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A B S T R A C T  
   

Calculation of torsional strength of reinforcement concrete members due to the lacks of the theory of 
elasticity is a difficult task. Therefore, the finite element analysis could be applied to determination of 
strength of concrete beams. As well, for modeling of complicated, highly nonlinear and ambiguous 
phenomena, artificial neural networks (ANN) are appropriate tools. The main purpose of this paper is 
an evaluation of ultimate torsional strength of rectangular concrete beams. A three-dimensional finite-
element model (FEM) along with establishing the artificial neural network is used for achieving this 
aim. The finite element model utilizes the brittle failure criterion for concrete fracture, and 
experimental data are applied for training of the ANN.The commercial software is used for numerical 
modeling, and existing experimental tests are used in validation of the proposed failure criterion. In 
order to apply the data for training of the network, they are divided into three categories: training, 
testing and validating data. For training of the proposed network, three-layer perceptron network with a 
back propagation error algorithm is used. Comparison of accuracies for applied failure criterion in the 
numerical modeling, and neural network predictions are carry out using the experimental tests. 
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NOMENCLATURE 

BR  v BR  v 

Tu
 Ultimate torsional strength Np

 
Number of input patterns 

X,y Dimension of cross-sectional area of the beam T, O Target and network output values 

X1,y1
 Dimension of closed stirrups Nout

 Number of the output neurons 

lρ  Steel ratio of longitudinal reinforcement p
md  Actual output of network 

tρ  Steel ratio of stirrups p
my  Desired output of neural network 

fyl
 

Yield strength of longitudinal torsional reinforcement net j The weighted sum of the j-th neuron 

fyv
 

Yield strength of closed stirrups Wij 
Weight between the j-th neuron and the i-th neuron in the 
preceding layer 

At
 The cross-sectional area of one-leg of closed stirrup xi Output of the i-th neuron in the preceding layer 

Al Total area of longitudinal torsional reinforcement outj Output of the j-th neuron 

S Stirrup spacing Sx Normalized value of the variable Z 

R2 
Correlation coefficient Zmin, Zmax

 
Minimum and maximum values of Z 

MSE
 

Mean Squared Error cf ′  Compressive strength of concrete 

E rate
 Error rate   
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1. INTRODUCTION 
 
In the literature, many analytical, numerical and 
experimental studies have been reported for torsional 
behavior of concrete elements under pure torsion. The 
behavior of homogeneous members under torsion in the 
elastic domain is expressed very well by Saint Venant’s 
theory and its complementary one by Cowan [1]. This 
theory has been extended to describe the behavior of 
non-homogeneous elements and to predict their 
torsional strength. However, this theory seems to be 
unsatisfactory since concrete exhibits the complex 
structural response with various important 
nonlinearities. Tests of concrete elements under torsion 
have shown that this theory underestimates the failure 
strength of plain concrete members. In the examined 
cases, the actual strength proved to be roughly 50% 
greater than the predicted one by the elastic theory [2]. 
Whereas Saint Venant’s theory underestimates the 
torsional strength of concrete elements, the plastic and 
the skew bending theories have been proposed to 
estimate the failure torque of them. Nevertheless, the 
plastic theory is not quite satisfactory and overestimates 
the failure strength [2]. The skew bending theory 
describes the failure of concrete elements with a 
rectangular cross section very well, but it is useless in 
practice in the case of flanged sections due to 
mathematical complexity [3]. The procedure for the 
torsional analysis and design of concrete adopted by the 
American Concrete Institute (ACI) is based on the skew 
bending theory and mainly covers rectangular beams 
[4].  

In the case of cracking appearance, using finite 
element is an appropriate tool in calculation of failure 
torque of concrete members. So far, two different 
philosophies for representing cracks in numerical 
implementations have been proposed. The first one is 
the discrete crack model, originated by Ngo and 
Scordelis [5], which reflects the localized nature of 
cracks. The second approach is the smeared crack 
model, which was introduced by Rashid [6].  

