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In the present article, buckling analysis of functionally graded annular thin and moderately thick plates
under mechanical and thermal loads is investigated. The equilibrium and stability equations of the plate
are obtained based on both classical and first order shear deformation plate theories. By using an
analytical method, the coupled stability equations are converted to independent equations which can be
solved analytically. Solving the decoupled equations and satisfying the boundary conditions yield an
eigenvalue problem to find the critical buckling load and/or temperature. Both symmetric and
asymmetric modes of buckling and thermal buckling of functionally graded annular plates are
investigated. The results show that the buckling mode number may vary with the variation of power
law index, annularity and radius-thickness ratio. Finally, the effects of annularity, plate thickness and
power law index on buckling load/temperature of functionally graded annular plates are investigated

Symmetric and Asymmetric Modes

and the buckling mode shapes are plotted.
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1. INTRODUCTION

The critical buckling load and/or temperature of the
circular and annular plates are significant parameters to
design the aeronautical and mechanical structures
subjected to in-plane mechanical or thermal loads. It is
desirable that the plates are designed at the lowest
weight under in-plane loads or high temperature.
Annular plates are key components in many structures
and machinery applications. For example, they are
applied in flight vehicle, power planets, clutch plates,
flywheels, brake systems in automotive vehicles and
electronic applications such as sensors and micro
pumps.

Functionally graded materials (FGM's) are
inhomogeneous materials in which the material
properties are varied continuously from one point to
another point [1-3]. Typically, these materials are made
from a mixture of metal and ceramic, or a combination
of different metals. They are high performance heat
resistant materials which can withstand ultra high
temperature and extremely large thermal gradients
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current in the aerospace industries. The ceramic part of
functionally graded (FG) plates provides the high
temperature resistance due to its low thermal
conductivity and the metal constituent of material resists
on the failure of the plate.

Buckling of annular plates was studied firstly by
Dean in 1924 [4]. He studied the buckling of a circular
annular plate subjected to shearing forces distributed
along the edges. Since then, many researchers
investigated the buckling of circular annular plates
subjected to various loading conditions. In review of
recent developments in buckling of homogenous,
composite and FG plates a number of investigations
have been published in the literatures. Yamaki [5]
studied the buckling of a thin annular isotropic plate
under uniform compression. An important ramification
of his work was that the least buckling load might
involve circumferential buckling rather than just
axisymmetric modes. Elishakoff and Stavsky [6] studied
the axisymmetric buckling of certain annular composite
plates. They studied the effect of heterogeneity of plates
on the elastic stability of annular plates. Srivinasan and
Ramachandra [7] performed the axisymmetric buckling
and post buckling of bimodulus annular plates using
finite element method. Based on the first order shear
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deformation plate theory, Chang [8] studied the
axisymmetric buckling of moderately thick polar
orthotropic annular plates. Ciancio and Reyes [9]
studied buckling of circular annular plates with
continuously variable thickness. They used an analytical
approach based on the optimized Rayligh-Ritz method.
Xu et al. [10] performed axisymmetric buckling of
transversely isotropic circular and annular plates. They
investigated the general solution of the three-
dimensional governing equations for the axisymmetric
buckling analysis problem and obtained exact solutions
for appropriate boundary conditions. Arfat et al.
[11]studied the vibration and buckling of annular and
circular plates subjected to a thermal load. They
modeled the plate using the dynamic analogue of Saint-
Venant plate theory and solved the stability state heat
conduction equation for the radial temperature
distribution. Ma and Wang [12] studied the relationships
between axisymmetric bending and buckling solutions
of FG circular plates based on the third-order shear
deformation and classical plate theories. Birman and
Simitses [13] performed buckling and bending analysis
of cylindrically orthotropic annular plates. They
presented a closed form solution for arbitrary boundary
conditions under mechanical and thermal loads.
Najafizadeh and Eslami [14] studied the buckling
analysis of thin functionally graded circular plates under
uniform radial compression based on the classical plate
theory. Also, they [15] studied thermoelastic stability of
orthotropic circular plates and obtained closed form
solution for buckling temperature of such plates under
both clamped and simply supported boundary
conditions. Moreover, they investigated thermoelastic
stability of functionally graded solid circular plates
based on the first order shear deformation theory [16].
Based on the higher order shear deformation theory,
Najafizadeh and Heydari performed thermal buckling
[17] and mechanical buckling analyses [18] of FG
circular plates. Saidi et al. [19] studied the axisymmetric
bending and buckling analysis of thick FG circular
plates using unconstrained third-order  shear
deformation plate theory. Naderi and Saidi [20] studied
buckling problem of thin FG sector and annular sector
plates resting on Winkler and Pasternak elastic
foundations. They assumed that the annular sector plate
has simply supported straight edges. Also, Naderi and
Saidi [21] performed buckling analysis of moderately
thick FG sector and annular sector plates based on the
first order shear deformation plate theory. They
performed similar analysis for sector plates resting on
Winkler elastic foundation [22]. Saidi and Hasani
Baferani [23] studied thermal buckling problem of FG
annular sector plates by using the first order shear
deformation plate theory.

