
IJE TRANSACTIONS A: Basics   Vol. 26, No. 4, (April 2013)  341-350 

 
 

International Journal of Engineering 
 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 
Numerical Simulation of Squeezed Flow of a Viscoplastic Material by a Three-step 
Smoothed Particle Hydrodynamics Method 
 
P. Ghalandari, N. Amanifard*, K. Javaherdeh, A. Darvizeh 
 
Mechanical Engineering Department, Faculty of Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran 

 
 
P A P E R  I N F O   

 
 

Paper history: 
Received 27 May 2012 
Accepted in revised form 18 October 2012 
 

 
 

Keywords:   
SPH 
Meshless Method 
Viscoplastic Materials 
Squeeze Flow 
 
 
 
 
 

  
A B S T R A C T  

   

In the current work, the mesh free Smoothed Particle Hydrodynamics (SPH) method, was employed to 
numerically investigate the transient flow of a viscoplastic material. Using this method, large deformation 
of the sample and its free surface boundary were captured without the cumbersome process of the grid 
generation. This three-step SPH scheme employs an explicit predictor-corrector technique and the 
incompressibility characteristic of the material was guaranteed by solving a pressure Poisson equation. 
The Papanastasiou constitutive model was also utilized in the simulations to study the compression of the 
sample under both constant load and constant velocity conditions. The no-slip boundary condition was 
satisfied by projecting the velocity of the viscoplastic material on the wall particles. In order to validate the 
fidelity of this numerical method during the compression of the samples, the resultant load at constant 
velocity as well as the height change of the sample for a constant load were computed and compared with 
other published results. The results indicated that this method could be employed as a reliable technique to 
simulate such highly deformable viscoplastic deformation of the materials. 
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1. INTRODUCTION1  
 
Squeeze flow tests are common techniques to determine 
the flow properties of highly viscous materials. The test 
setup is usually designed so that the material is located 
between two parallel surfaces which are moved at either 
constant force or constant velocity. The squeezed flow 
is of considerable interest for fluids which bear yield 
stress. These kinds of materials, named as the 
viscoplastic materials, flow with viscosity that depends 
on the local shear rate, as Generalized Newtonian 
liquids. Many materials such as fresh concrete, tortilla 
dough, fruits-syrup mixture, blood in the capillaries, 
muds used in drilling technologies, tooth pastes, and etc. 
shows the same behavior. A list of several materials 
exhibiting yielding behavior was given in a seminal 
paper by Bird et al. [1]. The Bingham plastic 
constitutive equation, which follows the Von Mises 
yield criterion, is the most frequently used model for the 
viscoplastic materials. Nevertheless, the existence of 
some singularities could lead to difficulties in the usage 
of this model and resulted in devising the various 
modifications of the Bingham constitutive equation.  
                                                        
* Corresponding Author Email: namanif@guilan.ac.ir (N. amanifard) 

The squeeze flow of viscoplastic materials has 
received great attention in the past two decades and 
different constitutive models have been investigated. 
Modeling of these flows and the selection of a suitable 
constitutive equation has already been a permanent 
source of challenging problems for many decades. 
Sherwood and Durban et al. [2], Adams et al. [3] and 
Florides et al. [4] have used different viscoplastic 
models like Herschel-Bulkley, elasto-viscoplastic and 
regularized Papanastasiou models to study the squeeze 
flow in the case of a fixed lower plate, respectively. 
Analytical solutions were also provided for the 
Bingham plastic model in simple flow fields. Since 
then, a renewed interest has been developed among 
several researches to study these materials both 
numerically and experimentally [5]. The original 
Bingham and the regularized Papanastasiou models 
were compared to each other by Smyrnaios and 
Tsamopoulos [6]. They studied the quasi-steady-state 
flow for two plates approaching each other. Besides, 
Karapetsas et al. [7] investigated the transient squeeze 
flow of the viscoplastic materials using the 
Papanastasiou model under a creeping flow condition.  