Karayannis and Chalioris [7, 8] comprehensively 
survived the smeared crack analysis for behavior of 
plain concrete beams, and the experimental data had 
been used to numerical modeling validations. Chiu et al. 
[9] studied the effects of the ratio of cross-sectional area 
and the rate of the transverse reinforcement to the 
longitudinal reinforcement on the cracking pattern and 
ultimate torsional strength. William and Tanabe [10] 
studied the torsional behavior of reinforcement beams 
using the nonlinear finite element analysis. Pourhoseini 
et al. investigated the behavior of RC beams only for 
longitudinal reinforcement effects. The commercial 
software is applied to the finite-element analysis, and 
the experimental data have been used to confirm the 
obtained results. Mohammad, N.M [11] survived the 

predictions of nonlinear behavior of the cantilever 
beams under pure torsion. 

Heretofore, in the literature, no comprehensive 
studies have been reported for studying all the 
significant parameters in the ultimate tosional strength. 
Accordingly, here the exhaustive study has been carried 
out for taking into account of the important variables. In 
the present paper, three-dimensional finite element 
study is used in order to calculate the failure torque of 
RC beams. Brittle failure criterion for concrete is 
utilized for fracture of the beams. This behavioral model 
is applied when the tension-cracking in the concrete is 
dominant, and the compressive failure is not significant. 
Finite element validating for proposed failure criterion 
is confirmed using experimental data.  

Moreover, for complicated, highly nonlinear and 
ambiguous phenomena such as torsional behavior of 
concrete members, artificial neural networks are 
appropriate tools. Rakhshan & Akbari [12] utilized 
three-layer perceptron network with a back propagation 
error algorithm, and the generalized regression network 
to predict the ultimate torsional strength. Arslan [13] 
applied different neural networks algorithms and 
building codes for estimating of failure torque. Cevik et 
al. [14] used the genetic programming method to 
calculate the torsional strength of rectangular RC 
beams. Tang developed a radial basis function neural 
networks to predict the ultimate torsional strength of RC 
beams. 

The capabilities of the artificial neural network 
(ANN) in prediction of torsional strength of RC beams 
investigated here. To achieve this goal, experimental 
data of 76 reinforced concrete beams subjected to 
torsion are used from the existing database [3, 14-17] . 
Ultimate predictions of RC beams using soft 
computational methodologies have been investigated by 
many researchers using the data [12-18]. 

The samples have a range from normal strength 
concrete to high-strength concrete. The test specimens 
have been rectangular beams, and they have been 
subjected to pure torsion. As well, none of them were 
deep beams. In the ANN model, the input parameters 
consist of 12 parameters. The parameters are: the cross-
sectional area of beams, dimensions of closed stirrups, 
concrete compressive strength, spacing of stirrups, 
cross-sectional area of one-leg of closed stirrup, total 
area of longitudinal torsional reinforcement, yield 
strength of stirrup and longitudinal reinforcement, the 
steel ratio of stirrups and a steel ratio of longitudinal 
reinforcement. The output parameter of the ANN model 
is the torsional strength of the RC beam. The error back-
propagation algorithm (Levenberg- Marquardt) is used 
for training of the network. Then, training, testing and 
validating errors and correlation coefficients are 
calculated for these data. After training of the neural 
network using experimental data, parametric studies are 
accomplished using FEM and ANN tools. Finally, the 
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accuracies of obtained results are confirmed using the 
experimental data. 

 
 

2. FINITE ELEMENT MODELING OF TORSION 
 
Among the numerical methods for studying the failure 
behavior of concrete, the finite element method is 
predominant. Because it has high flexibility in the 
modeling of structures with complex geometries, 
various boundaries and loading conditions, and 
complicated cracking patterns. In the present paper, the 
commercial finite element software (ABAQUS) is 
utilized for estimating of the ultimate torsional strength 
of (RC) beams. In order to examine the capabilities of 
the brittle failure criterion in torsion modeling, this 
criterion is applied in the finite element analysis. 

This criterion is a crude way of modeling failure and 
should be used carefully. Using of the brittle failure 
criterion based on an incorrect user assumption will lead 
to the inappropriate simulation. In the application of the 
failure criteria, issues such as rebar interactions with 
concrete, crack initiation, cracking directions and 
detection, stress-strain relation should be  taken into 
account carefully. Typically, reinforcement in concrete 
beams is provided by rebars. Here, they are applied by 
elasto-plastic material behavior and are superposed on a 
mesh of standard element types are used to model the 
plain concrete. With this modeling approach, the 
concrete cracking behavior is considered independently 
of the rebar.  

