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A B S T R A C T  

   

Austenitic stainless steel (AISI316) is used for many commercial and industrial applications owing to 
its high resistance to corrosion. It is too hard to machine due to its high strength and high work 
hardening property. Tool wear (TW) and surface roughness (SR) are broadly considered as most 
challenging phases, and thus causing poor results in machining. Optimization of cutting parameter is 
more essential at this condition for improving the results. The existing method response surface 
methodology (RSM) incorporating statistics as tool in design and executing experiments is proved as a 
standard one. In this study of modeling and optimization of a CNC turning process, RSM is adopted as 
an alternative methodology to replace existing conventional methods; particularly, Box Benken design 
(BBD) is used to build the model. This methodology not only reduces the cost and time, but also 
provides adequate information pertaining to the main and interaction effects with a limited attempt of 
experiments. SR and TW of the coated cutting tool for CNC turning of AISI 316 are taken as responses 
for analysis. Statistical check proves that this methodology for modeling is sufficient, lack of fit test for 
model is insignificant, and residual analysis and normal probability plots are also satisfied. 
 

 
doi: 10.5829/idosi.ije.2013.26.04a.09  

 

  
1. INTRODUCTION1  
 

The challenges which are all felt by the modern 
industries in machining is mainly focused for the 
achievement of high quality, in terms of work piece 
dimensional accuracy, surface roughness (SR), high 
production rate, less tool wear (TW)and economy of 
machining, with reduced adverse impact on 
environment [1]. Surface integrity is an important 
quality measure for evaluating the productivity of the 
machine tools and mechanical parts. Surface quality is 
influenced by various factors such as tool geometry, 
cutting and coolant parameters, etc. Many experimental 
studies have been conducted to explore the effects of 
cutting conditions on the SR of various work piece 
materials. Achieving good surface finish is a hard task. 
Many adverse feedbacks have been reported by users 
during machining [2-4]. TW which results in the need 
for adequate replacement of tool is one of the most 
important Technical/Economical hurdles. Therefore, it 
is essential to minimize TW by optimizing the cutting 
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parameters [5]. Normally, AISI 316 is regarded as 
more difficult to machine than carbon and low alloy 
steels due to their high strength, ductility and high 
work hardening property [6, 7]. Many efforts have 
been made to improve its machinability. Application of 
hard coatings on tools by physical vapor deposition 
(PVD) and chemical vapor deposition (CVD) is one of 
the efficient ways. It is proved that performance of the 
coated tools is better than the bare tools. Nowadays, 
around 70% of the tools are cemented carbide coated, 
used in various manufacturing industries. These hard 
coatings increase tool life and improve surface finish of 
the work [8]. Coated carbides are basically a cemented 
carbide insert coated with one or more layer of wear 
resistant materials, such as titanium nitride, titanium 
carbide and aluminum oxide. It is well known that the 
coating can reduce TW and improve the SR [9]. 
Therefore, most of the carbide tools used in the metal 
cutting industries is coated even though the costs more 
[10]. The effect of cutting parameters on AISI 316 was 
investigated with multilayer coating by TiC/TiCN/TiN 
and TiC/TiCN/Al2O3 under dry conditions [11]. 
Surface roughness model was developed for turning of 
AISI 316 with TiN/Al2O3/TiC coated carbide tool [12]. 
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Friction coefficient model was also developed between 
tool and work during the turning of AISI 316 with TiN 
coated carbide tool [13]. Kaladhar conducted a 
performance evaluation of coating materials and 
process parameter optimization for surface quality 
during turning of AISI 316 [14]. Thamizhmani and 
Hasan investigated the AISI410 by PCBN cutting tool 
[15]. Gutakorskis and Bonga performed the turning 
tests on AISI410 using non-coated cutting tool [16]. 
Limited research papers are only available in turning of 
AISI 316. More Research is needed to determine how 
cutting parameters affect TW and SR. Various coating 
materials are provided with different properties. Hence, 
in this work multilayer coating with Ti(C, N, B) and 
single layer coating with TiAlN cutting tool are taken 
for turning process. In order to get good SR and 
dimensional properties, it is necessary to employ 
optimization techniques to find optimal cutting 
parameters and theoretical models for prediction. 
Taguchi and response surface methodology (RSM) can 
be conveniently used for these purposes [17]. RSM is 
more practical, economical and relatively easier to 
apply [18]. The statistical method used in RSM has 
been proposed to determine the influences of individual 
factors and the influence of their interactions. RSM is a 
technique for designing experiments, building models, 
evaluating the effects of several factors, and achieving 
the optimum conditions for desirable responses with a 
limited number of estimated experiments [19, 20]. 
RSM helps to demonstrate how a particular response is 
affected by a given set of input variables over some 
specified region of interest, and what input values will 
yield a maximum for a specific response. The RSM 
was initially developed for determining optimum 
operating conditions in the chemical industry, but it is 
now used in a variety of fields and applications, not 
only in the physical and engineering sciences, but also 
in biological, clinical, and social sciences [21]. 
Optimization process involving one-variable-at a-time 
method is a time-consuming technique and it neglects 
the interaction between variables and it does not 
guarantee attaining optimal point [22]. Box-Behnken 
optimization design abolishes these disadvantages. 
Besides, it creates empirical model equations that 
correlate the relationship between variables and 
response [23]. BBD designs require fewer treatment 
combinations than a central composite design in cases 
involving 3 or 4 factors. 

