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A B S T R A C T  

   

In this paper, the radial breathing mode (RBM) frequency of single-walled carbon nanotube (SWCNT) 
is studied based on the thin shell theory. For this purpose, SWCNT is considered as an elastic thin 
cylindrical shell. The dynamic equation of RBM is derived using the Hamilton’s principle. An 
analytical solution of the RBM frequency of SWCNT is obtained. The advantage of this formulation is 
that it shows the dependency of the RBM frequency to the mechanical properties of SWCNT, clearly. 
These investigations are very important to predict the accurate vibrational characteristics of SWCNTs 
which have potential applications in nanotube-filled nanocomposites that are used as sound absorbers. 
To show the accuracy of this work, the RBM frequencies of 40 different SWCNTs are obtained which 
are in excellent agreement with the available experimental results with relative errors less than 1%. 
Also, the RBM frequencies predicted by the present shell model are compared with those obtained by 
the other researchers based on the density-functional theory (DFT), and three-dimensional (3D) 
elasticity theory. The results emphasize the utility of thin shell theory for modeling and vibrational 
behavior of the RBM frequency of SWCNT. 

 
doi: 10.5829/idosi.ije.2013.26.04a.13 

 

  
1. INTRODUCTION1 
 
Carbon nanotubes (CNTs)  with unique stiffness, 
strength and low density could influentially affect some 
of the physical properties of composites filled with 
CNTs for sound wave absorption [1, 2] or being used as 
sensors and actuators [3]. It is clear that the effective 
properties of CNT-based nanocomposites depend on 
properties of individual components. They have 
superior physical and mechanical properties, compared 
with bulk materials. So, the study on vibrational 
characteristics of individual CNTs with appropriate 
model is very important for designing CNT-based 
nanocomposites such as sound absorbers [1, 2], and 
nano-devices such as advanced miniaturized switches 
[4]. 

Many of SWCNT properties have been studied 
experimentally [5-7], and theoretically [8-15]. Raman 
spectroscopy has provided an extremely powerful tool 
for the characterization of SWCNT. The RBM 
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frequency is usually the strongest feature in SWCNT 
Raman spectra plays a crucial role in the experimental 
determination of the geometrical properties of 
SWCNTs. Therefore, it is very important to know the 
behavior of RBM frequency of different nanotubes, 
precisely. The aim of this paper is only the prediction of 
the RBM frequencies. In the RBM, all carbon atoms 
move coherently in the radial direction creating a 
breathing-like vibration of the entire tube. This feature 
is specific to CNTs and does not exist in graphite [16]. 
Therefore, RBM frequencies are very useful for 
identifying a given material containing SWCNTs, 
through the existence of RBM modes, and for 
characterizing the nanotube diameter distribution in the 
sample through inverse proportionality of the RBM 
frequency to the tube diameter. 

A SWCNT can be described as a single layer of a 
graphite crystal that is rolled up into a seamless circular 
cylinder, one atom thickness, usually with a small 
number of carbon atoms along the circumference and a 
long length along the cylinder axis. 

Owing to nanometer dimensions of CNTs, it is 
difficult to set up controlled experiments to measure the 
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properties of an individual CNT [5-7]. Also, molecular-
dynamics and atomistic methods such as density-
functional theory (DFT) [8-10] are costly and difficult 
particularly for large-scale systems. So, continuum 
elastic mechanical models such as elastic beam models 
[11, 12] and elastic shell models [13, 14] have been 
widely used to study vibration of CNTs. 

In this paper, SWCNT is modeled as an elastic thin 
cylindrical shell. Afterwards, the dynamic equations of 
motion are derived according to the first approximation 
thin shell theory. Then, closed form solution for RBM 
frequency of SWCNT is obtained. Finally, the RBM 
frequencies of 40 different SWCNTs are compared with 
the available experimental results [5-7] which show an 
excellent agreement with relative errors of less than 1%. 
The results show more agreement with the experimental 
results [5-7] than the DFT results [8-10] and Mahan’s 
three-dimensional (3D) elasticity theory [15]. 
 