From another point of view, numerical simulations 
of the squeeze flow have been mainly extended 
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employing the mesh based techniques such as Finite 
Element Method. Increasing use of Finite Element 
Method as the common technique for modeling of large 
deformations mostly related to some inherent characters 
of the technique. However, Liu et al. [8] reported some 
difficulties on using grid-based methods. These methods 
are dealing with great challenges in the mesh generation 
and the remeshing procedures so that these procedures 
are considered a significant portion of the computational 
effort. In this case, an accurate simulation considerably 
depends on the mesh quality and even a wrong setting 
of the initial mesh may cause huge inaccuracies in the 
final solution. In the case of the deformable grids 
methods, large deformations of the grids necessitate 
applying a remeshing procedure due to degradation of 
the numerical accuracy as well as the inabilities as a 
result of deviation of mesh from the orthogonality. 
However, such procedures can result in the increase of 
the numerical diffusion and the complexity of the 
numerical algorithm. 

In order to overcome the remeshing difficulties and 
consequently the resultant lack of the accuracy, some 
alternative techniques such as Meshfree Particle 
Methods (MPMs), Element free Galerkin (EFG) 
method, and the meshless local Petrov-Galerkin 
(MLPG) method have been introduced. A meshfree 
particle method uses a set of finite number of discrete 
points, namely the particles, to represent the physical 
and mechanical behavior of the system. Each particle 
can either be directly associated with one discrete 
physical object, or be generated to represent a part of 
the continuum problem domain. One of the oldest and 
most versatile meshless methods is the Smoothed 
Particle Hydrodynamics (SPH) method. Lagrangian 
particle techniques, such as SPH method, provide an 
alternative framework which is more easily applicable 
for large deformation problems. The SPH method 
developed by Lucy [9], Gingold and Monaghan [10] 
and Monaghan [11, 12] initially used for astrophysical 
problems. However, it has been extended to model a 
wide range of problems including the non-Newtonian 
and viscoelastic fluids and low Reynolds number flows. 
Shao et al. [13] used SPH to simulate the free surface of 
a non-Newtonian flow using a Cross model. Ellero et al. 
[14] studied SPH simulation of viscoelastic flows using 
corrotational Jaumann-Maxwell model. Morris et al. 
[15] modeled the low Reynolds flows. Furthermore, 
Hosseini et al. [16, 17] utilized a prediction-correction 
method for SPH simulation of the unsteady viscoelastic 
free surface flows. Other particle methods have also 
been used to simulate large deformation under 
compression. Sukky Jun et al. [18] applied explicit 
Reproduce Kernel Particle Method (RKPM) to simulate 
the plain strain compression of hyperelastic materials. 
Besides, Calvo et al. [19] have developed natural 
element method to solve large strain hyperelastic 
problems. 

To the best of the knowledge, accoring to the 
authors of this article, the SPH method has never been 
applied to the simulation of squeeze flow and its 
application was studied for the first time in the current 
article. In other words, the main purpose of this work is 
to examine and verify the application of the SPH 
method for squeeze flows in both cases of the constant 
velocity and load and also to realize its capabilities and 
restrictions compared to a mesh-based technique. A 
prediction-correction algorithm similar to that employed 
by Hosseini [16] was used in the solution algorithm. 
This algorithm eliminates the artificial viscosity thereby 
alleviates the numerical damping of the numerical 
results. Furthermore, some modifications were made to 
simulate the compression of the samples more 
accurately. In the second step, the regularized 
Papanastasiou model was used for stress calculation and 
stress tensor divergence was estimated using the 
formula proposed by Morris [15] for small Reynolds 
number simulations. To validate the results, a 
viscoplastic material (Bingham plastic), which has 
previously been tested using a mesh-based approach, 
was chosen as the benchmark problem. In this way, a 
non-zero Reynolds number condition were investigated 
while only the upper plate was able to be moved on a 
constant mass between the plates. Finally, simulation 
for various Bingham and Reynolds numbers was 
performed and the results were discussed. 

