical solution 

methods for the elastic-perfectly plastic model", ASME, 
Transactions, Series J-Journal of Pressure Vessel Technology,  
Vol. 99, (1977), 510-515. 

2. Simo, J. C. and Taylor, R. L., "Consistent tangent operators for 
rate-independent elastoplasticity", Computer Methods in 
Applied Mechanics and Engineering,  Vol. 48, No. 1, (1985), 
101-118. 

3. Dodds Jr, R. H., "Numerical techniques for plasticity 
computations in finite element analysis", Computers & 
Structures,  Vol. 26, No. 5, (1987), 767-779. 

4. Gratacos, P., Montmitonnet, P. and Chenot, J., "An integration 
scheme for prandtl‐reuss elastoplastic constitutive equations", 
International Journal for Numerical Methods in Engineering,  
Vol. 33, No. 5, (1992), 943-961. 

5. Kadkhodayan, M. and Zhang, L., "A consistent dxdr method for 
elastic‐plastic problems", International Journal for Numerical 
Methods in Engineering,  Vol. 38, No. 14, (1995), 2413-2431. 

6. Kang, G., "A visco-plastic constitutive model for ratcheting of 
cyclically stable materials and its finite element 
implementation", Mechanics of Materials,  Vol. 36, No. 4, 
(2004), 299-312. 

7. Nukala, P. K. V., "A return mapping algorithm for cyclic 
viscoplastic constitutive models", Computer Methods in 
Applied Mechanics and Engineering,  Vol. 195, No. 1, (2006), 
148-178. 

8. Ding, K., Qin, Q.-H. and Cardew-Hall, M., "Substepping 
algorithms with stress correction for the simulation of sheet 
metal forming process", International Journal of Mechanical 
Sciences,  Vol. 49, No. 11, (2007), 1289-1308. 

9. Liang, L., Liu, Y. and Xu, B., "Design sensitivity analysis for 
parameters affecting geometry, elastic–viscoplastic material 
constant and boundary condition by consistent tangent operator-
based boundary element method", International Journal of 
Solids and Structures,  Vol. 44, No. 7, (2007), 2571-2592. 

10. Khosrou, S. A. and Sadrnezhad, S., "Substructure model for 
concrete behavior simulation under cyclic multiaxial loading", 
International Journal of Engineering, (2008). 

11. Romano, G., Barretta, R. and Diaco, M., "Algorithmic tangent 
stiffness in elastoplasticity and elastoviscoplasticity: A 
geometric insight", Mechanics Research Communications,  
Vol. 37, No. 3, (2010), 289-292. 

12. Rezaiee-Pajand, M. and S. Sinaie, "Nonlinear numerical 
integration scheme in strain space plasticity", International 
Journal of Engineering, Transactions A: Basics, Vol. 24, 
(2011), 1-13. 

13. Karrech, A., Seibi, A. and Duhamel, D., "Finite element 
modelling of rate-dependent ratcheting in granular materials", 
Computers and Geotechnics,  Vol. 38, No. 2, (2011), 105-112. 

14. Voyiadjis, G. Z., Shojaei, A. and Li, G., "A generalized coupled 
viscoplastic–viscodamage–viscohealing theory for glassy 
polymers", International Journal of Plasticity,  Vol. 28, No. 1, 
(2012), 21-45. 

15. Graham, S. M., Zhang, T., Gao, X. and Hayden, M., 
"Development of a combined tension–torsion experiment for 
calibration of ductile fracture models under conditions of low 
triaxiality", International Journal of Mechanical Sciences,  
Vol. 54, No. 1, (2012), 172-181. 

16. Owen, D. R. and Hinton, E., "Finite elements in plasticity", 
Pineridge Press Swansea,  Vol. 271,  (1980). 

17. De Souza Neto, E. A., Peric, D. and Owen, D. R. J., 
"Computational methods for plasticity: Theory and 
applications", Wiley,  (2011). 

18. Simof, J. and Hughes, T., "Computational inelasticity", (2008). 
19. Zienkiewicz, O. C. and Taylor, R. L., "The finite element 

method: Solid mechanics", Butterworth-heinemann,  Vol. 2,  
(2000). 

20. Crisfield, M. A., "Non-linear finite element analysis of solids 
and structures: Advanced topics", John Wiley & Sons, Inc.,  
(1997). 

21. Chakrabarty, J., "Theory of plasticity", Butterworth-Heinemann,  
(2006). 

22. Chen, W.-F. and Zhang, H., "Structural plasticity: Theory, 
problems and cae software", Springer-Verlag New York, Inc.,  
(1990). 

23. Huang, S., "Continuum theory of plasticity", Wiley-Interscience,  
(1995). 

24. Marcal, P., "A note on the elastic-plastic thick cylinder with 
internal pressure in the open and closed-end condition", 
International Journal of Mechanical Sciences,  Vol. 7, No. 12, 
(1965), 841-845. 

25. Hill, R., "The mathematical theory of plasticity", Oxford: 
Clarendon Press, (1950) 

 
 
 
 
 
 

APPENDIX I 
 
The values of   ,    and    are as following: 

⎩⎪⎨
⎪⎧  =      ,                               =      ′ −         ′     ,       =  √           ′        ,        (A1.1) 

These values are obtained for four famous criteria in 
Table A1. 