Although circular and annular plates geometrically
are symmetric structures, the buckling may occur at
asymmetric mode shapes. So, both symmetric and

asymmetric modes have to be considered for buckling
analysis of such plates. To the best of authors'
knowledge, buckling problem of FG annular plate
subjected to mechanical and/or thermal loads have only
been solved by considering the symmetric modes.

In the present article, buckling problem of FG
annular plates under in-plane compressive loads and/or
temperature is solved based on both symmetric and
asymmetric modes. The stability equations are obtained
based on both the classical and first order shear
deformation theories. Introducing some new functions,
the stability equations are decoupled into independent
equations which are solved analytically. Both
symmetric and asymmetric modes of buckling for
functionally graded annular plates under mechanical and
thermal loads are investigated. For some special cases,
the presented results are compared with those reported
in the available papers and a good agreement can be
seen. Finally, the effects of annularity, boundary
conditions, plate thickness and power law index on the
critical buckling load and/or temperature of FG annular
plates are discussed in detail.

2. EQUIBLIRIUM EQUATIONS

Consider a FG annular plate with the inner radiusa,
outer radius b and thicknessh, under uniform
compressive in-plane load P and/or uniform
temperature applied on the inner and outer circular
edges (Figure 1). Based on the classical plate theory, the
displacement components in the polar coordinate are
given by:

u.(r,0,z)=u(r,0)— z@
r
2 _20wmr,0) )
Uy (1,0, 2) = V(r,0) - o8

u,(r,0,2) = wWr,0)

Metal

Figure 1. Geometry and coordinate system of FG annular
plate under uniform in-plane load
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where u, v and w denote the displacements of a point
on the middle plane of the plate along r,0 and =z

directions, respectively. Assuming the large deflection,
the strain components of the annular plate can be
expressed as:

ou 1 ow,, 0w
= — 4+ —(—)° —
" or 2(6r) or’
2
899__(u+6v) 1(6w)2_£(6w 6w)

26y = oo S T (SIS @)

On the other hand, based on the first order shear
deformation plate theory, the displacement components
of the plate in r,0 and z directions are assumed to be:
u.(r,0,2) =u(r,0)+ zy (r,0)
ue(r,Q,z):V(r,9)+Zl//6(r,9) (3)
u,(r,0,z) = W(r,0)
where y, and y, are the rotation functions of the

middle surface. Here, the nonlinear strain components
are written in the form of:
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The Hooke’s law for the FG plate is written as:
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where, v is the Poisson ratio of the FG plate which is
assumed to be a constant and 7(r,0,z) is the temperature

distribution. Also, the parameters £(z) and a(z) are the
Young modulus and the coefficient of thermal

expansion of the FG plate which vary through the
thickness according to the following power law function

E(2)=E, +(E, - Em)(l—fjn

2 h
. . (6)
a(2)=oa,,+(a, —am)(a—gj

where n denotes the power law index which is equal or
greater than zero and the subscripts m and ¢ refer to
metal and ceramic components, respectively. It is
noticeable that in the classical plate theory, the last two
relations of Equation (5) are vanished. Using the
principle of minimum potential energy, the equilibrium
equations for both of the theories can be readily found
as [24, 25].