 
2. MODELING THE SWCNT 
 
In this study, the SWCNT is modeled as an elastic thin 
circular cylindrical shell with radius R and thickness h, 
in cylindrical coordinates ( , , )r xθ as shown in Figure 1, 
where r, θ  and x are the radial, circumferential and 
axial coordinates of the cylindrical shell, respectively. 
In Figure 1, u, v and w are the shell displacements along 
the axial, circumferential and radial directions, 
respectively. 

According to the first approximation thin shell 
theory [17], the stress-strain relations for a three-
dimensional element of the shell are as follows: 
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where E and µ  are the elastic modulus and Poisson's 
ratio of SWCNT, respectively. The normal stress 

zσ which acts in the normal direction to the middle 
surface of the shell is neglected. Although, the 
transverse shear deflections xzγ  and zθγ  are assumed to 
be negligible, one may not neglect the integrated effect 
of the transverse shear stresses xzσ  and zθσ  for 
obtaining the transverse shear forces Qx and Qθ

 acting 
at the normal direction to the middle surface of the 
shell. By integrating the stresses across the 
thickness h of the shell, the resultant forces 

,  ,  x xN N Qθ
, ,  ,xQ Nθ θ

 and xNθ
 of the middle surface 

(Figure 2(a)) are [17]: 

 
Figure 1. Cylindrical coordinates 

 
 

 

 
Figure 2. (a) Resultant forces and (b) resultant moments in 
cylindrical coordinates 
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and the resultant moments ,  ,  x xM M Mθ θ
 and xMθ

 
exerted on the middle surface (see Figure 2(b)) can be 
obtained as [17]: 
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(3) 

From the theory of elasticity, by integrating the 
strain energy stored in one infinitesimal element of the 
shell volume, the strain energy stored in the shell is 
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given by [17]: 

( )1   d  d  d .
2 x x x x xz xz z z

V

U e e e R x zθ θ θ θ θ θσ σ σ σ γ σ γ θ= + + + +∫∫∫
 

(4) 

Integrating over the thickness of the shell 
( 2  to 2)z h h= − , the kinetic energy of the shell is 
obtained as [17]: 
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where ρ  is the shell mass density, 
xβ  and 

θβ  represent 
rotations in the normal directions to the middle surface 
about x and θ  axes, respectively, and dot indicates a 
time derivative. 

The variation of energy of the shell due to applied 
boundary forces and the resultant moments are [17]: 
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The symbol δ  is the variational symbol and is treated 
mathematically as a differential symbol. 
The Hamilton's principle is expressed as [17]: 

1

0
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at arbitrary times t0 and t1, all variations are zero 
including the variational displacements. By substituting 
Equations (4)-(6) into Equation (7) and taking the 
variational operator inside the integral, one obtains: 
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In order to satisfy this equation, every individual of 
the triple integral parts must be equal to zero. Moreover, 
because of the arbitrary variational displacements, each 
integral equation can be satisfied only if the coefficients 
of the variational displacements are zero. So, one 
obtains the following equations that are called "Love's 
equations": 
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In the RBM vibration, all carbon atoms move in 
phase in the radial direction creating a breathing-like 
vibration of the entire tube. Therefore, the RBM 
vibration is axi-symmetric for the entire tube (e. g. 

0θ∂ ∂ =  and 0x∂ ∂ = ). 
So, the Love’s equations reduce to: 

2

2 0wN hR
tθ ρ ∂

+ =
∂

 (14) 

By substituting 
θσ  from Equation (1) into Equation 

(2) with the mentioned assumptions, 0θ∂ ∂ =  and 
0x∂ ∂ = , the in-plane membrane force of the middle 

surface can be obtained as: 

2 .
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Substituting Equation (15) into Equation (14) gives the 
dynamic governing equation for the RBM vibration of 
SWCNT as: 

2

2 2 2

1 0,
(1 )

E h ww h
R t

ρ
µ

∂
+ =

− ∂
 (16) 