 
 

2. MATERIALS AND METHODS 
 
The work material used in the present investigation is a 
round bar of AISI 316. The diameter of the material is 
32mm and machined length is 60mm for all trials. The 
chemical composition of the work material is given in 
Table 1. 

TABLE 1. Chemical composition of AISI 316 
C Si Mn P S Ni Cr Mo 

0.040 0.49 1.56 0.03 0.017 10.45 16.71 2.112 

 
 

TABLE 2. Machining parameters and levels 
Parameter Designation Level 1 Level 2 Level 3 

Cutting speed 
(m/min) V 110 160 210 

Feed (mm/rev) F 0.1 0.2 0.3 

Depth of cut  D 0.7 1.4 2.1 

 
 
2. 1. Response Surface Designs    Response surface 
designs are useful for modeling a curved quadratic 
surface to continuous factors. A response surface 
model can pinpoint the minimum and or maximum 
response, if one exists in the factor region. Three 
distinct values for each factor are necessary to fit a 
quadratic function, so the standard two-level designs 
cannot fit curved surfaces. It combines a two-level 
fractional factorial and two other kinds of points are 
center points, for which all the factor values are at the 
zero value and  Axial points, for which all but one 
factors are set at zero and that one factor is set at outer 
values. The BBD is an alternative to central composite 
designs. One distinguishing feature of the BBD is that 
there are only three levels per factor. Another 
important difference between the two design types is 
that the BBD has no points at the vertices of the cube 
defined by the ranges of the factors. This is sometimes 
useful when it is desirable to avoid these points due to 
engineering considerations. The price of this 
characteristic is the high uncertainty of prediction near 
the vertices compared to the central composite design. 
When process factors satisfy an important assumption 
that they are measurable, continuous, and controllable 
by experiments, with negligible errors, the RSM 
procedure is carried out as follows:  

1. A series of experiments are performing for adequate 
and reliable measurement of the response of 
interest.  

2. A mathematical model of the second-order response 
surface with the best fit is developed.  

3. The optimal set of experimental parameters 
producing the optimum response value is 
determined. 

4. The direct and interactive effects of the process 
parameters are represented through two and three-
dimensional plots.  

It involves the design of experiments to achieve 
adequate and reliable measurements of the response of 
interest. BBD is a very efficient design tool for fitting 
second-order model is selected for use in this study. 
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3. EXPERIMENTAL DETAILS 

 
The experiments were conducted on the Fanuc CNC 
lathe. The technical specification of the CNC machine 
is given in Table 3. Multilayered CNMG 120408 
coated with Ti(C, N, B) of 6 µm and single layered 
with TiAlN of 3 µm are used as the insert for all 
machining operations. The range of cutting parameters 
was selected based on past experience, data book and 
available resources. SR is measured by the Mitutoyo 
surface roughness tester. TW is measured by an optical 
tool maker’s microscope with image optic plus version 
2.0 software designed to run under Microsoft widow’s 
32 bit system, which can be captured by the area of the 
TW.   