ON, 10N,, N, -N,
oo 0, N -0
or r 060 r (72)
ON,, 10N, 2N,
L+ + = =0 7b
or r 00 r (70)
oM, 1M, M,-My  _
or * r 00 * r R (7e)
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or r 00 r
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or r 00 r ror " or 200 00
2 (7e)
2N,y 0w
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where, N_,N, and N, are the in-plane force
resultants, M, ,M,, and M, are the moment

resultants defined as:

h/2
(Nrr’ NHH’ Nr@): th/z(crr’GHH’GrH)dZ
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and in the first order shear deformation plate theory, the
out of plane force resultants, Q, and Q,, are defined as:

h/2

(Q.Q)=K[ (0,.0,)dz ©)

—-h/2

where k” is the shear correction factor assumed to be
5/6. It is noticeable that in the classical plate theory by
substituting Q. and @, from Equations (7c) and (7d)
into Equation (7e), the bending equation is obtained. In
the above equations, the superscript C and F are

referred to classical and first order shear deformation
theories, respectively.

3. STABILITY EQUATIONS

The stability equations of the plate can be derived from
the adjacent equilibrium criterion [26]. For accustom on
this method and related equation, the reader can see
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Refs. [20-23]. Using the procedure introduced in these
references, the stability equation of FG annular plate
can be easily derived as:
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where the force and moment resultants for the classical
plate theory (CPT) can be expressed in term of
infinitesimally small displacement as:
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Also, the plate stiffness coefficients are obtained from
the following integrations:
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where the thermal terms T,, and T, are defined as:
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Also, these relations for the first order shear
deformation plate theory (FSDT) can be written in the
following form:
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Substituting the force and moment resultants from
Equation (11) into Equation (10), the governing stability
equations of FG annular plate based on CPT are
obtained as:
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Similarly, the stablhty equations of FG annular based on
FSDT can be written in the following form:
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Both Equations (15) and (16) are two systems of highly
coupled partial differential equations in terms of
incremental in-plane and out of plane displacement
components. Although these coupled equations can be
solved using numerical methods, it may be difficult to
solve them analytically in these forms. To find the
analytical solutions for these two systems of equations,
it is convenient to decouple them. Using the following
method, either Equation (15) or Equation (16) will be
decoupled.

4. A METHOD FOR DECOUPLING THE
STABILITY EQUATIONS

Equation (15) can be changed to the following from:

08, (109, 3 for )
An?h% (r 89) 31(5@ WIC))—O (17a)
109 , (89, (10 _
A'(?%j '433[ o j B, [r 20 (V Wc)j (17b)
BV, +mv4wF+——{ NG, al] %(%{Nga%]
N o (7
r 000

where V? is two dimensional Laplace operator in the
polar coordinates and V* = v>v?. Also, the variables 9,

and 9, are defined as:

out ut 1o
or r r 00
ro0 or r

9 =
(18)

By differentiating Equations (17a) and (17b) with
respect to r and O, and performing some algebraic
procedures, Equation (17) can be rewritten as:

c c
DV*wf +li rN?rai +L2i Ny, ow
r or or 00 00

(19a)
L2NY O
r 0roo
V?9,=0 (19b)

where the parameter D is the equivalent flexural
rigidity of FG plate which is written in the form of:
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f>=[Dn —%J (20)

Using Equations (17a) and (17b), the in-plane
displacement are obtained in the form of:
o _Budol
=
A, dr
_B 1owf
A, r 00
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1

Similarly, the stability Equation (16) based on the first
order shear deformation plate theory can be simplified
in the following equations:
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Also, Equations (22a) and (22b) can be rewritten in the
form:
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Substituting Equation (24) into Equations (22c¢) and
(22d) yields:
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Differentiation of Equations (25a) and (25b) with
respect to r and O together with Equation (22¢), and
doing some algebraic operations the following
decoupled partial differential equations are obtained:

1 1 F
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where the variable C denotes the equivalent flexural
rigidity of FG plate defined as:
C= D, - BB,

A
By considering Equations (25a) and (25b) and doing
some algebraic procedures it is easy to show that:
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Performing some algebraic operations on Equation (24),
the in-plane displacement can be obtained as:

UIF = _%er (293.)
v :_%‘l/el (29b)
1

Therefore, both the classical and first order shear
deformation stability equations of the FG plate have
been decoupled to the Equations (19) and (26),
respectively. In order to buckling analysis of FG annular
plates subjected to mechanical and/or thermal load,
these equations should be solved.