The RBM displacement of the SWCNT is of the 
form ( )expw W i tω= − , where W is the radial 
displacement amplitude of the SWCNT and ω is the 
angular frequency of the RBM. Substituting the RBM 
displacement into Equation (16), gives the characteristic 
polynomial in terms of ω. By solving the characteristic 
polynomial equation, one can yield: 
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Experimentally, the RBM frequency is related to ω via 
RBM 2f Cω π=  where 82.99792458 10  m/sC = ×  [18] is 

the velocity of light. 
So, the RBM frequency formula can be obtained as: 

( )RBM 2

1 1. ,
21

Ef
C Rπ ρ µ

=
−

 
(18) 

Throughout the paper, the material properties of 
SWCNT have been considered as: Young’s modulus 
E=1 TPa, mass density ρ=2300 kg/m3 [12] and Poisson's 
ratio µ=0.2 [14]. Each SWCNT is uniquely specified 
by the two chiral indices, n and m ( n m≥ ), which 
are the two integer coefficients in the expression of 
the chiral vector which is often described by the 
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pair of indices (n,m). The diameter of the SWCNT 
(n,m) is given by [16]: 

( )2 202 3 ,ad R n nm m
π

= = + + (19) 

where the value a0=1.421 Å has been used for the 
carbon-carbon (C-C) bond length [7]. 

The advantage of the simple analytical formula (18) 
is that it shows clearly the dependency of the constant A 
in RBMf A d=  to the mechanical properties of SWCNT 
as: 
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3. INFLUENCE OF CHANGING THE MECHANICAL 
PROPERTIES OF SWCNT (10, 10) ON ITS RBM 
FREQUENCY 
 
In this section, the influence of changing the mechanical 
parameters of a SWCNT (10,10) with radius R=0.678 
nm on its RBM frequency has been investigated. 

Figure 3 shows that by increasing the Young’s 
modulus, E, of SWCNT, the RBM frequency increases. 

Figure 4 shows that the RBM frequency of SWCNT 
decreases with an increase in the mass density, ρ, of 
SWCNT. 

Figure 5 shows the influence of the Poisson’s ratio 
of SWCNT on its RBM frequency. The RBM frequency 
of SWCNT is approximately insensitive to its Poisson’s 
ratio. Figure 5 shows that the RBM frequency of 
SWCNT increases with an increase in its Poisson’s 
ratio, very slowly. 
 
 

 
Figure 3. The RBM frequency of SWCNT (10,10) versus its 
Young’s modulus, E (TPa) 

 
Figure 4. The RBM frequency of SWCNT (10,10) versus its 
mass density, ρ (kg/m3) 
 
 

 
Figure 5. The RBM frequency of SWCNT (10,10) versus its 
Poisson’s ratio, µ 
 
 
4. VALIDATION OF THIN SHELL THEORY FOR 
MODELING THE RBM FREQUENCY OF SWCNT IN 
COMPARISON WITH OTHER THEORETICAL 
MODELS 
 
Substituting the material properties of SWCNT into 
Equation (18), gives the RBM frequency as fRBM=226 
cm-1 (nm/d) which is in good agreement with the 
experimental results 223.5 cm-1 (nm/d) [5], 223.75 cm-1 
(nm/d) [6] and 224 cm-1 (nm/d) [7]. Some researchers 
have obtained different values as: 232 cm-1 (nm/d) [8] 
and 234 cm-1 (nm/d) [9] based on the local-density 
approximation (LDA) with respect to DFT, and 227 cm-

1 (nm/d) based on Mahan’s 3D elasticity theory [15]. 
Therefore, it can be concluded that the results of this 
paper are in good agreement with the experimental 
results compared to the DFT and Mahan’s 3D elasticity 
theory results. 

