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moment of the beam.

A prismatic beam made of a behaviorally nonlinear material situated on a nonlinear elastic foundation
is analyzed under a moving harmonic load moving with a known velocity. The vibration equation of
motion is derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration,
circular frequency, bending moment, stress and deflection of the beam can be calculated by the
presented solution. Considering the response of the beam., in the sense of its resonance, it is found that
there is no critical velocity when the behavior of the beam and foundation material is assumed to be
physically nonlinear. Thus, in this case there are finite values for the deflection, stress and bending
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1. INTRODUCTION

Presently, there are many structures made from
materials which do not obey the Hook’s law. Therefore
there is a great tendency to study stress and strain at
elements of structures made of physical nonlinear
material under various static and dynamic loads. In
linear theory, the property of material is not taken into
consideration. However, all of the relevant parameters
are taken into consideration at the theory of
nonlinearity. Thus, physical nonlinear theory for small
deformations demonstrates an exact calculation method
for the analysis of stress, strain and other internal forces
at structural elements.

Finally the relationship between stress and strain in
the case of physical nonlinearity was presented by Hans
Kaudrer [1]. As the formula proposed by Kaudrer is
comprehensive and expresses the relationship between
the stress and strain in three dimensional manners; we
preferred to use the formula for the analysis of the
physically nonlinear stress and strain [1]:
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where, i, j =1, 2, and K and G at small deformation are
volume contraction and shear elastic moduli,

respectively. K (o) is average stress function and /(i)
is shear stress function; It can be indicated through the
following expression [2]:
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Researches have demonstrated that K(op) in
physical nonlinear material on average relative
deformation is close to the straight line K(cp) = 1. Also,
the two first terms of the shear stress function are
sufficient for most practical purposes.
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In the above, the expression is the physically
nonlinear coefficient, and the following formula is
obtained from the formula (1) for a two dimensional
case:
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The purpose of this paper is to analyze a beam made of
physically nonlinear material on nonlinear elastic
foundation subject to harmonic moving load discussed
through analytical examples.

2. THEORY

It is assumed that the harmonic moving load along the
simply supported prismatic beam made of physical
nonlinear material laid on nonlinear elastic foundation
shown in Figure 1.

The harmonic load P moves on the beam with a
constant velocity V. The reaction of the nonlinear
elastic foundation is [3]:

4, =-k,W(- k,W?) 5)

where, ki, k, are coefficients with respect to nonlinear
elastic foundation which are determined experimentally

and W is the beam deflection. The principle of Hamilton
for this beam is as follow [4]:

H:J.t2 [1-A-E)dt (6)
The potential and kinetic energy of this system can be
written as follows:
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where, E, G, L,, p and F denote modulus of elasticity,
shear modulus, nonlinearity coefficient, and density and
cross sectional area, respectively. In addition, x and y
are coordinate axes of section. The work of the external
moving load is given by [5]:
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Figure 1. Schematic view of a prismatic beam under harmonic
moving load
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By substitution of expressions (7), (8), (10) in (6), we
will have:
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Substituting =" in 7=@t Equation (11) the
1

principle of Hamilton Will can be represents as follows:
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Assuming p(£)and q(v) as the coordinate and

generalized functions, deformation of the beam can be
expressed in the following form [6]:

W(E,7)= p(8)-q(r) (13)

Substituting Equation (13) in (12) and further
simplifications, the Hamilton principle is rearranged as:
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It is assumed that p(&) is known, so the Hamilton
integral will be as follows:
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where, the coefficients a, b, ¢ and d1 are:
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By substitution of X = o? q in to equation, we have:
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To solve the Duffing Equation (20), it is assumed [7]:

X = 3 X cos N Tsin nnt
g:z n ! (22)

= Xjsinnt + Xj3sin 3nt + X5 sin 5nt + ...

Substrituting Equation (22) in (20) and comparing the
results with similar cases of coefficeients of

COS M TSI ONT " many algebraic equations result, to our

knowledge there is no exact solution for these
equations. Thus, it would be appropriate to employ an
approximate method, and for n>1, x <X as a result, it

is applied the first constraint of Equation (22) that is:
x(z) = x, cosm,T.sinnt

By substitution of Equation (23) in Equation (20) and
comparing the same coefficients, it will be:

3
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If, u2=n%?+n? Equation (23) can be rewritten as
follows:
(l—yz)xl+%ex13 =1 (24)

since the vibration amplitude can be determined.