 
 

2. PROBLEM FORMULATION 
 
The governing equations for simulating squeeze flows 
are the mass and the momentum conservation equations. 
With regard to fluid particles, they are written in 
Lagrangian form as: 
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The first constitutive law that was proposed for 
describing the flow of such materials is the Bingham 
model [20], that is: 
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where, 
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 ∇+∇= Tuuγ&  is the rate of strain tensor. The 

second invariant of stress and rate of strain tensors are 
defined as 
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According to Equation (3), the flow of Bingham fluids 
is characterized by two distinct regions. In regions 
where 0ττ ≤  the fluid behaves as a rigid solid. 
However, when 0ττ >  the material flows with an 
apparent viscosity, ( )γτµµ &0+=app . In numerical 

modeling, significant difficulties may arise in solving 
the discontinuity in the Bingham model. Several 
modified versions of Equation (3) have been proposed 
by [21, 22] that are continuous and are applied 
uniformly to both yielded and unyielded regions. These 
models can be considered as regularized version of the 
discontinuous ideal model. All regularized models, 
predict zero shear stress 0→τ  and a finite effective 
viscosity in the limit 0→γ& . In current study, the 
continuous model introduced by Papanastasiou [23] is 
used: 
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1 exp
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m γ
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γ
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where, 0τ  is the yield stress, µ is the viscosity and m is 
the stress growth exponent. The accuracy and 
effectiveness of the Papanastasiou model in modeling of 
Bingham fluid flows has been demonstrated recently by 
Burgos et al. [24] using analytic solutions for antiplane 
flow in a corner [25]. The axisymmetric sample is 
shown in Figure 1. In this figure, H, a and b are the 
sample height, the wide of sample and the plate, 
respectively. Due to the symmetry of the sample, the 
compression test was simulated only for one half of the 
rectangular sample for two different cases  when only 
the upper plate is moving with either constant velocity 
or under a constant force. 

 
 

 
Figure 1. Geometry and boundary condition of the sample 

The following scaled variables were used to represent 
the governing equation in the normalized form: 
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One needs to notice that in the case of constant load 
simulation, U is an arbitrary velocity and the load is 
scaled by 2

0Hτ . Dimensionless forms of the governing 
equations are: 
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In the above equations, the dimensionless growth 
exponent is

 H
mUM = . Reynolds and the Bingham 

number are also defined as follows: 
0 0Re
UH Hand Bn

U
ρ τ

µ µ
= =  

(10) 

M should be sufficiently high so that the regularized 
Papanastasiou model provides a good approximation of 
the ideal discontinuous Bingham model. On the other 
hand, very high values of M are undesirable since they 
lead to convergence difficulties. In our study, the 
numerical results for M= 100 and 800 are essentially the 
same. Having the values of Re and Bn parameters in 
mind, in the present paper we have chosen the value 800 
for M. 
 
 
3. SMOOTHED PARTICLE HYDRODYNAMICS 

 
In the SPH method, the fluid is represented by particles 
which are assumed to have fixed mass, and follow the 
fluid motion. The equations governing the evolution of 
the fluid become expressions for interparticle forces and 
flux when written in the SPH form [26]. The SPH 
theory is based on the idea that the smoothed 
representation ( )rsA  of the continuous function ( )rA  at 
the position r can be found from: 

( ) ( ) ( ) rdhrrWrArAs ′′−′= ∫ ,  (11) 

where, h is the support scale of the weighted function 
W. This function satisfied the following properties: 

H 

 u=0 

F=const. or    u=const. 

a  

b 
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For the numerical simulations, the fluid is 
represented by a discrete set of N particles. Therefore, 
the properties of the ith particle are calculated by 
approximating the integral (11) to the following 
summation: 
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where, the summation is over N neighboring particles 
around the specified particle and jm , jρ , jr  are the 
mass, local density and position of the jth particle, 
respectively. The weighting function is a function of the 
relative distance r and h, (h being the corresponding 
smoothing length). Several forms have been proposed 
for the weighting function including the quintic spline 
which suggested by Morris for its high precision and 
stability [15]. It takes the following form: 
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where, s is 
h

rr ji −
, when W is normalized for two 

dimensions. Such a choice is also in good agreement 
with our results. The gradient of a typical function A is 
calculated via the formula: 
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has been widely used as it conserves both linear and 
angular momentum exactly.  

The second derivative of kernel function is very 
sensitive to particle disorder and can easily lead to 
numerical instability. Thus, the following form of the 
Laplacian of a function A is used in our simulation: 
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where, η  is a small number with the value h1.0  and is 
inserted in the formula to avoid singularity. 