Table 1 shows the RBM frequencies of 40 different 
SWCNTs in comparison with the available experimental 
and atomic results. The first two columns show the n and 
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TABLE 1. Comparison between the results obtained in this work and the available experimental results [5-7], the other theoretical 
results based on DFT [8-10], and Mahan’s three-dimensional elasticity theory [15] all in cm-1. All errors (%) have been computed 
relative to the average values of experimental results (e. g. fRBM=223.75 [6] cm-1 (nm/d)) 

n m 
d 

(nm) 

Experimental results Theoretical results 

Ref. [5] Ref. 
[6] Ref. [7] 

Ref. [8], 
error ≈ 
3.7% 

Ref. [9], 
error ≈ 
4.6% 

DFT [10] DFT* [10] Ref. 
[15], 

error ≈ 
1.5% 

This 
work 

error ≈ 
1% 

 er
ro

r 
(%

)  

er
ro

r 
(%

) 

4 0 0.3132 713.6 714.4 715.2 740.7 747.1 651.3 8.8 642.3 10.1 724.8 721.4 

3 2 0.3413 654.8 655.6 656.3 679.8 685.6 651.1 0.7 648.6 1.1 665.1 662.0 

4 1 0.3588 622.9 623.6 624.3 646.6 652.2 589.5 5.5 584.1 6.3 632.7 629.7 

5 0 0.3915 570.9 571.5 572.2 592.6 597.7 544.9 4.7 536.1 6.2 579.8 577.1 

3 3 0.4069 549.3 549.9 550.5 570.2 575.1 541.1 1.6 551.4 0.3 557.9 555.3 

4 2 0.4143 539.5 540.1 540.7 160.0 564.8 539.5 0.1 536.3 0.7 547.9 545.3 

5 1 0.4360 512.6 513.2 513.8 532.1 536.7 487.1 5.1 493.2 3.9 520.6 518.3 

6 0 0.4698 475.7 476.3 476.8 493.8 498.1 463.6 2.7 458.5 3.7 483.2 480.9 

4 3 0.4763 469.2 469.8 470.3 487.1 491.3 479.4 2.1 476.0 1.3 476.6 474.4 

5 2 0.4890 457.1 457.6 458.1 474.4 478.5 451.5 1.3 448.8 1.9 464.2 462.1 

6 1 0.5135 435.2 435.7 436.2 451.8 455.7 437.8 0.5 432.8 0.7 442.1 440.1 

4 4 0.5425 412.0 412.4 412.9 427.6 431.3 424.3 2.9 419.2 1.6 418.4 416.5 

5 3 0.5481 407.8 408.2 408.7 423.3 426.9 417.4 2.2 413.5 1.3 414.2 412.2 

7 0 0.5481 407.8 408.2 408.7 423.3 426.9 411.0 0.7 405.3 0.7 414.2 412.2 

6 2 0.5647 395.8 396.2 396.7 410.8 414.4 404.5 2.1 400.2 1.0 402.0 400.2 

7 1 0.5912 378.0 378.5 378.9 392.4 395.8 374.6 1.0 373.1 1.4 384.0 382.2 

6 3 0.6215 359.6 360.0 360.4 373.3 376.5 364.5 1.2 363.1 0.9 365.2 363.6 

8 0 0.6264 356.8 357.2 357.6 370. 4 373.6 363.6 1.8 358.5 0.4 362.4 360.7 

5 5 0.6781 329.6 330.0 330.3 342.1 345.1 337.3 2.2 338.9 2.7 334.8 333.2 

6 4 0.6826 327.4 327. 8 328.2 339.9 342.8 336.1 2.5 333.4 1.7 332.6 331.0 

9 0 0.7047 317.2 317.5 317.9 329.2 332.1 317.8 0.1 318.2 0.2 322.1 320.6 

8 2 0.7177 311.4 311.8 312.1 323.3 326.0 316.5 1.5 314.9 1.0 316.3 314.9 

7 4 0.7551 296.0 296.3 296.6 307.2 309.9 307.1 3.6 303.7 2.5 300.6 299.2 
10 0 0.7830 285.4 285.8 286.1 296.3 298.9 294.5 3.1 290.7 1.7 289.9 288.6 

