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A B S T R A C T  

   

In the present article, buckling analysis of functionally graded annular thin and moderately thick plates 
under mechanical and thermal loads is investigated. The equilibrium and stability equations of the plate 
are obtained based on both classical and first order shear deformation plate theories. By using an 
analytical method, the coupled stability equations are converted to independent equations which can be 
solved analytically. Solving the decoupled equations and satisfying the boundary conditions yield an 
eigenvalue problem to find the critical buckling load and/or temperature. Both symmetric and 
asymmetric modes of buckling and thermal buckling of functionally graded annular plates are 
investigated. The results show that the buckling mode number may vary with the variation of power 
law index, annularity and radius-thickness ratio. Finally, the effects of annularity, plate thickness and 
power law index on buckling load/temperature of functionally graded annular plates are investigated 
and the buckling mode shapes are plotted. 
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1. INTRODUCTION1 
 
The critical buckling load and/or temperature of the 
circular and annular plates are significant parameters to 
design the aeronautical and mechanical structures 
subjected to in-plane mechanical or thermal loads. It is 
desirable that the plates are designed at the lowest 
weight under in-plane loads or high temperature. 
Annular plates are key components in many structures 
and machinery applications. For example, they are 
applied in flight vehicle, power planets, clutch plates, 
flywheels, brake systems in automotive vehicles and 
electronic applications such as sensors and micro 
pumps. 

Functionally graded materials (FGM's) are 
inhomogeneous materials in which the material 
properties are varied continuously from one point to 
another point [1-3]. Typically, these materials are made 
from a mixture of metal and ceramic, or a combination 
of different metals. They are high performance heat 
resistant materials which can withstand ultra high 
temperature and extremely large thermal gradients 
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current in the aerospace industries. The ceramic part of 
functionally graded (FG) plates provides the high 
temperature resistance due to its low thermal 
conductivity and the metal constituent of material resists 
on the failure of the plate. 

Buckling of annular plates was studied firstly by 
Dean in 1924 [4]. He studied the buckling of a circular 
annular plate subjected to shearing forces distributed 
along the edges. Since then, many researchers 
investigated the buckling of circular annular plates 
subjected to various loading conditions. In review of 
recent developments in buckling of homogenous, 
composite and FG plates a number of investigations 
have been published in the literatures. Yamaki [5] 
studied the buckling of a thin annular isotropic plate 
under uniform compression. An important ramification 
of his work was that the least buckling load might 
involve circumferential buckling rather than just 
axisymmetric modes. Elishakoff and Stavsky [6] studied 
the axisymmetric buckling of certain annular composite 
plates. They studied the effect of heterogeneity of plates 
on the elastic stability of annular plates. Srivinasan and 
Ramachandra [7] performed the axisymmetric buckling 
and post buckling of bimodulus annular plates using 
finite element method. Based on the first order shear 
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deformation plate theory, Chang [8] studied the 
axisymmetric buckling of moderately thick polar 
orthotropic annular plates. Ciancio and Reyes [9] 
studied buckling of circular annular plates with 
continuously variable thickness. They used an analytical 
approach based on the optimized Rayligh-Ritz method. 
Xu et al. [10] performed axisymmetric buckling of 
transversely isotropic circular and annular plates. They 
investigated the general solution of the three-
dimensional governing equations for the axisymmetric 
buckling analysis problem and obtained exact solutions 
for appropriate boundary conditions. Arfat et al. 
[11]studied the vibration and buckling of annular and 
circular plates subjected to a thermal load. They 
modeled the plate using the dynamic analogue of Saint-
Venant plate theory and solved the stability state heat 
conduction equation for the radial temperature 
distribution. Ma and Wang [12] studied the relationships 
between axisymmetric bending and buckling solutions 
of FG circular plates based on the third-order shear 
deformation and classical plate theories. Birman and 
Simitses [13] performed buckling and bending analysis 
of cylindrically orthotropic annular plates. They 
presented a closed form solution for arbitrary boundary 
conditions under mechanical and thermal loads. 
Najafizadeh and Eslami [14] studied the buckling 
analysis of thin functionally graded circular plates under 
uniform radial compression based on the classical plate 
theory. Also, they [15] studied thermoelastic stability of 
orthotropic circular plates and obtained closed form 
solution for buckling temperature of such plates under 
both clamped and simply supported boundary 
conditions. Moreover, they investigated thermoelastic 
stability of functionally graded solid circular plates 
based on the first order shear deformation theory [16]. 
Based on the higher order shear deformation theory, 
Najafizadeh and Heydari performed thermal buckling 
[17] and mechanical buckling analyses [18] of FG 
circular plates. Saidi et al. [19] studied the axisymmetric 
bending and buckling analysis of thick FG circular 
plates using unconstrained third-order shear 
deformation plate theory. Naderi and Saidi [20] studied 
buckling problem of thin FG sector and annular sector 
plates resting on Winkler and Pasternak elastic 
foundations. They assumed that the annular sector plate 
has simply supported straight edges. Also, Naderi and 
Saidi [21] performed buckling analysis of moderately 
thick FG sector and annular sector plates based on the 
first order shear deformation plate theory. They 
performed similar analysis for sector plates resting on 
Winkler elastic foundation [22]. Saidi and Hasani 
Baferani [23] studied thermal buckling problem of FG 
annular sector plates by using the first order shear 
deformation plate theory. 