Cracking model has been fixed with the maximum 
number of cracks at a material point limited by the 
number of direct stress components present at that 
material point (a maximum of three cracks in the three-
dimensional beam). A simple Rankine criterion is used 
to detect crack initiation. This criterion states that a 
crack forms when the maximum principal tensile stress 
exceeds the tensile strength of the concrete.  

The embedded element technique is used to specify 
that steel reinforcement elements are embedded in host 
concrete elements.  

 
2. 1. Finite Element Model Specifications   For 
steel, the perfect elastic-plastic behavior with isotropic 
hardening and same behavior in tension and 
compression is considered. The used elements in the 
finite element modeling of this study are as follows: 
B31: for rebar and stirrup in which has a capability to 
modeling shear deformations.    
C3D8R: for three-dimensional hexahedral elements 
with linear approximation of displacements and reduced 
integration with hourglass control.  

At the free end of the beam, all the nodes are 
released for any deformation. In order to prevent the 
stress concentrations in the  location  of  loading  on  the  

 
 

beam, the rigid segment is used with a cross-section 
equal to the beam dimension. Loading pattern in the 
finite element modeling is the gradual rotation at the 
free end of the samples. A typical finite element mesh 
for the beam is illustrated in Figure 1.  

 
 

3. ARTIFICIAL NEURAL NETWORKS (ANNs)  
 
ANN is an information-processing ssystem, which 
consists of highly interconnected processing neurons. 
There are mainly two stages in ANN models. In the first 
stage, the ANN model is developed, and then trained to 
learn the relationships between provided input and 
output data. In the second stage, this learning 
mechanism is used to predict the outputs for the input 
data, which are included in the input set in the first 
stage. Its effectiveness depends mainly on the quality of 
the database used for its training in the first stage. 
Among many types of ANNs, feed-forward networks 
are commonly used in engineering applications (see 
Figure 2.) 

The network performance maybe evaluated 
quantitatively in terms of the correlation coefficient, 
mean squared error and the error rate. Error rate is 
defined as Equation (1).  

pN

rate i
i=1p

1E = Er
N ∑  (1) 

where, iE r is calculated as Equation (2). 
outN

2
i j j out

j=1
Er = (T -O ) / N∑  (2) 

For a network with one output neuron, as in this study, 
Equation (2) reduces to Equation (3)  

pN

rate j j p
i=1

E = ( T -O /N )∑  (3) 

p p 2
SE m m

m
M =0.5 (d y )−∑

 
(4) 

 
Figure 1. Finite element mesh for the rectangular beams 
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Figure 2. Structure of three-layered feed-forward network 
 
 

 
Figure 3. The cross section of the RC beams and geometrical  
Variables 
 
 

 
Figure 4. Feed forward multilayer network (inputs according  
to Table 1)   

3. 1. Error Back-Propagation Algorithm (BPNN)      
Error back-propagation algorithm is accepted as the best 
training algorithm of the multi-layer perceptron 
network. In this algorithm, the weights are adjusted in 
order to make the minimum standard errors. In the 
forward phase, the weighted sum of input components is 
calculated as Equation (5) 

n

j ij i j
i=1

net = w x +bias∑  (5) 

The output of the j-th neuron is calculated with a 
sigmoid function as follows:  

jj j -net
1out = f(net )=

1+e  (6) 

The training of the network is achieved by adjusting 
the weights and is carried out through a large number of 
training sets and training cycles. Data scaling is another 
important step for network training. In this study, the 
simple linear normalization function with values 
between 0–1 is used as Equation (7). 

min
x

max min

(Z-Z )S =
(Z -Z )  (7) 

 
3. 2. Neural Network Model     In the ANN model, 
the inputs consist of 12 parameters, which including the 
cross-sectional area of the beams, dimensions of closed 
stirrups, concrete compressive strength, spacing of 
stirrups, cross-sectional area of one-leg of closed 
stirrup, yield strength of stirrup, total area of 
longitudinal torsional reinforcement, yield strength of 
longitudinal reinforcement, the steel ratio of stirrups and 
the steel ratio of longitudinal reinforcement.  

In Figure 3, some of the geometrical parameters are 
illustrated. The output parameter of the model is 
torsional strength of the beams. The range of data sets 
for training of the network is presented in Table 1. As 
well, in Table 2 for maximum and minimum values of 

uT , experimental values of the mentioned 12 parameters 
are presented. 