6 6 0.8138 274.6 274.9 275.3 285.1 287.5 284.3 3.4 283.6 3.1 278.9 277.7 

11 0 0.8613 259.5 259.8 260.1 269.4 271.7 268.2 3.2 264.6 1.9 263.6 262.3 

12 0 0.9397 237.8 238.1 238.4 246.9 249.0 242.8 2.0 242.2 1.7 241.6 240.5 

7 7 0.9494 235.4 235.7 235.9 244.4 246.5 246.2 4.5 243.4 3.3 239.1 238.0 

13 0 1.0180 219.5 219.8 220.0 227.9 229.9 228.9 4.1 225.5 2.6 223.0 222.0 

8 8 1.0850 206.0 206.2 206.5 213.8 215.7 216.5 5.0 213.1 3.3 209.2 208.3 

14 0 1.0963 203.9 204.1 204.3 211.6 213.4 212.4 4.1 209.7 2.7 207.1 206.1 

15 0 1.1746 190.3 190.5 190.7 197.5 199.2 196.4 3.1 195.6 2.7 193.3 192.4 

9 9 1.2206 183.1 183.3 183.5 190.1 191.7 192.7 5.1 189.4 3.3 186.0 185.1 

16 0 1.2529 178.4 178.6 178.8 185.2 186.8 186.4 4.4 183.7 2.9 181.2 180.4 

17 0 1.3312 167.9 168.1 168.3 174.3 175.8 175.6 4.5 173.0 2.9 170.5 169.7 

10 10 1.3563 164.8 165.0 165. 2 171.1 172.5 173.6 5.2 170.7 3.5 167.4 166.6 

18 0 1.4095 158.6 158.7 158.9 164.6 166.0 164.4 3.6 163.5 3.0 161.1 160.3 

19 0 1.4878 150.2 150.4 150.6 155.9 157.3 157.3 4.6 155.1 3.1 152.6 151.9 

11 11 1.4919 149.8 150.0 150.1 155.5 156.8 158.0 5.3 155.2 3.5 152.2 151.5 

20 0 1.5661 142.7 142.9 143.0 148.1 149.4 149.3 4.5 147.1 3.0 144.9 144.3 
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m chiral indices; the third column shows the SWCNT 
diameter (d, in nm) from Equation (19) and the next 
three columns are the experimental results. Afterwards, 
the next six columns show the results obtained based on 
DFT, and the error percentages of DFT and DFT* in 
comparison with the experimental results. 

DFT assumes that all carbon atoms move purely in 
a radial direction, and DFT* assumes coupling with the 
totally symmetric tangential modes [10]. The next 
column shows the results obtained by Mahan’s 3D 
elasticity [15]. The last column shows the results of this 
work obtained based on thin shell theory. 

From Table 1, it could be concluded that the 
present paper, using the thin shell theory, could predict 
the RBM frequencies of different SWCNTs in good 
agreement with the available experimental results [5-7] 
with relative errors of less than 1%. 

Figure 6 shows the influence of changing the radius 
of SWCNT on its RBM frequency. 

As it is shown in Figure 6, the RBM frequency is 
very sensitive to the radius, R, of SWCNT when this 
geometrical property is extremely small. The RBM 
frequency decreases strongly with increasing the radius 
of SWCNT, in the range of less than 1.5 nm, then it 
tends to a constant value. The accuracy of this 
frequency-radius relation has been shown in Table 1. 
The product of the RBM frequency and the SWCNT 
diameter in cm-1 nm has been illustrated in Figure 7. 
Figure 7, provides a better illustration of comparison 
between the RBM frequencies obtained in the present 
paper based on thin shell theory and the available 
different experimental results [5-7], and the other 
theories [8-10,15]. The lowermost three lines show the 
experimental results [5-7] that are around 223.75 cm-1 
nm, very close to each other. The upper dot line is the 
results obtained in the present paper. This is in good 
agreement with the experimental results with relative 
errors less than 1%. The next upper dash-double dot line 
is obtained by Mahan’s 3D elasticity theory [15] that is 
close to this paper results. The uppermost two lines 
show the results obtained based on the LDA with 
respect to DFT [8,9]. The open square and the solid 
circles symbols show the results obtained by Kurti et al. 
[10]. They have studied theoretically the RBM of 
SWCNTs by using the LDA with respect to DFT by the 
projector augmented-wave (PAW) method. 