4. SOLUTION PROCEDURE 

 
The prediction-correction algorithm employed by 
Hosseini et al. [17] was used in the numerical algorithm. 
In this algorithm, the force terms of the right hand side 
of the momentum equation namely: body force, gradient 
of pressure, and the viscous force along with continuity 
equation are calculated in three distinct steps. In the first 
step, the momentum equation is solved in the presence 
of body force while neglecting other forces. The 
computed provisional velocity field is used as a primary 
prediction for the subsequent steps. However, in our 
study, the first step is not performed due to absence of 
gravity. In the second step (also known as a prediction 
step) the calculated velocities at previous time step is 
used to compute the rate of strain tensor component 
( ( )Tuu ∇+∇=γ& ) followed by the computation of the 

corresponding divergence. Unlike the Hosseini's 
formulation, here the viscous term derived by Morris 
[15] was utilized in our simulations: 
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where, the fluid viscosity was replaced by the apparent 
viscosity from regularized Papanastasiou relation as 
follows: 
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The Bingham plastic behavior is exerted by this 
apparent viscosity thereby the second part of right hand 
side of Equation (2) is calculated. At the end of the 
second step, the velocity components is updated, and the 
intermediate positions are obtained.  

In the third step of the algorithm, i.e. the corrector 
step primarily, the density changes due to the temporary 
position and velocity update of the particles was 
calculated using the continuity equation: 
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where, iρ  and iu  are the density and velocity of ith 
particle, respectively. If two particles approach each 
other the DtD iρ  will be positive and iρ  will be 
increased which will lead to production of a repulsive 
force between the approaching particles and vice versa. 
The combination of the pressure gradient and the 
continuity equation leads to the following pressure 
Poisson equation: 

2
0

01
t

p
∆

−
=








∇⋅∇

ρ
ρρ

ρ
 (21) 



345                                                   P. Ghalandari et al. / IJE TRANSACTIONS A: Basics   Vol. 26, No. 4, (April  2013)  341-350 

Pressure of each particle can be obtained through the 
combination of Equation (21) and Equation (17) and the 
following form of Equation (21) is obtained: 
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The final velocity of this step is then calculated and the 
new position of each particle is obtained: 

( )tt
i

t
i

tt
i

t
i uutxx ∆+∆+ +

∆
+=

2
 (23) 

 
4. 1. Force Calculation   The most common SPH 
approximation of the momentum equation is: 






 −∇∑






 −





 +

∑ +




 −∇
















+−=

hjrirWi
j ji

juiuji
jm

j
hjrirWi

i

iP

j

jP
jm

dt
idu

,

,
22

ρρ

µµ

ρρ  
(24) 

In order to obtain the modified SPH model, the change 
of momentum for ith particle with a constant mass can 
be written as: 

i
i

i f
dt

dum =  (25) 

where, if  is the total force acting on the particle i. By 
observing the point force relation in Equation (25) and 
the SPH equation i.e. Equation (24), the SPH 
approximation of the force acting on a particle due to 
momentum conservation is shown in the following 
equation: 
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In the case of constant velocity, the effective load at the 
top side of the sample for each particle is calculated 
using Equation (25).    

 
4. 2. Boundary and Initial Conditions   The initial 
velocity and the initial pressure are set to zero for all the 
particles. The boundary conditions imposed on the 
simulation domain are shown in Figure 1. In the current 
study, the mass between two plates is constant, Ha =2  
and the lower plate is fixed whereas the upper one is 
moving. In the case of a constant velocity, the 

transverse non-dimensional velocity is set to -1 (the 
minus sign indicates that the velocity is in the direction 
of the compression of the sample); while, the boundary 
condition for the case of the constant load will be 
discussed in the following section. 

 
4. 2. 1. Constant Load Condition   There is a 
relationship between the force field acting on the 
particle and the force acting on a particle i: 
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m
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Therefore, the Navier- Strokes equation is formulated in 
the general form as follows: 
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The third term on the right hand side of the above 
equation is valid only for the wall particles to exert the 
constant load condition.  

 
4. 2. 2. No-slip Condition     In order to accurately 
model the compression of the sample, the no-slip 
boundary condition needs to be applied on the walls. 
Although several methods have been introduced to 
model the rigid boundaries in SPH, these boundaries in 
our simulations were assumed to be filled with fixed (or 
moving but with a prescribed velocity) particles and the 
fluid solution algorithm was partially applied to these 
boundary particles.  