The three cutting parameters selected for the 
present investigation is cutting speed, feed and depth of 
cut. Since the considered factors are multi-level 
variables and their outcome effects are not linearly 
related, it has been decided to use three-level tests for 
each factor. The machining parameters used and their 
levels chosen are given in Table 2. Box and Behnken 
derived a series of three-level second-order designs that 
has been very popular, especially for a small number of 
factors [24]. Three factors requires only 12 runs, plus a 
recommended 3 center point runs. The three factors 
chosen for this study are designated as x1, x2, x3 and 
prescribed into three levels, coded +1, 0, −1 for high, 
intermediate and low value, successively. For 
predicting the optimal point, a second-order 
polynomial model is fitted to correlate relationship 
between independent variables and for the three 
factors, the Equation (1). 

Y = β0 + β1 x1+ β2 x2+ β3 x3 + β12 x1 x2 + β13 x1 x3+ 
β23 x2 x3 + β11 x1

2
 + β22 x2

2+ β33 x3
2                              (1) 

where Y is the predicted response; 0 is model constant; 
are independent variables; 1, 2 and 3 are linear 
coefficients; 12, 13 and 23 are cross-product 
coefficients; and 11, 22 and 33 are the quadratic 
coefficients. The quality of fit of the polynomial model 
equation is expressed by the coefficient of 
determination R2.  Minitab14 statistical software has 
been used for the analysis of the experimental work.  
 
 
 
4. RESULTS AND DISCUSSION 

 
Fifteen responses are observed and taken to compute 
the model using the least square method. The two 
responses are associated with the three factors using 
the second-order polynomial. From the experimental 
data, quadratic regression models are obtained. Table 4 
shows the BBD of experiments with three independent 
variables for Ti(C, N, B) and for TiAlN.  

TABLE 3. Specification of the CNC machine. 
Capacity  

Swing over way covers  350 mm 

Admit between centre  375 mm 

Maximum turning length (with chuck) 375 mm 

Maximum turning diameter 220 mm 

Job Holding  

Hydraulic chuck – standard  135 mm 

Slide  

Cross Travel X-Axis  130 mm 

Longitudinal Travel Z-Axis   375 mm 

Rapid Rate X-Axis  24m/min 

Rapid Rate Z-Axis  24m/min 

Ball Screw X-Axis (dia & pitch) 32X10 

Z-Axis (dia & pitch) 32X10 

LM Guide ways X-Axis  35 HSR 

LM Guide ways Z-Axis  35 HSR 

Main Spindle (Standard)  

Spindle  motor power  5.5/7.5 kw 

Spindle bore diameter 40 mm 

Spindle front bearing diameter 80 mm 

Spindle nose A2-5 

Maximum bar capacity 27 

Spindle speed – Standard 4000 rpm 

Spindle speed – Optional 5000 rpm 

Turret  

No. of stations  8 Nos 

Maximum boring bar capacity 32 mm 

Tool cross section 25X25 mm 

Tail Stock  

Quill diameter  60 mm 

Quill stroke 60 mm 

Thrust maximum 350 kgf 

Quill taper MT 3 

Coolant  

Tank capacity 100 ltrs. 

Pump motor capacity 0.25 kw 

Machine Size  

Weight  (Approximate) 3300 kg 

Dimension (LXBXH) 1730X2000X1500mm 

Accuracy  

Positioning ± 0.010 mm 

Repeatability ± 0.003 mm 
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4. 1. Validation of the Models for Ti(C, N, B)    It is 
usually mandatory to ensure the adequacy in results of 
the fitted model while applying in real system. Unless 
the model shows an adequate fit, proceeding with an 
investigation and optimization of the fitted response 
surface is lead to give inappropriate results. Graphical 
and numerical methods are primary tool and 
confirmations, so graphical techniques are also applied 
to validate the models in this study. The graphical 
method characterizes the nature of residuals of the 
models. A residual is defined as the difference between 
an observed and the fitted values. The plot can be used 
to check the drift of the variance during the 
experimental process, when data are time-ordered. If 
the residuals are randomly distributed around zero, it 
means that there is no drift in the process. 