To obtain the open square results, Kürti et al. [10] 
assumed that all carbon atoms move purely in a radial 
direction. To obtain the solid circle results, they 
assumed the coupling of the RBM to the totally 
symmetric tangential modes 

As it is shown in Figure 7, the results obtained by 
Kürti et al. [10] do not follow a simple ratio, A/d, 
behavior. The deviation of their results from the ideal 
behavior increases with decreasing the diameter of the 
SWCNT. 

 
Figure 6. The RBM frequency of SWCNT versus its radius, R 
(nm) 
 
 

 
Figure 7. The product of the RBM frequency and the SWCNT 
diameter in cm-1 nm versus the inverse diameter (nm-1) 

 
 
 

5. CONCLUSIONS 
 
This paper provides a detailed investigation on the RBM 
frequency of the SWCNT based on the elastic thin shell 
theory. The following points can be concluded: 
• An analytical solution of the RBM frequency of 

SWCNT is obtained. The advantage of this simple 
formula is that it shows the dependency of the RBM 
frequency to the mechanical properties of SWCNT, 
clearly.  

• The simple formula for the RBM frequency of 
SWCNT shows that by increasing the Young’s 
modulus (E) and the Poisson’s ratio (μ) of the 
SWCNT, its RBM frequency increases; however by 
increasing the mass density (ρ) and the radius (R), its 
RBM frequency decreases.  
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• The RBM frequencies of 40 different SWCNTs are 
obtained which are in excellent agreement with the 
available experimental results with relative errors of 
less than 1%. 

• The RBM frequencies predicted by the present shell 
model have been compared with those obtained by 
the other researchers based on the density-functional 
theory (DFT), and Mahan's 3D elasticity theory. The 
results precisely emphasize the utility of thin shell 
theory for modeling the RBM vibrational behavior 
of SWCNTs. 
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 چکیده

 
  

براي این . ریه پوسته نازك مطالعه شده استبر اساس نظ لایه کربنی تک در این مقاله، بسامد مد تنفسی شعاعیِ نانولوله
معادله حاکم بر مد . است اي نازك کشسان درنظر گرفته شده صورت یک پوسته استوانه به لایه کربنی تک منظور، نانولوله

مزیت . است یک رابطه تحلیلی براي این بسامد بدست آمده. است تنفسیِ شعاعی با استفاده از اصل هامیلتون بدست آمده
وضوح  به لایه کربنی تک هاي مکانیکی نانولوله این فرمول آن است که تابعیت بسامد مد تنفسی شعاعی را نسبت به مشخصه

اي  که کابردهاي بالقوه لایه کربنی تک  هاي هاي ارتعاشی نانولوله بینیِ درست مشخصه ها براي پیش این بررسی. دهد نشان می
براي نشان دادن درستی نتایج، . شوند، دارند هاي صوتی استفاده می ه، که به عنوان جاذبهاي حاويِ نانولول در نانوکامپوزیت

در مطابقتی بسیار عالی با نتایج تجربیِ موجود با درصد خطایی  لایه کربنی تک نانولوله 40بسامدهاي مد تنفسی شعاعیِ 
بینی شده با مدل پوسته در این مقاله با  پیش همچنین بسامدهاي مد تنفسی شعاعیِ. است کمتر از یک درصد بدست آمده

هایی همچون تابعیِ چگالی و نظریه کشسانی سه بعدي مقایسه  نتایج بدست آمده توسط محققان دیگر بر اساس نظریه
سازي رفتار ارتعاشیِ بسامد مد تنفسیِ شعاعی  آمده، کارآیی نظریه پوسته نازك را براي مدل نتایج بدست. اند شده

  .کند تأیید می لایه کربنی تک هنانولول
 

doi: 10.5829/idosi.ije.2013.26.04a.13 
 

 
 
 