As illustrated in Figure 4, a feed-forward multilayer 
network with error back-propagation model is utilized. 
Here, neural network toolbox of MATLAB [19] is 
applied for prediction of torsional strength of RC the 
beams. 

In the first step, the three-layered feed-forward 
neural network is used and trained with error back-
propagation algorithm (Levenberg- Marquardt). 
According to Figure 4, general structure of the neural 
network consists of an input layer, one hidden layer 
with three neurons and an output layer. Logarithmic 
sigmoid function is used in hidden layer and hyperbolic 
tangent function is applied to the output layer. Among 
the 76 experimental data, 53 data sets are selected 
randomly for network training, 15 data sets for testing 
and 8 data sets for validating.  
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TABLE 1. Data range of effective parameters in the ANN model [13] 

Variable x  
(mm) 

y  
(mm) 

x1  
(mm) 

y1  
(mm) 

f'c  
(MPa) 

s 
(mm) 

At 
(mm2) 

fyv 
(MPa) 

Al  
(mm2) 

fyl  
(MPa) 

ρt  
(%) 

ρl  

 (%) 
Minimum 160 275 130 216 26 50 71 319 381 310 0.22 0.3 

Maximum 350 508 300 469 110 215 127 672 3438 638 2.56 3.51 

 
 

TABLE 2. Specifications of experimental data for maximum and minimum torsional strength [13] 
- x 

(mm) 
y  

(mm) 
x1 

(mm) 
y1  

(mm) 
f'c  

(MPa) 
s  

(mm) 
At  

(mm2) 
fyv  

(MPa) 
Al  

(mm2) 
fyl  

(MPa) 
ρt   

(%) 
ρl   

(%) 

Tu(min) 254 508 215.9 215.9 27.0 215.9 71.3 341.3 381 341.3 0.22 0.30 

Tu(max) 350 500 300 450 78.5 55 126.7 440 3438 560 1.97 1.96 

 
 
 

The number of neurons in the hidden layer is 
changed from 2 to 20 by trial-and-error  process, and the 
optimum number of nodes is determined. According to 
Figures 5 and 6, the optimum number of neurons in 
hidden layer of the proposed network is three, because 
these neurons have minimum MSE and maximum 
correlation coefficient (R2). Maximum training cycles 
are 5000 cycles. 

In the second step, from the set of 76 design data, 53 
data sets are selected randomly for network training and 
23 data sets for testing. In order to avoid over training of 
the network, the spread constant is changed such that 
the error of testing data became close to error of training 
data. Here, 0.5 is assigned to the spread constant by trial 
and error.  

In the error back-propagation algorithm, the 
correlation coefficient for training, testing and 
validating data are 0.979, 0.993 and 0.995, respectively. 
Mean squared error (MSE) for training, testing and 
validating data are 3.93%, 0.66% and 0.297, 
respectively. The error rates for these data are 0.024, 
0.021 and 0.023, respectively.  

Figure 7 shows the mean squared error of the 
network that starts with a large value and decreases to a 
small one. In the other words, the figure displays that 
the network is properly learning.  
 
3. 3. Sensitivity Analysis of Parameters     For 
torsional strength prediction, using a multi-variable 
linear regression model the following equation is drawn. 

u 1 1

c t yv

l yl t l

T =-52.62-2.92x-0.05y+3.41x 0.08
        +0.40f -0.05s+0.03A +0.03f +

        0.05A +0.14f +14.99 -40.53

y

ρ ρ

+

 (8) 

According to Equation (8), torsional strength of the 
beams has direct relation with dimensions of closed 
stirrups, concrete compressive strength, area of one-leg 
of closed stirrup, yield strength of stirrup, total area of 
longitudinal torsional reinforcement, yield strength of 

longitudinal torsional reinforcement and the steel ratio 
of stirrups. As well, this equation shows that uT  has 
inverse relation with the cross- sectional area of the 
beam, spacing of stirrups and steel ratio of longitudinal 
reinforcement. 
 
 
 

 
Figure 5. Values of the mean square error versus the number 
of neurons in the hidden layer 
 
 

 
Figure 6. Values of the correlation coefficient versus the 
number of neurons in the hidden layer 
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TABLE 3. Specifications of experimental samples in the numerical studies 

Sample 
no. 