5. BUCKLING ANALYSIS UNDER MECHANICAL
AND THERMAL LOADS

Consider a FG annular circular plate subjected to
uniform in-plane force P, and uniform temperature T

with arbitrary boundary conditions on inner and outer
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circular edges. To obtain the critical buckling load
and/or temperature, the distribution of the in-plane
forces should be determined in the pre-buckling
configuration. Solving the membrane form of the
equilibrium equations, the pre-buckling forces are
obtained as:

NG =,
Ng§, = -P, (30)
N =0
where,
P for mechanical buckling analysis
Fe= 17:”‘/ for therma 1 buckling analysis G

By substituting Equation (30) into Equations (19), the
CPT stability equation is rewritten in the following form

DV*wf — PV?uf =0 (32)

Also, by substituting Equation (30) into Equation (26),
the FSDT stability equations are obtained as:

ﬁ[l— 2P° JV4MF—PCVZMF=O
k* A, (33)

évth - k2A33‘P4 =0

6. SOLUTION

In order to take into account both the symmetric and
asymmetric buckling modes of the FG plate under
mechanical and thermal loads, let us consider the
following forms for the transverse displacement, w;,

and the function ¢, [27]:

£

w, = Z w,, (r)cos( mo)

m=0

i =2 ¢,(r)sin( m6)

m=0

(34

Upon substituting the above series into the decoupled
Equations (32) and (33), three ordinary differential
equations are obtained. The solutions of these
differential equations for symmetric solutions (m=0 )
are obtained as:

P P
W =G + G In(r)+CyJ o ( S0+CXGED (35a)

w =C, +C,In(r)+ CJ, (k %r)
\/ D(k*A; - P,)
+C, Y, (k /A&r)
D(K’ Ay~ P,)
011 = Cul (k| 221) + C K, (o[ 22 (350)

(35b)

where J and Y are the first and second kind of
ordinary Bessel functions, respectively. Also, for
asymmetric solutions (m=>1 ) the solutions for CPT and
FSDT equations are obtained as:

W= G G Gl (0 CY, () (362)

W = Cr" + Cr ™+ CyJ (K %r)
\ D(K* A, - P.)
+C,Y,(k /#r)
D(k*A; - P,)
of(r=c, Im(k\/%r) + CsKm(k\/%r) (36¢)

where I and K are the first and second kind of the
modified Bessel functions. Imposing the boundary
conditions at the circular edges of the plate leads to a set
of four or six homogenous algebraic equations for
m=0 or m>1, respectively in FSDT and four
equations in CPT. Setting the determinant of the
constant coefficients equal to zero, the critical buckling
load and/or temperature can be obtained.

(36b)

7. BOUNDARY CONDITIONS

Here, three classic boundary conditions are considered
on the circular edges containing simply supported,
clamped and free edge.

For the simply supported boundary condition it can
be written as:

CPT: w =M< =0 at r=a,b (37a)

FSDT: wf =M} =0 at r=a,b (37b)

For the clamped boundary condition it is easy to show
that:

C

Pt w =" _gatr=ab (38a)
dr

FSDT: w =y, =0 atr=a,b (38b)

Finally, the free boundary condition requires:

CPT: M$=Q°=0 at r=a,b (39a)

FSDT: m! = Mm% =Q£+N,,0%—Wf=0 at r=a,b (39b)
r

The eight possible boundary conditions containing SS,
CC, CS, SC, CF, FC, CS and SF have been considered.
It is noticeable that, for example, CS denotes an annular
plate with clamped inner and simply supported outer
radii.
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8. NUMERICAL RESULTS AND DISCUSSION

For numerical calculations, it is assumed that the
functionally graded plate is composed of aluminum with
E,=70GPa and alumina with E,=380GPa. The
Poisson ratio of the plate is assumed to be constant

through the thickness and equal to 0.3. Here, the non-
dimensional buckling load is defined as:

NbZ
P, = D (40)
where
E. b’
0_12(17‘,2) (41)

In order to verify the accuracy of the present analysis,
the numerical results are compared with the available
results for mechanical and thermal buckling load of

annular and circular plates based on CPT and FSDT in
Refs. [5] and [16], respectively. The results presented in
Ref. [5] have been obtained for the homogenous annular
plates and those reported in Ref. [16] have been
presented for FG circular plates.