Although circular and annular plates geometrically 
are symmetric structures, the buckling may occur at 
asymmetric mode shapes. So, both symmetric and 

asymmetric modes have to be considered for buckling 
analysis of such plates. To the best of authors' 
knowledge, buckling problem of FG annular plate 
subjected to mechanical and/or thermal loads have only 
been solved by considering the symmetric modes. 

In the present article, buckling problem of FG 
annular plates under in-plane compressive loads and/or 
temperature is solved based on both symmetric and 
asymmetric modes. The stability equations are obtained 
based on both the classical and first order shear 
deformation theories. Introducing some new functions, 
the stability equations are decoupled into independent 
equations which are solved analytically. Both 
symmetric and asymmetric modes of buckling for 
functionally graded annular plates under mechanical and 
thermal loads are investigated. For some special cases, 
the presented results are compared with those reported 
in the available papers and a good agreement can be 
seen. Finally, the effects of annularity, boundary 
conditions, plate thickness and power law index on the 
critical buckling load and/or temperature of FG annular 
plates are discussed in detail. 
 
 
2. EQUIBLIRIUM EQUATIONS 
 
Consider a FG annular plate with the inner radius a , 
outer radius b  and thickness h , under uniform 
compressive in-plane load P  and/or uniform 
temperature applied on the inner and outer circular 
edges (Figure 1). Based on the classical plate theory, the 
displacement components in the polar coordinate are 
given by: 
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Figure 1. Geometry and coordinate system of FG annular 
plate under uniform in-plane load 
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where vu,  and w  denote the displacements of a point 
on the middle plane of the plate along θ,r  and z  
directions, respectively. Assuming the large deflection, 
the strain components of the annular plate can be 
expressed as: 
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On the other hand, based on the first order shear 
deformation plate theory, the displacement components 
of the plate in θ,r  and z  directions are assumed to be: 
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where rψ  and θψ   are the rotation functions of the 
middle surface. Here, the nonlinear strain components 
are written in the form of: 

θθ

θθ

θ

θ
θθ

ψ
θ

ε

ψε

ψψ
θ

ψ
θθ

ε

θ
ψ

ψ
θθ

ε

ψ
ε

+
∂
∂=

+
∂
∂=







 −

∂
∂

+
∂

∂
+









∂
∂









∂
∂+−

∂
∂+

∂
∂=









∂
∂

++







∂
∂+








∂
∂+=

∂
∂

+







∂
∂

+
∂
∂

=

w
r

r
w

rrr
z

w
r
w

rr
v

r
vu

r

r
zw

r
vu

r

r
z

r
w

r
u

z

rrz

r

r

r

r
rr

12

2

1

112

2
11

2
1

2

2

2

 
(4) 