From Equation (24), it can be concluded that the
resonance of the system depends on the velocity and the
circular frequency of load. Knowing X, and considering

Equation (13), the deflection of beam can be derived as
below [8]:
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Bending stress at any sections of beam can be
determined by:
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Bending moment is calculated as follows:
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2. 1. When the Load is out of the Beam
Differential equation of free vibration will be as
follows:

cozq"+i (1+22q2j:0 (28)
c a

Finally, by solving Equation (27) we find the period of
vibration [9]:
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where,
Q- is amplitude of vibration
K@)=" 1+ 6in?0 + 2 sin® 042 sin® 5+.}
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And circular acceleration of vibration will be as follows:
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2. 2. Application and Results  Now, the obtained
analytic solution is applied to the following example.
Figure 2 shows the cross section of a rail beam. The
material of beam is considered to be steel which is made
of a nonlinear material. The specification of the material
are as follows:
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1,=0.3252x107 I, =17.827x10°° pff

E=2.1x10% KN/’ G=0.87x10° KN/ m’

I, =0.085x10° p =78 KN/t
P=62.5 KN F = 0.007122 m?
1=6.00m

k, =500,1000,1500,2000,2500 KN/ n?

k, =0.00, k, = 0.4k

Then, vibration amplitudes determined for k;=1500 and
K,=0.4k; are shown in the Table 1. Based on Table 1,
resonance curve is shown in Figure 3 and when 5,2 =1,
for  k =500,1000,1500,2000,2500  k, = 0.4k, the
deformation, bending stress and bending moment at the
middle span is determined and is shown in Table 2.
When k =0.0 it means nonlinear beam on elastic
foundation (Winkler Theorem). In this case, the
deformation, stress and bending moment at the middle
span is determined and is showed in the Table 3. Table
3 indicates that at critical velocity, the deflection
bending stress and bending moment at beam on elastic
foundation (Winkler Theorem) have constant values and
do not depend on foundation constant. When 'uz =1
and 0, = 0.4 , circular frequency, critical velocity are
calculated and shown in Table 4, and coefficient of
dynamic for any velocity can be calculated. So, it is
obtained for y ,= 0.2, 0.3, and 0.4 and are shown at

Table 4.

TABLE 1. Amplitudes of vibration

b 150mm

Figure 2. Section of beam

resonance curve
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Figure 3. Resonance curve

TABLE 3. Circular frequency ,critical velocity for k;

w X, X} X}

0 648 5.45 I
0.6195 465 3.60

I 331

2 -

TABLE 2. Deformation, stress and bending moment for k;,
Ks

k w o, M

(KN /) ¢ ' (em)  (MPa)  (KN.m)
500 00371 330 5014 22980  87.00
1000 00393 324 3041 16759  61.08
1500 00366 331 2063 13139 47.93
2000 003311 343 2019 11202 4026

2500 -0.03 -3.54  1.087 96.57 34.65

k, (KN /m %) 500 1000 1500 2000 2500
0] (L) 133.63 163.38 188.44 210.55 230.55
s
m
Vo (=) 23396 28592 329.78 368.47 403.46
TABLE 4. Velocity for k;
, u>=0.2 =03 u’=04
k(KN /m~) K "
v=igokmg v -3gkm v — 450 km
500 1.2610 1.4476 1.702
1000 1.2580 1.4411 1.6850
1500 1.2540 1.4363 1.6750
2000 1.2504 1.4298 1.6689
2500 1.2500 1.4293 1.6680
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3. CONCLUSION

The effects of material nonlinearity on the response
parameters of beam on linear and nonlinear elastic
foundations under harmonic load are investigated
analytically. Using Hamilton principles and Euler's
equations, the nonlinear vibration equation of the
system are obtained. The Fourier series are used to
decompose the deflection as a multiplication of
functions in time and space. The resulting equation in
time is the well known Duffing's equation. Solving the
Duffing equation by perturbation method, the response
parameters of the system are evaluated.

In the case of linear material under harmonic
moving load on elastic foundation, theoretically with
increasing the speed of the moving load resonance
might happen. However, considering the material
nonlinearity, resonance dose not happen and the internal
forces will have definite values. Taking into account the
material nonlinearity, the internal forces for velocities
blew critical velocity reduce as much as 10-15 percent
in comparison with the linear case. For the various k

and K,=0.4 k; (nonlinear elastic foundation) and
k, =0.0 (winkler elastic foundation) values of

deformation, stress and bending moments have been
determined. When k,=0.0 obtained results shows that
deformation, bending stress and bending moment
approaches to a constant value and dose not depend of
foundation constant. The coefficient of dynamics for

u 2= (.2, 0.03, 0.04 for two cases are obtained. Thus,

for any velocity V, deformation, stress and bending
moment can also be determined.
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