Figure 1 shows the residuals versus the fitted plot 
of SR for Ti(C, N, B) and Figure 2 shows the residuals 
versus the fitted plot of TW for Ti(C, N, B). These 
plots indicate the SR for Ti(C, N, B) and TW for Ti(C, 
N, B) are randomly scattered; hence, there is no drift in 
the process. It is used to exam the sufficiency of the 
functional part of the model. Figure 3 shows the 
residual versus order of the SR for Ti(C, N, B) and 
Figure 4 shows the residual versus order of the TW for 
Ti(C, N, B). 
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Figure 1. Residuals versus fitted values for SR of Ti(C, N, B) 
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Figure 2. Residuals versus fitted values for TW of Ti (C, N, 
B) 
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Figure 3. Residuals versus observation for SR of Ti(C, N, B) 
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Figure 4. Residuals versus observation for TW of Ti(C, N, 
B) 
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Figure 5. Normal probability plots for SR of Ti(C, N, B) 

 
 

Residual is plotted against an index of observation 
orders of data, which is used to check for any drift in 
the process. The graphical residual analysis indicated 
no obvious pattern, implying that the residuals of the 
models are randomly distributed. The normal 
probability plots of SR for Ti(C, N, B) and TW for 
Ti(C, N, B) are shown in Figures 5 and 6. The data are 
plotted against a theoretical normal distribution in such 
a way that the points should form an approximate 
straight line. A departure from this straight line would 
indicate a departure from a normal distribution, which 
is used to check the normal distribution of the 
residuals. It is reasonable that the assumptions of 
normality are satisfied with the data. 
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TABLE 4. BBD of experiments for Ti(C, N, B) and TiAlN. 

Experimental Design Results for Ti(C, N, B) Results for TiAlN 

Trial V F D SR exp SR pred TW exp TW pred SR exp SR pred TW exp TW pred 

1 0 0 0 1.07 1.09 27.30 27.30 1.57 1.57 40.20 40.20 

2 0 1 -1 1.45 1.35 49.20 56.20 2.96 3.01 33.50 43.29 

3 -1 1 0 1.11 1.19 31.70 12.52 2.80 2.32 25.07 10.18 

4 1 0 -1 1.25 1.46 15.80 20.44 1.54 1.53 35.80 43.57 

5 -1 0 1 1.12 0.90 44.70 40.05 1.36 1.36 44.99 37.21 

6 1 0 1 1.14 1.12 76.60 64.42 1.44 1.52 55.91 50.82 

7 0 0 0 1.09 1.09 27.30 27.30 1.57 1.57 40.20 40.20 

8 1 1 0 1.24 1.12 22.40 10.75 2.82 2.76 31.30 13.72 

9 -1 0 -1 1.28 1.29 17.90 30.07 1.62 1.53 42.76 47.84 

10 1 -1 0 1.07 0.98 35.78 54.95 0.87 0.84 33.55 48.43 

11 0 1 1 1.04 1.17 56.10 79.92 2.77 2.74 69.30 91.96 

12 -1 -1 0 0.41 0.52 26.80 38.44 0.58 0.63 25.07 42.64 

13 0 -1 1 0.48 0.58 125.24 118.24 0.93 0.87 84.98 75.18 

14 0 0 0 1.09 1.09 27.30 27.30 1.57 1.57 40.20 40.20 

15 0 -1 -1 1.28 1.14 111.82 88.00 0.75 0.77 149.90 127.23 
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Figure 6. Normal probability plots for TW of Ti (C, N, B) 

 
 
 

TABLE 5. Regression Coefficients for SR of Ti(C, N, B) 
Term Coef SE coef T P 

Constant 1.090 0.113 9.61 0.000 

V 0.097 0.069 1.40 0.219 

F 0.200 0.069 2.88 0.035 

D -0.185 0.069 -2.66 0.045 

V*V 0.001 0.102 0.012 0.991 

F*F -0.133 0.102 -1.308 0.248 

D*D 0.106 0.102 1.039 0.346 

V*F -0.132 0.098 -1.349 0.235 

V*D 0.012 0.098 0.127 0.904 

F*D 0.097 0.098 0.993 0.366 
S = 0.1964   R-Sq = 82.3%   R-Sq(adj) = 50.4% 

 
TABLE 6. Regression Coefficients for TW of Ti (C, N, B) 