The Hooke’s law for the FG plate is written as: 
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where, ν  is the Poisson ratio of the FG plate which is 
assumed to be a constant and ),,( zrT θ  is the temperature 
distribution. Also, the parameters )(zE  and )(zα  are the 
Young modulus and the coefficient of thermal 

expansion of the FG plate which vary through the 
thickness according to the following power law function 
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where n  denotes the power law index which is equal or 
greater than zero and the subscripts m  and c  refer to 
metal and ceramic components, respectively. It is 
noticeable that in the classical plate theory, the last two 
relations of Equation (5) are vanished. Using the 
principle of minimum potential energy, the equilibrium 
equations for both of the theories can be readily found 
as [24, 25]. 
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where, θθNNrr ,  and θrN  are the in-plane force 
resultants,  θθMM rr ,  and θrM  are the moment 
resultants defined as:  
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and in the first order shear deformation plate theory, the 
out of plane force resultants, rQ  and θQ , are defined as: 
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where 2k  is the shear correction factor assumed to be 
6/5 . It is noticeable that in the classical plate theory by 

substituting rQ  and θQ  from Equations (7c) and (7d) 
into Equation (7e), the bending equation is obtained. In 
the above equations, the superscript C  and F  are 
referred to classical and first order shear deformation 
theories, respectively. 
 
 
3. STABILITY EQUATIONS 
 
The stability equations of the plate can be derived from 
the adjacent equilibrium criterion [26]. For accustom on 
this method and related equation, the reader can see 
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Refs. [20-23]. Using the procedure introduced in these 
references, the stability equation of FG annular plate 
can be easily derived as: 
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where the force and moment resultants for the classical 
plate theory (CPT) can be expressed in term of 
infinitesimally small displacement as:  
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Also, the plate stiffness coefficients are obtained from 
the following integrations: 
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where the thermal terms NT  and MT  are defined as: 
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Also, these relations for the first order shear 
deformation plate theory (FSDT) can be written in the 
following form: 
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Substituting the force and moment resultants from 
Equation (11) into Equation (10), the governing stability 
equations of FG annular plate based on CPT are 
obtained as: 
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Similarly, the stability equations of FG annular based on 
FSDT can be written in the following form: 
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Both Equations (15) and (16) are two systems of highly 
coupled partial differential equations in terms of 
incremental in-plane and out of plane displacement 
components. Although these coupled equations can be 
solved using numerical methods, it may be difficult to 
solve them analytically in these forms. To find the 
analytical solutions for these two systems of equations, 
it is convenient to decouple them. Using the following 
method, either Equation (15) or Equation (16) will be 
decoupled. 
 
 
4. A METHOD FOR DECOUPLING THE 
STABILITY EQUATIONS 
 
Equation (15) can be changed to the following from: 
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where 2∇  is two dimensional Laplace operator in the 
polar coordinates and 224 ∇∇=∇ . Also, the variables 1ϑ  
and 2ϑ  are defined as: 
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By differentiating Equations (17a) and (17b) with 
respect to r  and θ , and performing some algebraic 
procedures, Equation (17) can be rewritten as: 
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where the parameter D̂  is the equivalent flexural 
rigidity of FG plate which is written in the form of: 
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Using Equations (17a) and (17b), the in-plane 
displacement are obtained in the form of: 
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Similarly, the stability Equation (16) based on the first 
order shear deformation plate theory can be simplified 
in the following equations: 
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where the variables F
1ϕ  and F

2ϕ  are defined as: 
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Also, Equations (22a) and (22b) can be rewritten in the 
form: 
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Substituting Equation (24) into Equations (22c) and 
(22d) yields: 
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Differentiation of Equations (25a) and (25b) with 
respect to r  and θ  together with Equation (22e), and 
doing some algebraic operations the following 
decoupled partial differential equations are obtained: 
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where the variable Ĉ  denotes the equivalent flexural 
rigidity of FG plate defined as: 
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By considering Equations (25a) and (25b) and doing 
some algebraic procedures, it is easy to show that: 
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Performing some algebraic operations on Equation (24), 
the in-plane displacement can be obtained as: 
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Therefore, both the classical and first order shear 
deformation stability equations of the FG plate have 
been decoupled to the Equations (19) and (26), 
respectively. In order to buckling analysis of FG annular 
plates subjected to mechanical and/or thermal load, 
these equations should be solved. 
 