The vectors           ⃗ ,          ⃗  and          ⃗    
are independent from type of criterion and are as 
follows:  

         ⃗ = ⎩⎪⎨
⎪⎧111000⎭⎪⎬
⎪⎫,    

   ′      ⃗ =
⎩⎪⎪⎨
⎪⎪⎧   ′  ′  ′2   2   2   ⎭⎪⎪⎬

⎪⎪⎫,       

   ′      ⃗ =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧   ′   ′ −     +   ′   ′   ′ −     +   ′   ′   ′ −     +   ′ 2       −   ′     2       −   ′     2       −   ′     ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

.  

(A1.2) 
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APPENDIX II 
 
The vectors  ⃗ ′ ,  ⃗ ′  and  ⃗ ′  are as follows: 
 
  ⃗ ′ =    ⃗   = {0 0 0 0 0 0} ,  
 ⃗ ′ =    ⃗   ′ −         ′    ⃗  =

⎩⎪⎪⎨
⎪⎪⎧   ′  ′  ′2   2   2   ⎭⎪⎪⎬

⎪⎪⎫
+(      ′ −         ′      ) 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧   ′   ′ −     +   ′   ′   ′ −     +   ′   ′   ′ −     +   ′ 2       −   ′     2       −   ′     2       −   ′     ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

+  
⎩⎪⎪
⎨⎪
⎪⎧      000⎭⎪⎪

⎬⎪
⎪⎫, 

 ⃗ ′ =   √           ′       ⃗  =  √           ′     

(     
⎩⎪⎪⎨
⎪⎪⎧   ′  ′  ′2   2   2   ⎭⎪⎪⎬

⎪⎪⎫
+     

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧   ′   ′ −     +   ′   ′   ′ −     +   ′   ′   ′ −     +   ′ 2       −   ′     2       −   ′     2       −   ′     ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

) 

(A2.1) 

 
 

The matrices         ⃖    ⃗ ,     ′    ⃖    ⃗  and     ′    ⃖    ⃗  are as in (A 2.2):  
 

        ⃖    ⃗ =
⎣⎢⎢
⎢⎢⎡ 0 0 0 0 0 00 0 0 0 00 0 0 0   . 0 0 00 00⎦⎥⎥

⎥⎥⎤,  
    ′    ⃖    ⃗ =   ⎣⎢⎢

⎢⎢⎡ 2 −1 −1 0 0 02 −1 0 0 02 0 0 0   . 6 0 06 06⎦⎥⎥
⎥⎥⎤,  

(A2.2) 

    ′    ⃖    ⃗ =   
⎣⎢⎢
⎢⎢⎢
⎢⎡  ′   ′   ′ −2           ′   ′    −2        ′       −2      . −3  ′ 3   3   −3  ′ 3   −3  ′ ⎦⎥⎥

⎥⎥⎥
⎥⎤.  

 
 
 
 
 
 
 
 
 

TABLE A 2.1. The values of        ′  for different yield criteria. 

Yield criterion 
      ′         ′         ′   

Tresca 0 −     ′     −    ′     

von Mises 0 −     ′     0 

Mohr-Coulomb 0 −     ′     −    ′     

Drucker-Prager 0 −     ′     0 

 
 
 
APPENDIX III 
 
Vectors  ⃗,  ⃗ and  ⃗ along with the matrices  ⃖ ⃗  and  ⃡ are 
presented in the (A 3.1):  ⃗ =    ′   ′   ′ 2   2   2    ,  
 ⃗ =

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧   ′   ′ −     +   ′   ′   ′ −     +   ′   ′   ′ −     +   ′ 2       −   ′     2       −   ′     2       −   ′     ⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

,  
 ⃗ =        0 0 0 ,  
 ⃖ ⃗ =

⎣⎢⎢
⎢⎢⎡2 −1 −1 0 0 02 −1 0 0 02 0 0 0   . 6 0 06 06⎦⎥⎥

⎥⎥⎤,  

 ⃡ =
⎣⎢⎢
⎢⎢⎢
⎢⎡  ′   ′   ′ −2           ′   ′    −2        ′       −2      . −3  ′ 3   3   −3  ′ 3   −3  ′ ⎦⎥⎥

⎥⎥⎥
⎥⎤
  

(A3.1) 
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TABLE A 3.1. The values of Ci for the different yield criteria. 

Yield criterion          

Tresca 0 
       ′    (1 + tan  tan 3 )  √   ′            

von Mises 0 
√     ′      0 

Mohr-Coulomb 
  sin               [(1 +        3 ) +     √   

    ′      (√3     +         )  

Drucker-Prager 0 
 .     ′      0 

 

 
 

TABLE A 3.2. The values of        for different yield criteria. 

Yield criterion                       

Tresca 0 −      +                   + 3              

√              (    + 3        3 )  
von Mises 0 0 0 

Mohr-Coulomb 0 −      +                    +            +     √             −                        √3(1 + 3        3 ) +    (3    3 −     )]  
Drucker-Prager 0 0 0 
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  چکیده
  

اي زمانی غیرصریح به همراه اپراتور  دوم یک سطح تسلیم با روش مرحله ي در این پژوهش به دست آوردن مشتق مرتبه
اي  اي زمانی صریح، ذورنقه هاي مرحله روشدر ادامه . پلاستیک سازگار با آن مورد مطالعه قرار گرفته است-الاستیک

در پایان نشان داده شده است که استفاده از . اند غیرصریح در پلاستیسیته وابسته به زمان مقایسه شده غیرصریح و کاملاً
تر  قغیرصریح در پلاستیسیته وابسته به زمان نتایج آزمایشگاهی را نسبت به دو روش دیگر دقی اي زمانی کاملاً روش مرحله
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