Term Coef SE coef T P 

Constant 27.30 13.11 2.08 0.09 

V 3.68 8.03 0.45 0.66 

F -17.53 8.03 -2.18 0.08 

D 13.49 8.03 1.68 0.15 

V*V -22.48 11.81 -1.90 0.11 

F*F 24.35 11.81 2.06 0.09 

D*D 33.93 11.81 2.87 0.03 

V*F -4.57 11.35 -0.40 0.07 

V*D 8.50 11.35 0.74 0.48 

F*D -1.63 11.35 -0.14 0.89 
S = 22.71   R-Sq = 83.5%   R-Sq(adj) = 53.8% 

 
 

Tables 5 and 6 gives an insight into the linear, 
quadratic and interaction effects of the parameters. 
These analyses are done by Fisher’s ‘F’ and Student ‘T’ 
tests. These test are used to determine the significance 
of the regression coefficients of the parameters. The P 
value is used as a tool to check the significance of each 
factor and interaction between factors. Larger 
magnitude of T and smaller values of P are more 
significant in corresponding coefficient term. 
Regression coefficient of SR for Ti(C, N, B) is given in 
Table 5. It is found that the variable with the largest 
effect on SR is the linear effect of feed rate followed by 
depth of cut, having a P-value of 0.035 and 0.045. The 
coefficient of quadratic cutting speed is found to be 
insignificant with P-value of 0.991.  
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Regression coefficient of TW for Ti(C, N, B) is 
given in Table 6. It is indicate that quadratic depth of 
cut is the most significant factor in determining the 
optimum TW with P value of 0.03 followed by 
interaction of cutting speed and feed rate and linear feed 
rate with P values of 0.07 and 0.09. The coefficient of 
interaction between feed rate and depth of cut is found 
to be insignificant with P-value of 0.89.  

The models are then checked using a numerical 
method employing the coefficient of determination (R2), 
adjusted R2 (R2adj). R2 indicates how much of the observed 
variability in the data is accounted for by the model, 
while R2adj modifies R2 by taking into account the number 
of predictors in the model. The response surface models 
are developed in this study with values of R2 say 82.3% 
SR for Ti(C, N, B) and 83.5% for TW for Ti(C, N, B), 
respectively. Furthermore, an R2adj close to the R2 values 
insure a satisfactory adjustment of the quadratic models 
to the experimental data. The Analysis of variance of 
SR for Ti(C, N, B) and TW for Ti(C, N, B) on these 
models are shown in Table 7. It demonstrates that the 
models are highly significant, as evident from the very 
low probability of P values in the regression = 0.015 
and 0.133 for SR and TW. The lack of fit test describes 
the variation in the data around the fitted model. If the 
model does not fit the data well, the lack of fit will be 
significant. The lack of fit is not insignificant.  

 
 

TABLE 7. Analysis of Variance for SR and TW of Ti (C, N, B)  

Source DF Seq SS Adj SS Adj 
MS F P 

Surface Roughness 

Regression 9 0.895 0.895 0.099 2.58 0.155 

Linear 3 0.669 0.669 0.223 5.79 0.044 

Square 3 0.116 0.116 0.038 1.01 0.462 

Interaction 3 0.108 0.108 0.036 0.94 0.487 

Residual 
Error 5 0.192 0.192 0.038   

Lack of Fit 3 0.192 0.192 0.064 * * 

Pure Error 2 0.000 0.000 0.000   

Total 14 1.088     

Tool Wear 

Regression 9 13065 13065 1451 2.8 0.13 

Linear 3 4022 4022 1340 2.6 0.16 

Square 3 8659 8659 2886 5.60 0.047 

Interaction 3 383.2 383.17 127.72 0.2 0.86 

Residual  5 2579.0 2578.97 515.79   

Lack of Fit 3 2579.0 2578.97 859.66 * * 

Pure Error 2 0.0 0.00 0.00   

Total 14 15644     

4. 2. Validation of the Models for TiAlN   The 
residual versus the fitted plot of SR  and TW for TiAlN 
are shown in Figures 7 and 8, respectively. In this plot 
residuals are randomly distributed around zero. There is 
no drift in the experimental process. It is used to test the 
adequacy of the functional part of the model. 