 
5. BUCKLING ANALYSIS UNDER MECHANICAL 
AND THERMAL LOADS 

 
Consider a FG annular circular plate subjected to 
uniform in-plane force eP  and uniform temperature T  
with arbitrary boundary conditions on inner and outer 
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circular edges. To obtain the critical buckling load 
and/or temperature, the distribution of the in-plane 
forces should be determined in the pre-buckling 
configuration. Solving the membrane form of the 
equilibrium equations, the pre-buckling forces are 
obtained as: 
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By substituting Equation (30) into Equations (19), the 
CPT stability equation is rewritten in the following form 
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Also, by substituting Equation (30) into Equation (26), 
the FSDT stability equations are obtained as: 
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6. SOLUTION 
 
In order to take into account both the symmetric and 
asymmetric buckling modes of the FG plate under 
mechanical and thermal loads, let us consider the 
following forms for  the transverse displacement, 1w , 

and the function F
4ϕ  [27]: 
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Upon substituting the above series into the decoupled 
Equations (32) and (33), three ordinary differential 
equations are obtained. The solutions of these 
differential equations for symmetric solutions ( 0=m  ) 
are obtained as: 
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where J  and Y  are the first and second kind of 
ordinary Bessel functions, respectively. Also, for 
asymmetric solutions ( 1≥m  ) the solutions for CPT and 
FSDT equations are obtained as: 
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where I  and K  are the first and second kind of the 
modified Bessel functions. Imposing the boundary 
conditions at the circular edges of the plate leads to a set 
of four or six homogenous algebraic equations for 

0=m  or 1≥m , respectively in FSDT and four 
equations in CPT. Setting the determinant of the 
constant coefficients equal to zero, the critical buckling 
load and/or temperature can be obtained. 
 
 
7. BOUNDARY CONDITIONS 
 
Here, three classic boundary conditions are considered 
on the circular edges containing simply supported, 
clamped and free edge. 

For the simply supported boundary condition it can 
be written as: 
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For the clamped boundary condition it is easy to show 
that: 
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dww

C
C  at bar ,=  (38a) 

FSDT:     011 == r
Fw ψ  at bar ,=  (38b) 

Finally, the free boundary condition requires: 
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The eight possible boundary conditions containing SS, 
CC, CS, SC, CF, FC, CS and SF have been considered. 
It is noticeable that, for example, CS denotes an annular 
plate with clamped inner and simply supported outer 
radii. 
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8. NUMERICAL RESULTS AND DISCUSSION 
 
For numerical calculations, it is assumed that the 
functionally graded plate is composed of aluminum with 

GPaEm 70=  and alumina with GPaEc 380= . The 
Poisson ratio of the plate is assumed to be constant 
through the thickness and equal to 0.3. Here, the non-
dimensional buckling load is defined as: 

c
cr D

NbP
2
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hED c
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 (41) 

In order to verify the accuracy of the present analysis, 
the numerical results are compared with the available 
results for mechanical and thermal buckling load of 

annular and circular plates based on CPT and FSDT in 
Refs. [5] and [16], respectively. The results presented in 
Ref. [5] have been obtained for the homogenous annular 
plates and those reported in Ref. [16] have been 
presented for FG circular plates.  

Table 1 shows a comparison between the critical 
buckling load of a FG annular plate with 0=n  and 
those presented in Ref. [5] for the homogenous plates 
based on the classical plate theory.  

Table 2 shows the comparison of the critical 
buckling temperature of FG annular plate by assuming 
that the inner radius, a , is very small (e.g. )(10 12 ma −= ) 
based on FSDT with those obtained for the FG simply 
supported solid circular plates. It can be seen from 
Tables 1 and 2 that the results are in good agreement 
with those reported in the literature.   

 
 

TABLE 1. Comparison of the results ( crP ) with Ref. [5] based on the classical plate theory ( 0=n ) 

B. C.  0/ =ba  1.0/ =ba  3.0/ =ba  5.0/ =ba  7.0/ =ba  9.0/ =ba  

CC 
Ref. [5] 5.135(1) 6.68 (2) 8.63(2) 12.15(4) 20.27(7) 60.89(24) 

Present 5.135(1) 6.710(1) 8.636(2) 12.155(4) 20.282(7) 60.890(23) 

SC 
Ref. [5] 5.135(1) 6.02(1) 7.06(0) 9.42(0) 15.31(0) 45.20(0) 

Present 5.135(1) 5.990(1) 7.058(0) 9.416(0) 15.304(0) 45.199(0) 

FC 
Ref. [5] 3.832(0) 3.62(0) 3.19(0) 3.65(0) 5.52(0) 15.89(0) 

Present 3.832(0) 3.626(0) 3.187(0) 3.645(0) 5.523(0) 15.875(0) 

CS 
Ref. [5] 3.625(1) 4.71(1) 6.16(0) 8.73(0) 14.73(0) 44.69(0) 