This procedure includes only the solution of the 
third step of the solution algorithm (considering the 
prescribed movement of the rigid walls for moving rigid 
boundaries) to repulse the inner flow particles 
accumulating in the vicinity of the wall. Therefore, the 
pressure of the wall particles increases due to increasing 
of particle density near the rigid wall thereby the inner 
fluid particles are repelled from the wall, and vice versa. 
Velocities of the wall particles were set to zero at end of 
each time step to simulate a fixed wall. This velocity for 
moving walls are known and the movement of this 
particle is based on this known velocity.  

No-slip boundary condition was required at the 
interface of fluid and the wall. This condition has been 
implemented using an imaginary velocity for the wall 
particles. Figure 2 illustrates the concept for a curved 
boundary. For each particle of fluid, e.g. particle a, and 
boundary particles B, the normal distance to the 
boundary was calculated. Then, the velocity of particle 
B was extrapolated across the tangent plane, assuming 
zero velocity on the plane for fixed boundaries (or 
prescribed velocity for moving boundaries) which 
leaded  ( ) aaBB uddu −=  for each fixed boundary 
particle.  
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Figure 2. No-slip boundary condition 

 
 

 
Figure 3. Change of sample's height, for Re=10 and Bn=0.5 
 
 
5. NUMERICAL RESULTS 

 
In order to assess the ability and the efficiency of the 
SPH algorithm, it was tested against the simulation of a 
squeeze flow with different flow regimes and boundary 
conditions. In the case of dynamic yield stress 
measurements, evaluation of the final height is 
sufficient considering constant load. However, it is yet 
an open question which occurs below or closed to the 
yield stress.  

The simulations were obtained for the constant load 
and constant velocity conditions, for a rectangular 
sample. The results were reported for different Reynolds 
and Bingham numbers as well as different exerted load 
on the wall. Since no experimental results exist based on 
the aforementioned condition, the results were 
compared with the results of the finite element method 
for a cylindrical sample, which in two-dimensions 
represents the rectangular geometry of the current 2D 
simulations. 

In the current simulation, non-zero Reynolds 
number, constant mass between the plates, b>a, and 
2a=H were considered. The lower plate was fixed and 
the upper one was moving with a constant velocity or 
under a constant load. Change of the sample’s height 

and load on the wall particles were calculated during the 
compression of the sample for different Reynolds and 
Bingham numbers. Shape of the sample and its 
squeezed form were illustrated under the constant load 
condition. 

 
5. 1. Constant Load   In the constant load condition, 
the change of sample's height was calculated for various 
Bingham numbers and different values of exerted loads 
during the process. Figure 3 shows the compression rate 
for different values of exerted loads while Re=10 and 
Bn=0.5. The behavior of deformation for both SPH and 
Finite Element methods is similar. The rate of 
compression increases with increasing the constant load. 
The notable difference was the higher rate of 
deformation for the sample modeled by Finite Element 
Method which might be caused due to the difference in 
the method of applying load on the sample. In the SPH 
approach, the force was exerted on the particles of the 
upper wall and thereby on the fluid particles. However, 
the force was directly applied on the upper elements of 
fluid in Finite Element simulations. The aforementioned 
deference besides the error arisen due to interpolation, 
led to the damped results. Moreover, in the Finite 
Element simulations the plate stops in a finite time and 
its velocity decreases very rapidly. On the contrary with 
the results reported in references [4], in the case of F=-1 
the deformation did not stop and continued slightly. In 
the Papanastasiou model, where all materials are 
modeled as a liquid with an arbitrary large viscosity, the 
elements of ∗γ  matrix did not entirely vanish even 

when the stresses were below of yield limit and the 
deformation continues slowly because of the increase in 
the artificial viscosity. 