Table 1 shows a comparison between the critical
buckling load of a FG annular plate with n=0 and
those presented in Ref. [5] for the homogenous plates
based on the classical plate theory.

Table 2 shows the comparison of the critical
buckling temperature of FG annular plate by assuming
that the inner radius, a, is very small (e.g. a=10"2(m))

based on FSDT with those obtained for the FG simply
supported solid circular plates. It can be seen from
Tables 1 and 2 that the results are in good agreement
with those reported in the literature.

TABLE 1. Comparison of the results (,/ P, ) with Ref. [5] based on the classical plate theory (n=0)

B.C. a/b=0 a/b=0.1 a/b=0.3 a/b=0.5 a/b=0.7 a/b=0.9
e Ref. [5] 5.135(1) 6.68 (2) 8.63(2) 12.15(4) 20.27(7) 60.89(24)
Present 5.135(1) 6.710(1) 8.636(2) 12.155(4) 20.282(7) 60.890(23)
. Ref. [5] 5.135(1) 6.02(1) 7.06(0) 9.42(0) 15.31(0) 45.20(0)
Present 5.135(1) 5.990(1) 7.058(0) 9.416(0) 15.304(0) 45.199(0)
e Ref. [5] 3.832(0) 3.62(0) 3.19(0) 3.65(0) 5.52(0) 15.89(0)
Present 3.832(0) 3.626(0) 3.187(0) 3.645(0) 5.523(0) 15.875(0)
Ref. [5] 3.625(1) 4.71(1) 6.16(0) 8.73(0) 14.73(0) 44.69(0)
s Present 3.624(0) 4.690(1) 6.155(0) 8.726(0) 17.724(0) 44.688(0)
Ref. [5] 3.625(1) 4.20(1) 4.75(0) 6.40(0) 10.52(0) 31.43(0)
58 Present 3.624(0) 4.205(0) 4.749(0) 6.400(0) 10.523(0) 31.429(0)
s Ref. [5] 2.049(0) 1.98(0) 1.61(0) 1.32(0) 1.14(0) 1.01(0)
Present 2.049(0) 1.976(0) 1.612(0) 1.323(0) 1.135(0) 1.005(0)
o Ref. [5] 0.0(1) 1.49(1) 2.18(2) 3.14(1) 5.19(0) 15.61(0)
Present 0.0(1) 1.490(1) 2.167(2) 3.143(1) 5.194(0) 15.605(0)
o Ref. [5] 0.0(1) 1.12(1) 1.34(1) 1.32(0) 1.14(0) 1.01(0)
Present 0.0(1) 1.124(1) 1.341(1) 1.323(0) 1.135(0) 1.005(0)

TABLE 2. Comparison of the critical buckling temperature SS annular plates with those obtained in Ref. [16] for circular plates

based on FSDT.
n h/a=0.05 h/a=0.08 h/a=0.1
Ref. [16] 90.956 232.848 363.825
0 Present 90.955 232.904 363.147
. Ref. [16] 42.255 108.174 169.023
Present 42.262 108.224 169.026
Ref. [16] 38.648 98.941 154.595
i Present 38.632 98.847 154.388
Ref. [16] 39.731 101.713 158.927
10 Present 39.699 101.514 158.330
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TABLE 3. The effect of annularity on the non-dimensional buckling load, P,
(h/b=0.02,n=1).