Present 3.624(0) 4.690(1) 6.155(0) 8.726(0) 17.724(0) 44.688(0) 

SS 
Ref. [5] 3.625(1) 4.20(1) 4.75(0) 6.40(0) 10.52(0) 31.43(0) 

Present 3.624(0) 4.205(0) 4.749(0) 6.400(0) 10.523(0) 31.429(0) 

FS 
Ref. [5] 2.049(0) 1.98(0) 1.61(0) 1.32(0) 1.14(0) 1.01(0) 

Present 2.049(0) 1.976(0) 1.612(0) 1.323(0) 1.135(0) 1.005(0) 

CF 
Ref. [5] 0.0(1) 1.49(1) 2.18(2) 3.14(1) 5.19(0) 15.61(0) 

Present 0.0(1) 1.490(1) 2.167(2) 3.143(1) 5.194(0) 15.605(0) 

SF 
Ref. [5] 0.0(1) 1.12(1) 1.34(1) 1.32(0) 1.14(0) 1.01(0) 

Present 0.0(1) 1.124(1) 1.341(1) 1.323(0) 1.135(0) 1.005(0) 
 
 
TABLE 2. Comparison of the critical buckling temperature SS annular plates with those obtained in Ref. [16] for circular plates 
based on FSDT. 

n   05.0/ =ah  08.0/ =ah  1.0/ =ah  

0 
Ref. [16] 90.956 232.848 363.825 

Present 90.955 232.904 363.147 

1 
Ref. [16] 42.255 108.174 169.023 

Present 42.262 108.224 169.026 

5 
Ref. [16] 38.648 98.941 154.595 

Present 38.632 98.847 154.388 

10 
Ref. [16] 39.731 101.713 158.927 

Present 39.699 101.514 158.330 
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TABLE 3. The effect of annularity on the non-dimensional buckling load, crP , and critical buckling temperature, )( CTcr
o  and 

( 02.0/ =bh , 1=n ). 

 ba /   CC SS CS SC CF FC FS SF 

crP  

0.2 
CPT 28.055(2) 9.389(0) 14.299(1) 20.636(1) 1.687(1) 5.436(0) 1.617(0) 0.783 (1) 

FSDT 27.831(2) 9.369(0) 14.239(1) 20.548(1) 1.682(1) 5.430(0) 1.617(0) 0.782(1) 

0.4 
CPT 50.840(3) 14.587(0) 26.024(0) 31.909(0) 3.346(2) 5.427(0) 1.051(0) 0.981(1) 

FSDT 50.204(3) 14.544(0) 25.867(0) 31.710(0) 3.324(2) 5.421(0) 1.050(0) 0.980(1) 

0.6 
CPT 115.164(5) 31.369(0) 60.050(0) 67.117(0) 7.673(0) 9.240(0) 0.741(0) 0.741(0) 

FSDT 112.087(5) 31.178(0) 59.256(0) 66.216(0) 7.662(0) 9.224(0) 0.741(0) 0.741(0) 

0.8 
CPT 4613797(11) 123.454(0) 246.036(0) 258.189(0) 30.166(0) 32.488(0) 0.565(0) 0.565(0) 

FSDT 417.044(11) 120.575(0) 233.579(0) 245.043(0) 29.991(0) 32.286(0) 0.564(0) 0.564(0) 

crT  

0.2 
CPT 90.607(2) 30.260(0) 46.180(1) 66.647(1) 5.448(1) 17.557(0) 5.224(0) 2.531(1) 

FSDT 89.884(2) 30.260(0) 45.986(1) 66.363(1) 5.433(1) 17.538(0) 5.222(0) 2.528(1) 

0.4 
CPT 164.193(3) 47.109(0) 84.047(0) 103.055(0) 10.807(2) 17.528(0) 3.394(0) 3.171(1) 

FSDT 162.137(3) 46.971(0) 83.539(0) 102.412(0) 10.737(2) 17.510(0) 3.393(0) 3.165(1) 

0.6 
CPT 371.931(5) 101.309(0) 193.937(0) 216.760(0) 24.783(0) 29.843(0) 2.394(0) 2.394(0) 

FSDT 361.994(5) 100.692(0) 191.372(0) 213.850(0) 24.746(0) 29.790(0) 2.394(0) 2.394(0) 