Tu (EXP) 

(KN.m) 
ρl 

(%) 
ρt 

(%) 
fyl  

(MPa) 
Al 

(mm2) 
fyv  

(MPa) 
At  

(mm2) 
s 

(mm) 
f’c 

(MPa) 
y1 

(mm) 
x1 

(mm) 
y 

(mm) 
x 

(mm) 

6 126.7 0.98 0.68 500.0 1719 420.0 71.3 90 68.4 450 300 500 350 

7 135.2 0.98 1.36 500.0 1719 360.0 126.7 80 68.4 450 300 500 350 

12 138.0 1.64 1.22 520.0 2865 440.0 71.3 50 35.5 450 300 500 350 

37 24.8 3.51 1.49 629.0 1544 655.0 78.5 90 105.1 245 130 275 160 

57 60.1 2.36 2.09 317.9 2288 340.6 126.7 70 29.4 343 216 381 254 

64 40.3 0.49 0.63 322.7 635 333.7 71.3 120 30.9 470 216 508 254 
 

 
TABLE 4. Results of Tu for six samples with experimental, 
numerical and artificial neural network methods 
Sample 

no. 
uT EXP

(KN.m)
 uT FEM

(KN.m)
 uT ANN

(KN.m)
 N u mE

(% )
 ANNE  

(%)
 

6 126.7 135.0 150.0 6.6 20.6 

7 135.2 142.2 130.0 5.2 10.6 

12 138.0 131.8 135.0 4.5 0.91 

37 24.8 25.0 23.0 0.8 0.71 

57 60.1 54.9 50.0 8.7 10.1 

64 40.3 47.0 45.0 16.6 0.12 

 
 

 
Figure 7. Performance of the BPNN algorithm 

 
 

 
Figure 8. Comparison of ultimate torsional strength by 
experimental, numerical and neural network methods 

 
4. RESULTS 
 
In order to validate the finite element model, six 
samples in the experimental data are selected. 
According to Table 3, these samples are the 
representatives of all the 76 experimental samples. 
These data are also used for validating of the trained 
neural network.  

As shown in the Figure 8, good agreement between 
finite element modeling, artificial neural network and 
experimental results are observed. As seen from this 
figure, the results of numerical modeling are close to the 
experimental values. Errors for each sample in compare 
with the experimental data are shown in Table 4. 

In sample 6, error in the ANN is high, and also for 
sample 64, error of the finite element modeling is 
relatively large. Presumably, the reason for large value 
of error for sample 64 in numerical modeling is that the 
behavior of the sample is similar to plane concrete 
behavior. In this sample, the spacing of stirrups is large, 
and the amounts of longitudinal torsional reinforcement 
and steel ratio of stirrups are low. Large error for 
sample 6 for neural network predictions is apparently 
related to the initial stages of the network training. By 
continuing of training, the performance of the network 
is improved and the errors became smooth. 
 
4. 1. Parametric Studies    The parametric studies 
upon the finite-element model validation are fulfilled. 
To reveal of the effects of the  significant variables on 
torsional strength, six finite element models are 
established. The effects of the spacing of stirrups (s), the 
concrete compressive strength (f 'c) and the total area of 
longitudinal torsional reinforcement (Al) are studied, 
individually. For parametric studying of the effect of the 
stirrups spacing, values 80, 100, 150 and 200 mm are 
assigned to this parameter. In order to considering the 
effect of concrete compressive strength, values 28, 40, 
60 and 68.4 MPa are included in the models. Values 
1719, 2574.6, 3432.8 mm2 are also assigned to examine 
the effect of the total area of longitudinal torsional 
reinforcement. Figures 9, 10 and 11 shows the results of 
the parametric studies.  
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Figure 9. The effect of stirrups spacing on 

uT   
(

expfor S 80 mm , T 135.2 (KN.m)= = ) 

 

 
Figure 10. The effect of concrete strength on 

uT  
(

c expfor f 68.4 MPa , T 135.2 (KN.m)′ = =  

 

 
Figure 11. The effect of longitudinal reinforcement on uT  
( 2

l expfor A 1719 mm  , T 135.2 (KN.m)= = ) 

 
 