Figures 9 and 10, respectively show the residual 
versus order of the  SR and TW for TiAlN. These plots 
indicate no obvious pattern, implying that the residuals 
of the models are randomly distributed.  
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Figure 7. Residuals versus fitted values for SR of TiAlN 
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Figure 8. Residuals versus fitted values for TW of TiAlN 

 
 

Observation Order

R
es

id
ua

l

151413121110987654321

0.10

0.05

0.00

-0.05

-0.10

Residuals Versus the Order of the Data
(response is SR.)

 
Figure 9. Residuals versus observation data for SR of 
TiAlN 
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Figure 10. Residuals versus observation data for TW of 
TiAlN 
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Figure 11. Normal probability plots for SR of TiAlN 
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Figure 12. Normal probability plots for TW of TiAlN 

 
 

The normal probability plots of SR and TW for 
TiAlN are shown in Figures 11 and 12. A departure 
from this straight line would indicate a departure from a 
normal distribution. These plots satisfy the data. 

Regression coefficient of SR for TiAlN is given in 
Table 8. It is found that the variable with the largest 
effect on SR is the linear effect of feed rate and 
followed by interaction between feed rate and depth of 

cut, having a P-value of 0.000 and 0.060. The 
coefficient of quadratic depth of cut is found to be 
insignificant with P-value of 0.952.  

Regression coefficient of TW for TiAlN is given in 
Table 9. It indicates that quadratic depth of cut is the 
most significant factor in determining the optimum TW 
with P value of 0.047 followed by interaction of cutting 
speed and feed rate and linear feed rate with P values of 
0.07 and 0.09, respectively. The coefficient of 
interaction between feed rate and depth of cut is found 
to be insignificant with P-value of 0.961. The response 
surface models are developed in this study with values 
of R2 say 99.7% SR and 82.9% for TW for TiAlN, 
respectively. 

The analyses of variance of SR for TiAlN and TW 
for TiAlN on these models are shown in Table 10. It 
demonstrates that the models are highly significant, as 
evident from the very low probability of P values in the 
regression = 0.000 and 0.144 for SR and TW. The lack 
of fit is not insignificant.  
 
 
TABLE 8. Estimated Regression Coefficients for SR of 
TiAlN 

Term Coef SE coef T P 

Constant 1.570 0.044 35.630 0.000 

V 0.038 0.026 1.436 0.210 

F 1.027 0.026 38.078 0.000 

D -0.046 0.026 -1.714 0.147 

V*V -0.082 0.039 -2.077 0.092 

F*F 0.280 0.039 7.050 0.001 

D*D 0.002 0.039 0.063 0.952 

V*F -0.067 0.038 -1.769 0.137 

V*D 0.040 0.038 1.048 0.343 

F*D -0.092 0.038 -2.424 0.060 
S = 0.07632   R-Sq = 99.7%   R-Sq(adj) = 99.1% 

 
 

TABLE 9. Estimated Regression Coefficients for TW of 
TiAlN 

Term Coef SE coef T P 

Constant 40.200 12.78 3.14 0.026 

V 2.333 7.83 0.29 0.778 

F -16.79 7.83 -2.14 0.085 

D -0.84 7.83 -0.10 0.918 

V*V -25.50 11.52 -2.21 0.078 

F*F 14.05 11.52 1.21 0.277 

D*D 30.16 11.07 2.61 0.047 

V*F -0.56 11.07 -0.05 0.961 

V*D 4.47 11.07 0.404 0.703 

F*D 25.18 11.07 2.27 0.072 
S = 22.15   R-Sq = 82.9%   R-Sq(adj) = 52.0% 
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TABLE 10. Analysis of Variance for SR and TW of TiAlN 
Source DF Seq SS Adj SS Adj MS F P 