s Lero

and critical buckling temperature, T, ('C) and

alb cc SS cs e CF FC FS SF
CPT 28.055(2) 9.389(0) 14299(1)  20.636(1) 1.687(1) 5.436(0) 1.617(0)  0.783 (1)
%2 kspr 27.831(2) 9.369(0) 14239(1)  20.548(1) 1.682(1) 5.430(0) 1.617(0)  0.782(1)
o4 CPT 50.840(3) 14.587(0)  26.024(0)  31.9090)  3.346(2) 5.427(0) 1.051(0)  0.981(1)
P FSDT 50.204(3) 14.5440)  25.867(0)  31.71000)  3.324(2) 5.421(0) 1.050(0)  0.980(1)
o CPT 115.164(5) 3136900)  60.050(0)  67.117(0)  7.673(0) 9.2400)  0.741(0)  0.741(0)
FSDT 112.087(5) 31.178(0) 59256(0)  66.216(00)  7.662(0) 9.224(0)  0.741(0)  0.741(0)
CPT  4613797(11)  123.454(0)  246.036(0)  258.189(0)  30.166(0)  32.488(0)  0.565(0)  0.565(0)
O% kst 417.044(11)  120575(0)  233.579(0)  245.043(0)  29.991(0)  32286(0)  0.564(0)  0.564(0)
0 CPT 90.607(2) 3026000)  46.180(1)  66.647(1)  5.448(1) 17.55700)  5.224(0)  2.531(1)
FSDT 89.884(2) 3026000)  45.986(1)  66363(1)  5.433(1) 17.538(0)  5.222(0)  2.528(1)
o4 CPT 164.193(3) 47.109(0) 84.047(0)  103.055(0)  10.807(2)  17.528(0)  3.394(0)  3.171(1)
FSDT 162.137(3) 46.971(0) 83.539(0)  102.412(0)  10.737Q2)  17.51000)  3.393(0)  3.165(1)
¢ CPT 371.931(5) 101.3090)  193.937(0)  216.760(0)  24.783(0)  29.843(0)  2.394(0)  2.394(0)
% kspT 361 994(5) 100.6920)  191.372(0)  213.850(0)  24.746(0)  29.790(0)  2.394(0)  2.394(0)
o5 CPT  1491.405(11)  398.702(0)  794.591(0)  833.838(0)  97.423(0)  104.924(0)  1.824(0)  1.824 (0)
FSDT  1346.872(11)  389.404(0)  754361(0)  791.382(0)  96.859(0)  104.270(0)  1.824(0)  1.824(0)

TABLE 4. The effect of thickness radius ratio on the non-dimensional buckling load, P,

,for(a/b=0.5,n=1).

cr?

and critical buckling temperature, T, ("C)

h/b cc SS cs e CF FC FS SF

wp  CFT 73.645(4) 20.422(0) 37.953(0) 44.192(0) 4.926(1) 6.624(0) 0.872(0)  0.872(0)

FSDT  72339(4) 20.340(0) 37.627(0) 43.806(0) 4.913(1) 6.616(0) 0.872(0)  0.872(0)

P ooes T 73.645(4) 20.422(0) 37.953(0) 44.192(0) 4.926(1) 6.624(0) 0.872(0)  0.872(0)
g FSDT  66.289(4) 19.920(0) 36.008(0) 41.881(0) 4.870(1) 6.572(0) 0.871(0)  0.872(0)
o CrT 73.645(4) 20.422(0) 37.953(0) 44.192(0) 4.926(1) 6.624(0) 0.872(0)  0.872(0)

FSDT 51474 (4) 18.553(0) 31.210(0) 36.204(0) 4.745(1) 6.419(0) 0.869(0)  0.869(0)

o T 237840 65.954(0) 122.5720)  142.723(0)  15.909(1)  21.394(0)  2.818(0)  2.818(0)

FSDT  233.624(4) 65.689(0) 121.5210)  141.474(0)  15867(1)  21.367(0)  2.818(0)  2.818(0)
T oos CPT  M486SIS(4)  4122130)  766077(0)  §92.023(0)  99435(1)  1337180) 17.6160)  17.6160)
¢ FSDT  1338.041(4)  402.09000)  726.812(0)  845373(0)  98.310(1)  132.657(0)  17.598(0)  17.598(0)
oy CPT S946062(4)  1648.8550)  3064308(0)  3568.094(0)  397.742(1)  S34872(0)  70466()  70.466(0)
FSDT  4156.006(4)  1498.008(0)  2519.933(0)  2923.120(0)  383.096(1)  518.303(0)  70.170(0)  70.170(0)