According to these figures, usually the predicted 
values of torsional strength by ANN method are less 
than FEM values. As seen from Figure 9 for s=80 mm, 
the error of the FEM is %5.3 and the error of the ANN 
prediction is % 10.7.Therefore, the results of the FEM 
are reliable than the results of the ANN. For s= 100, 150 
and 200 mm, there are not experimental data to compare 
the accuracies of the FEM and ANN results. However, 
the variation of Tu against stirrups spacing for ANN 
method is considerable, and for FEM, the variation is 

negligible. The reason is that, the ANNs have not any 
ability to extrapolate solutions for problems outside the 
network training domain. Therefore, it seems that the 
results of the ANN have lower accuracies in compare 
with the FEM results for large variations of S, because 
the values maybe become outside of the training data. In 
Figure 10 for fc

' = 68.4 MPa, the errors of FEM and 
ANN are %5.3 and % 10.7, respectively. As well, for fc

' 
=

 
28, 40 and 68.4 MPa, there are no experimental data 

to evaluate the accuracies of the FEM and ANN 
observations. However, the variations of Tu for FEM 
and ANN methods versus fc

' are same. It is noticed that 
the distances between values of ANN and FEM are 
increasing when increasing the values of fc

'
 . The 

predicted values of torsional strength by ANN method 
are usually less than FEM values, and it seems that the 
results of the FEM have better accuracies. According to 
Figure 11, by increasing the values of Al , the values of 
Tu  for FEM and ANN are increasing. It is observed that 
by increasing the values of Al  distances  between values 
of ANN, and FEM are decreasing because ANNs have 
not the ability to extrapolate solutions for problems 
outside the network training domain. 
 
 
5. CONCLUSION 
 
In this paper, using the nonlinear FEM and ANN tools 
torsional strength of the reinforcement concrete beams 
have been estimated. The adequacy of brittle failure 
criterion is confirmed. As well, the capability of feed-
forward multilayer network with the error back-
propagation algorithm is proven. Using the 
experimental data, the obtained results from the FEM 
and the ANN have been compared. Based on the present 
study, the following conclusions are drawn: 
v In the literature, the smeared crack model was 

utilized in plain concrete, though for reinforcement 
concrete members, this model is inadequate. It has 
been shown that under pure torsion, the brittle 
failure criterion is an appropriate tool for studying of 
the behavior of RC beams.  

v By surveying the results, it can be concluded that the 
numerical modeling has better accuracy than 
artificial neural network predictions. Probably, the 
reason is that the 76 data sets are not sufficient for 
proper training of the network.  

v Neural network results indicate that the number of 
layers and neurons in hidden layer, and number of 
iterations are assigned correctly. 

v It seems that the results of the FEM are reliable than 
the results of ANN. The reason is that in some cases 
values of parameters might be in the outside of 
training data. Therefore, the networks are not able to 
extrapolate solutions for problems outside the 
network training domain. As a result, the ANN 
predictions might have the accuracy problems. 
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 چکیده

   

بنابراین، تحلیل . محاسبه مقاومت پیچشی نهایی اعضاي بتنی مسلح به دلیل نقص تئوري الاستیسیته، کاري دشوار می باشد
هاي عصبی مصنوعی ابزاري کارآمـد بـراي    همچنین، شبکه. المان محدود براي تعیین مقاومت پیچشی روش مناسبی است

 تیرهاي بتنی ی نهاییپیچشمقاومت  محاسبههدف این تحقیق، . ئل پیچیده، مبهم و با رفتار غیرخطی می باشندمدلسازي مسا
ایجاد یک شبکه عصبی مصنوعی محقق مدلسازي سه بعدي تیر با روش المان محدود و این مهم، با . مستطیلی است مسلح

هاي آزمایشگاهی براي آموزش شبکه عصبی   و دادهمعیار شکست ترد در مدل المان محدود براي شکست بتن  .شده است
افزارهاي تجاري و براي اعتبـار سـنجی مـدل عـددي از     براي مدلسازي عددي از یکی از نرم. اندمورد استفاده قرار گرفته

به سه دسـته  در نظرگرفته شده بمنظور آموزش شبکه عصبی، داده هاي . هاي  آزمایشگاهی موجود استفاده شده است داده
انتشار خطا بکار گرفتـه شـده   اند و شبکه پرسپترون سه لایه با الگوریتم پس موزشی، آزمایشی و اعتبارسنجی تقسیم شدهآ

داده هاي آزمایشگاهی موجود در ادبیات پیش بینی شبکه عصبی با استفاده از  نتایج مدل سازي عددي، و نتایج دقت. است
  .اند فنی مقایسه شده
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