0.8 
CPT 1491.405(11) 398.702(0) 794.591(0) 833.838(0) 97.423(0) 104.924(0) 1.824(0) 1.824 (0) 

FSDT 1346.872(11) 389.404(0) 754.361(0) 791.382(0) 96.859(0) 104.270(0) 1.824(0) 1.824(0) 

 
 
TABLE 4. The effect of thickness radius ratio on the non-dimensional buckling load, crP , and critical buckling temperature, )( CTcr

o  
, for ( 5.0/ =ba , 1=n ). 

 bh /   CC SS CS SC CF FC FS SF 

crP  

02.0  
CPT 73.645(4) 20.422(0) 37.953(0) 44.192(0) 4.926(1) 6.624(0) 0.872(0) 0.872(0) 

FSDT 72.339(4) 20.340(0) 37.627(0) 43.806(0) 4.913(1) 6.616(0) 0.872(0) 0.872(0) 

05.0  
CPT 73.645(4) 20.422(0) 37.953(0) 44.192(0) 4.926(1) 6.624(0) 0.872(0) 0.872(0) 

FSDT 66.289(4) 19.920(0) 36.008(0) 41.881(0) 4.870(1) 6.572(0) 0.871(0) 0.872(0) 

1.0  
CPT 73.645(4) 20.422(0) 37.953(0) 44.192(0) 4.926(1) 6.624(0) 0.872(0) 0.872(0) 

FSDT 51.474 (4) 18.553(0) 31.210(0) 36.204(0) 4.745(1) 6.419(0) 0.869(0) 0.869(0) 

crT  

02.0  
CPT 237.842(4) 65.954(0) 122.572(0) 142.723(0) 15.909(1) 21.394(0) 2.818(0) 2.818(0) 

FSDT 233.624(4) 65.689(0) 121.521(0) 141.474(0) 15.867(1) 21.367(0) 2.818(0) 2.818(0) 

05.0  
CPT 1486.515(4) 412.213(0) 766.077(0) 892.023(0) 99.435(1) 133.718(0) 17.616(0) 17.616(0) 

FSDT 1338.041(4) 402.090(0) 726.812(0) 845.373(0) 98.310(1) 132.657(0) 17.598(0) 17.598(0) 

1.0  
CPT 5946.062(4) 1648.855(0) 3064.308(0) 3568.094(0) 397.742(1) 534.872(0) 70.466(0) 70.466(0) 

FSDT 4156.006(4) 1498.008(0) 2519.933(0) 2923.120(0) 383.096(1) 518.303(0) 70.170(0) 70.170(0) 
 
 

Table 3, presents the critical buckling load and 
temperature together with the mode number for the FG 
annular plates with eight possible combination of the 
boundary conditions versus the aspect ratio ba / . In this 
table, the numbers in bracket show the mode number. 
However, when 0=m , it means that the buckling mode 
is symmetric. From this table, it can be seen that for 
some boundary conditions as the annularity varies, the 
mode number may be changed. Also, this table shows 

that the critical buckling load and temperature increases 
as the annularity increases expect for the plate with FS 
and SF boundary conditions. Also, in SF and FS 
boundary conditions for 6.0/ >ba , the critical buckling 
load and temperature are the same. 

Table 4 shows the critical buckling load and 
temperature versus the variation of thickness-radius 
ratio, bh /  for 2/ =ab  and 1=n  for a FG plate with 
eight possible boundary conditions. It can be seen that 
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using FSDT, by increasing the thickness-radius ratio, 
the non dimensional critical buckling load decreases. It 
is noticeable that since the critical load is a non-
dimensional parameter with respect to hb / , it is neutral 
with respect to variation of thickness-radius ratio in the 
classical plate theory. The significant note which can be 
found from this table is that the variation of thickness-
radius ratio does not change the buckling mode number. 
Also, for SF and FS boundary conditions the critical 
buckling load and temperature are similar. Table 5 
presents the critical buckling load and temperature for a 
FG plate with CC boundary conditions versus the 
variation of bh /  and n . It can be seen from this table 
that the mode number may vary with the variation of 
power law index and radius-thickness ratio. Also, Table 
5 shows that when 20/ ≥hb , buckling occurs in a same 
mode number based on two theories. By comparing the 
results of two theories, it can be seen that as the radius-
thickness ratio increases, the difference between the 
results increases. In fact, by increasing the plate 
thickness, the accuracy of the classical plate theory 
decreases. 