Table 3, presents the critical buckling load and
temperature together with the mode number for the FG
annular plates with eight possible combination of the
boundary conditions versus the aspect ratio a/b. In this
table, the numbers in bracket show the mode number.
However, when m=0, it means that the buckling mode
is symmetric. From this table, it can be seen that for
some boundary conditions as the annularity varies, the
mode number may be changed. Also, this table shows

that the critical buckling load and temperature increases
as the annularity increases expect for the plate with FS
and SF boundary conditions. Also, in SF and FS
boundary conditions for a/b> 0.6, the critical buckling
load and temperature are the same.

Table 4 shows the critical buckling load and
temperature versus the variation of thickness-radius
ratio, h/b for b/a=2 and n=1 for a FG plate with
eight possible boundary conditions. It can be seen that
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using FSDT, by increasing the thickness-radius ratio,
the non dimensional critical buckling load decreases. It
is noticeable that since the critical load is a non-
dimensional parameter with respect to b/ h, it is neutral
with respect to variation of thickness-radius ratio in the
classical plate theory. The significant note which can be
found from this table is that the variation of thickness-
radius ratio does not change the buckling mode number.
Also, for SF and FS boundary conditions the critical
buckling load and temperature are similar. Table 5
presents the critical buckling load and temperature for a
FG plate with CC boundary conditions versus the
variation of h/b and n. It can be seen from this table
that the mode number may vary with the variation of
power law index and radius-thickness ratio. Also, Table
5 shows that when b/ h> 20, buckling occurs in a same
mode number based on two theories. By comparing the
results of two theories, it can be seen that as the radius-
thickness ratio increases, the difference between the
results increases. In fact, by increasing the plate
thickness, the accuracy of the classical plate theory
decreases.

Figures 2 to 6 show the effects of annularity on the
stability of FG annular plates versus the power law
index, annularity and radius-thickness ratio for various

boundary conditions. In these figures, the ratio a/b=0
denotes the solid circular plate and a/b=1 denotes a
thin ring.

Figures 2 and 3 show the non-dimensional critical
buckling load for different boundary conditions versus
the variation of annularity. These figures show that for
SS, SC, CS, CC and CF plates as the plate annularity
increases, the critical buckling load increases because
the plate stiffness increases. Also, from this figure it is
observed that for a plate with FS boundary condition by
increasing the plate annularity the critical buckling load
decreases since by increasing the annularity stiffness of
this plate decreases. For FC boundary condition the
critical buckling load decreases first and then increases
but for SF boundary condition the critical buckling load
first increases and then decreases.

Figure 4 shows the effect of power law index n, on
the non-dimensional critical buckling load. From this
figure, it can be seen that as the power law index
increases, the critical buckling load decreases and this
decrease is rapid for large amounts of the annularity. It
is clear that when n=0 (plate is fully ceramic,) the
critical buckling load is maximum. Therefore, when the
highest critical buckling load is required, the ceramic
isotropic plates are suitable.

TABLE 5. The effect of n and b/ hon the non-dimensional buckling load, P, , and critical buckling temperature, T, (°C), for the

plate with CC boundary condition and b/a =3 .