Surface Roughness 

Regression 9 8.864 8.864 0.984 169 0.00 

Linear 3 8.475 8.475 2.825 484 0.00 

Square 3 0.330 0.330 0.110 18 0.004 

Interaction 3 0.058 0.058 0.019 3.37 0.112 

Residual 
Error 5 0.029 0.029 0.005   

Lack of Fit 3 0.029 0.029 0.009 * * 

Pure Error 2 0.000 0.000 0.000   

Total 14 8.893     

Tool Wear 

Regression 9 11860 11860 1317.88 2.69 0.144 

Linear 3 2304.9 2304.8 768.30 1.57 0.308 

Square 3 6938.7 6938.7 2312.91 4.72 0.064 

Interaction 3 2617.3 2617.3 872.44 1.78 0.267 

Residual 
Error 5 2452.4 2452.4 490.49   

Lack of Fit 3 2452.4 2452.4 817.48 * * 

Pure Error 2 0.0 0.00 0.00   

Total 14 1431     
 
 

5. CONCLUSIONS 
 
This investigation is focused on prediction and analysis 
of CNC turning AISI 316 with multilayer coated with 
Ti(C, N, B) and single layer coated with TiAlN cutting 
tool during change of cutting parameters. From the 
study of a result in turning is using BBD. The following 
can be concluded from the present study. 

1. The response surface model for SR and TW are 
developed from the observed data the predicted and 
measured values are fairly close, which indicates 
that the developed model can be effectively used to 
predict the SR and TW for both Ti (C, N, B) and 
TiAlN.   

2. The response surface models are developed for the 
SR and TW of multilayered Ti (C, N, B) with R2 
values are 82.3% and 83.5% and single layered 
TiAlN with R2 values of 99.7% and 82.9%. 

3. Feed rate, followed by the depth of cut are the most 
significant factors for the SR of Ti (C, N, B) with P-
values of 0.035 and 0.045, respectively. Quadratic 
depth of cut, followed by linear feed rate are the 
most significant factors for TW of Ti (C, N, B) with 
P values of 0.03 and 0.07, respectively.  

4. Feed rate, followed by interaction between feed rate 
and depth of cut are the most significant factors for 
the SR of TiAlN with P-values of 0.000 and 0.060, 
respectively. Quadratic depth of cut, followed by 
interaction of feed rate and depth of cut are the most 

significant factor for TW of TiAlN with P-values of 
0.047 and 0.072, respectively.  

5. The lack of fit test describes the variation in the data 
around the fitted model. The lack of fit is not 
insignificant for both Ti (C, N, B) and TiAlN. 

6. Departure from straight line normal probability plots 
would indicate a departure from a normal 
distribution, which is used to check the normality 
distribution of the residuals for both Ti (C, N, B) and 
TiAlN. 
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 چکیده
   

براي چندین کاربرد صنعتی و تجاري استفاده بالاي خوردگی به به علت مقاومت   (AlSl316)سخت شده  نزن فولاد زنگ
. کاري می باشـد  کاري و تراش دگی آن به سختی قابل ماشینونسخت شکار به علت استحکام بالا و خاصیت . شده است

 بخشیاست، که  شدهمشکل کار بررسی هاي  جنبهبه صورت گسترده به عنوان  (SR)و زبري سطحی  (TW)ابزار سایش 
در این شـرایط بـراي بهبـود نتـایج بسـیار       مترهاي برشابهینه سازي پار. از دلایل نتایج نامطلوب در ماشین کاري   است

اجرایی با استاندارد  هاي و آزمایشآماري به عنوان ابزار طراحی   (RSM)روش حاضر، روش سطح پاسخ . ضرروي است
به عنوان روش جایگزین براي  CNC ،RSMکاري  در تحقیق مدل سازي و بهینه سازي فرایند تراش. تایید شده است 1

براي ساخت مـدل اسـتفاده    Box Benken (BBD)است، به خصوص طراحی  شدههاي متداول موجود پذیرفته  روش
بلکه اطلاعات کافی مربوط به تاثیرات اصلی و متقابل که  ،این روش نه تنها به منظور کاهش زمان و هزینه است. شده است
به عنوان  ALSL 316ابزار برش پوشش تراشکاري  TWو  SR. دست می آید را تهیه می کنده محدود ب هاي  با آزمایش

 هاي کند که این شیوه براي مدل سازي کافی بوده و فقدان ازمایش هاي آماري ثابت می بررسی. اند پاسخ آنالیزها اتخاذ شده
مانده و نمودارهاي احتمال معمولی هـم بـراي ایـن مـدل کـافی       مناسب براي مدل بی اهمیت است اگرچه انالیزهاي باقی

  .  باشد می
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