Figures 2 to 6 show the effects of annularity on the 
stability of FG annular plates versus the power law 
index, annularity and radius-thickness ratio for various 

boundary conditions. In these figures, the ratio 0/ =ba  
denotes the solid circular plate and 1/ ≅ba  denotes a 
thin ring.  

Figures 2 and 3 show the non-dimensional critical 
buckling load for different boundary conditions versus 
the variation of annularity. These figures show that for 
SS, SC, CS, CC and CF plates as the plate annularity 
increases, the critical buckling load increases because 
the plate stiffness increases. Also, from this figure it is 
observed that for a plate with FS boundary condition by 
increasing the plate annularity the critical buckling load 
decreases since by increasing the annularity stiffness of 
this plate decreases. For FC boundary condition the 
critical buckling load decreases first and then increases 
but for SF boundary condition the critical buckling load 
first increases and then decreases. 

Figure 4 shows the effect of power law index n , on 
the non-dimensional critical buckling load. From this 
figure, it can be seen that as the power law index 
increases, the critical buckling load decreases and this 
decrease is rapid for large amounts of the annularity. It 
is clear that when 0=n  (plate is fully ceramic,) the 
critical buckling load is maximum. Therefore, when the 
highest critical buckling load is required, the ceramic 
isotropic plates are suitable. 

 
 

TABLE 5. The effect of n  and hb / on the non-dimensional buckling load, crP , and critical buckling temperature, )( CTcr
o , for the 

plate with CC boundary condition and 3/ =ab . 

 n   100/ =hb  50/ =hb  20/ =hb  10/ =hb  5/ =hb  

crP  

0 
CPT 82.799 (2) 82.799(2) 82.799(2) 82.799(2) 82.799(2) 

FSDT 82.555 (2) 81.835(2) 77.186 (2) 64.032 (3) 39.343(3) 

0.5 
CPT 53.674(2) 53.674 (2) 53.674(2) 53.674(2) 53.674(2) 

FSDT 53.533(2) 53.116(2) 50.406(2) 42.543 (3) 26.976(3) 

1 
CPT 41.270(2) 41.270(2) 41.270(2) 41.270(2) 41.270(2) 

FSDT 41.168(2) 40.865(2) 38.886(2) 33.078(3) 21.290(3) 

2 
CPT 32.204(2) 32.204(2) 32.204(2) 32.204(2) 32.204(2) 

FSDT 32.123(2) 31.883(2) 30.321(2) 25.747(3) 16.515(3) 

5 
CPT 27.234(2) 27.234(2) 27.234(2) 27.234(2) 27.234(2) 

FSDT 27.151(2) 26.908(2) 25.341(2) 20.935(3) 12.767(3) 

crT  

0 
CPT 71.725(2) 286.901(2) 1793.134(2) 7172.537(2) 28690.149(2) 

FSDT 71.513(2) 283.560(2) 1671.576(2) 5546.823(3) 13632.376(3) 

0.5 
CPT 40.637(2) 162.551(2) 1015.942(2) 4063.769(2) 16255.077(2) 

FSDT 40.531(2) 160.862(2) 954.093(2) 3221.011(3) 8169.818(3) 

1 
CPT  33.321(2) 133.286(2) 833.040(2) 3332.163(2) 13328.651(2) 

FSDT 33.238(2) 131.976(2) 784.906(2) 2670.753(3) 6875.786(3) 

2 
CPT 29.541(2) 118.165(2) 738.537(2) 2954.149(2) 11816.598(2) 

FSDT 29.467(2) 116.989(2) 695.349(2) 2361.833(3) 6059.909(3) 

5 
CPT 30.477(2) 121.909(2) 761.935(2) 3047.738(2) 12190.955(2) 

FSDT 30.385(2) 120.451(2) 708.984(2) 2342.816(3) 5715.268(3) 
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Figure 2. The critical buckling load of FG annular plate 
versus the annularity based on FSDT ( 10,1 == h

bn ) 

 
 

 
Figure 3. The critical buckling load of FG annular plate 
having free boundary condition versus the annularity based on 
FSDT ( 10,1 == h

bn ) 

 
 

 
Figure 4. The critical buckling load of simply supported FG 
annular plate based on FSDT ( 20=h

b ) 

 
Figure 5. Comparison of the critical buckling load of simply 
supported FG annular based on the CPT and FSDT 
( 20,1 == h

bn ) 

 

 
Figure 6. The effect of annularity and radius-thickness ratio 
on the critical buckling load of a simply supported FG annular 
plate based on FSDT ( 1=n )  
 

 
 
 

Figure 5 shows a comparison between two theories. It 
shows that as the annularity of the plate increases, the 
difference between the classical and first order shear 
deformation plate theories increases because the flexural 
rigidity of the plate becomes larger. 