n b/h=100 b/h=50 b/h=20 b/h=10 b/h=5
CPT 82.799 (2) 82.799(2) 82.799(2) 82.799(2) 82.799(2)
0 FSDT 82.555 (2) 81.835(2) 77.186 (2) 64.032 (3) 39.343(3)
CPT 53.674(2) 53.674 (2) 53.674(2) 53.674(2) 53.674(2)
03 FSDT 53.533(2) 53.116(2) 50.406(2) 42.543 3) 26.976(3)
p ] CPT 41.2702) 41.2702) 41.2702) 41.2702) 41.2702)
or FSDT 41.168(2) 40.865(2) 38.886(2) 33.078(3) 21.290(3)
CPT 32.204(2) 32.204(2) 32.204(2) 32.204(2) 32.204(2)
2 FSDT 32.1232) 31.883(2) 30.321(2) 25.747(3) 16.5153)
CPT 27.234(2) 27.234(2) 27.234(2) 27.234(2) 27.234(2)
> FSDT 27.151(2) 26.908(2) 25.341(2) 20.935(3) 12.767(3)
CPT 71.725(2) 286.901(2) 1793.134(2) 7172.537(2) 28690.149(2)
0 FSDT 71.513(2) 283.560(2) 1671.576(2) 5546.823(3) 13632.376(3)
CPT 40.637(2) 162.551(2) 1015.942(2) 4063.769(2) 16255.077(2)
03 FSDT 40.531(2) 160.862(2) 954.093(2) 3221.011(3) 8169.818(3)
T 1 PTC 33.321Q2) 133.286(2) 833.040(2) 3332.163(2) 13328.651(2)
e FSDT 33.238(2) 131.976(2) 784.906(2) 2670.753(3) 6875.786(3)
CPT 29.541(2) 118.165(2) 738.537(2) 2954.149(2) 11816.598(2)
2 FSDT 29.467(2) 116.989(2) 695.349(2) 2361.833(3) 6059.909(3)
CPT 30.477(2) 121.909(2) 761.935(2) 3047.738(2) 12190.955(2)
> FSDT 30.385(2) 120.451(2) 708.984(2) 2342.816(3) 5715.268(3)
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Figure 2. The critical buckling load of FG annular plate
versus the annularity based on FSDT ( = 1, % =10)
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Figure 3. The critical buckling load of FG annular plate
having free boundary condition versus the annularity based on
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Figure 4. The critical buckling load of simply supported FG
annular plate based on FSDT ( % =20)
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Figure 5. Comparison of the critical buckling load of simply
supported FG annular based on the CPT and FSDT
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Figure 6. The effect of annularity and radius-thickness ratio
on the critical buckling load of a simply supported FG annular
plate based on FSDT (n=1)

Figure 5 shows a comparison between two theories. It
shows that as the annularity of the plate increases, the
difference between the classical and first order shear
deformation plate theories increases because the flexural
rigidity of the plate becomes larger.

The wvariation of critical buckling load and
temperature with respect to annularity is presented for
different values of the radius-thickness ratio in Figures 6
and 7, respectively. These figures show that by
increasing the plate thickness, the critical buckling load
and temperature increases. Also, it can be seen that as
the parameter a/b increases, the thickness of the plate
has more effect on the critical buckling load and
temperature. Therefore, for the plates with small
annularity, the thickness of the plate has negligible
effect on the critical buckling load and temperature.
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a/b

Figure 7. Critical buckling temperature of FG annular plate
under various annularity a/b and b/h (n=1) for SS
boundary condition

In Figure 8, the mode shape plots for a FG annular
plate with eight possible boundary conditions are
presented. It can be seen that the buckling mode number
is different for different boundary conditions. For
example, for CC boundary condition the mode number
is m=4, for CF, m=2, for SF, m=1 and for the
other boundary conditions the buckling occurs in
symmetric mode (i.e. m=0).

Cs- P, =18.888

FC- P, =5.064

SF- P, =0.897

SS-P, =11.243

Figure 8. Mode shape plots of the FG annular plate with
various boundary conditions (n=1,b/h=20,a/b=0.3).

9. CONCLUSIONS

In the present article, symmetric and asymmetric
buckling modes of functionally graded thin and
moderately thick annular plates have been studied. The
equilibrium and stability equations have been obtained
based on both the classical and first order shear
deformation plate theories for the annular plate
subjected to in-plane loads acting on the physical
neutral surface. Using some functions and carrying out
some algebraic manipulations, the highly coupled
stability differential equations of the FG annular plates
have been decoupled and the analytical solution has
been presented for these decoupled equations. The
critical buckling loads and mode shape plots have been
presented for FG annular plates with eight possible
boundary conditions. The following conclusions have
been obtained:

I.  As the plate annularity increases, the critical
buckling load and/or temperature increase
expect for the plate with FC, FS and SF
boundary conditions.

II. The mode number may vary with the variation
of power law index, annularity and radius-
thickness ratio.

III. By increasing the power law index, the critical
buckling load and/or temperature decreases.
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