The variation of critical buckling load and 
temperature with respect to annularity is presented for 
different values of the radius-thickness ratio in Figures 6 
and 7, respectively. These figures show that by 
increasing the plate thickness, the critical buckling load 
and temperature increases. Also, it can be seen that as 
the parameter ba /  increases, the thickness of the plate 
has more effect on the critical buckling load and 
temperature. Therefore, for the plates with small 
annularity, the thickness of the plate has negligible 
effect on the critical buckling load and temperature. 
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Figure 7. Critical buckling temperature of FG annular plate 
under various annularity ba /  and hb /  ( 1=n ) for SS 
boundary condition 
 
 
 

In Figure 8, the mode shape plots for a FG annular 
plate with eight possible boundary conditions are 
presented. It can be seen that the buckling mode number 
is different for different boundary conditions. For 
example, for CC boundary condition the mode number 
is 4=m , for CF, 2=m , for SF, 1=m  and for the 
other boundary conditions the buckling occurs in 
symmetric mode (i.e. 0=m ). 

 
 

 

 
CC - 181.37=crP  

  
  

 
CF - 341.2=crP  

  
  

 
CS - 888.18=crP 

 
FC - 064.5=crP 

 
FS - 296.1=crP  

  
  

 
SC - 833.24=crP  

  
  

 
SF - 897.0=crP 

 
SS - 243.11=crP 

Figure 8. Mode shape plots of the FG annular plate with 
various boundary conditions ( 3.0/,20/,1 === bahbn ). 
 
 
 
9. CONCLUSIONS 
 
In the present article, symmetric and asymmetric 
buckling modes of functionally graded thin and 
moderately thick annular plates have been studied. The 
equilibrium and stability equations have been obtained 
based on both the classical and first order shear 
deformation plate theories for the annular plate 
subjected to in-plane loads acting on the physical 
neutral surface. Using some functions and carrying out 
some algebraic manipulations, the highly coupled 
stability differential equations of the FG annular plates 
have been decoupled and the analytical solution has 
been presented for these decoupled equations. The 
critical buckling loads and mode shape plots have been 
presented for FG annular plates with eight possible 
boundary conditions. The following conclusions have 
been obtained: 

I. As the plate annularity increases, the critical 
buckling load and/or temperature increase 
expect for the plate with FC, FS and SF 
boundary conditions. 

II. The mode number may vary with the variation 
of power law index, annularity and radius-
thickness ratio. 

III. By increasing the power law index, the critical 
buckling load and/or temperature decreases. 
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 چکیده

   

. شود می ارائه هدفمند مواد از شده ساخته حلقوي ضخیم نیمه و نازك هاي ورق مکانیکی و حرارتی  کمانش مقاله، این در
 وابسته معادلات. است شده ارائه اول مرتبه برشی و کلاسیک ئوريت دو هر اساس بر ورق، پایداري و تعادل معادلات

 مستقل دیفرانسیل معادلات حل با ادامه در و شده ساده مستقل دیفرانسیلی ي معادله دو به ورق پایداري کششی و خمشی
 این در که است کرذ قابل نکته این البته. است شده ارائه کمانش بحرانی دماي و بار مقدار مرزي، شرایط ارضاي و حاکم
 اساس بر. است شده گرفته نظر در هدفمند مواد از شده ساخته حلقوي ورق محوري غیرمتقارن و محوري متقارن حل مقاله
 نسبت و ها شعاع نسبت هدفمند، ي ماده توان تغییرات با کمانش مودهاي ي شماره که دریافت میتوان آمده، بدست نتایج
 بر هدفمند ي ماده توان و ورق ضخامت ورق، داخلی شعاع اثر عددي، نتایج بخش رد. میکند تغییر ضخامت به شعاع

 کمانشی مود شکل ضمن در. است شده ارائه هدفمند مواد از شده ساخته حلقوي هاي ورق مکانیکی و حرارتی کمانش
 .است شده ارائه خاص وضعیت یک در حلقوي ورق
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