Figure 4 illustrates the SPH results in comparison 
with the finite element results of Florides et al. [4].The 
test was performed for Bingham numbers, 1, 4 and 5 at 
F=-10 as well as Re=1. In order to study the effect of 
Bingham number, the dimensionless force was chosen 
as BnFF ×=* . Figure 4 indicates a similar behavior in 
both approaches, i.e. the artificial viscosity and the 
resistance of the fluid increase with increasing in 
Bingham number and consequently the upper plate 
stops at a farther distance from the lower one. Different 
rate of compression was observed between the SPH 
method and the Finite Element Method in this case. This 
might be due to the different nature of two methods; 
meaning that the interpolation function of the SPH 
approach produces a higher order smooth interpolation 
field in all dimensions. The effect of variation in 
Bingham number in the overall results was more evident 
in SPH method. As mentioned before, the compression 
did not stop and continued slightly until the exit of all 
material from the space between the plates. Since the 
artificial viscosity increased, the deformation rate of the 
sample declined. In addition, one should notice that 
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another source of error in Finite element method occurs 
as a result of remeshing procedure whereas in the SPH 
methodology, the meshfree nature could lead to high 
ability in modeling of such high deformations.  

The snapshots of the sample during the time 
evolution were plotted in Figure 5 for Bn=2 and Bn=5, 
Re=1 and F=-10.  Initially, in agreement with those 
reprted by Florides et al. [4], the growth of the yielded 
regions led to deformation of the sample and only a 
small unyielded region remained in the plate center. As 
the deformation increased, the growth of this initially 
small region led to reduction of the deformation rate. 
Nevertheless, there always exist unyielded regions far 
from the center of the plates that keep a permanent 
deformation going. The growth of unyielded region 
(dark blue) increased with the increase of Bingham 
number.  
 

 
Figure 4. Change of sample's height, for Re=1 and F=-10. 
. 

 
 
 
 

 Bn=2 Bn=5 

t=0.00001 
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Figure 5. Evolution of sample during compression under constant load and yielded (light zone) and unyielded (dark zone) for Re=1 
and F=-10. 
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5. 2. Constant Velocity   In a squeeze flow test under 
constant velocity, the force required to keep constant the 
velocity of the upper disk is of great importance. This 
load was calculated using Equation (26) over the nearest 
fluid particles to the top wall. The variations of resultant 
load on the top side of the sample with various 
Reynolds numbers are shown in Figure 6. Moreover, 
Figure 7, illustrates calculated load with different 
Bingham numbers. These figures show that the exerted 
load on the wall increases in the same behavior with 
previous works. The overall behavior of the samples 
simulated with SPH method is similar to other currently 
used methodologies.  

Nevertheless, the obtained numerical values are 
slightly different. Figure 6 reveals three regions with 
different behaviors. In the primary part, we observe that 
the Curve descends from a large value, the physical 
infinity, to a rather small value. The dimensionless time 
for the force to approach a finite steady state was 
reported about 0.06 in [4]. This value was 0.01 in the 
results reported in this paper for Re=1. In fact, imposing 
a sudden constant velocity on the upper surface in the 
initial times is one of the main factors that delay the 
steady state. The instantaneous imposing of the constant 
velocity condition on the upper surface resembles the 
collision of two bodies where the momentum of the wall 
is not affected by that of the fluid. Of course, this is a 
rather idealistic condition than what actually occurs in 
reality.  

Consequently, as a very high pressure is produced 
between the fluid and the surface of the plate, the fluid 
velocity exceeds that of the surface and a negative 
relative pressure between the two bodies creates. When 
this pressure wave propagated through the sample, 
before its deformation, we observed the pressure 
fluctuations in the boundary of the two bodies and the 
upper wall. In reality, there is a consequent force 
fluctuation. The Finite Element Method, especially in 
higher Reynolds’s numbers, cannot capture the 
aforementioned state, and as a result, higher values were 
reported for the time required to reach a steady state in 
the previous studies. 

In the intermediate section, as the oscillations started 
damping in the beginning of the condensation process, a 
descending diagram with a moderate change was 
observed. In the ending step, as the plate came down 
and more changes occurred in the form of the sample, 
more particles were affected by the plate.Consequently, 
the exerted force on the plate increased which was in 
good agreement with the finite element results. 
Furthermore, increasing deformation in the ending part 
led to sudden increase in the force. 

In the mesh base methods, the aspect ratio is the 
measure of the stretching of the cells. A general rule of 
thumb is to avoid aspect ratios that exceed 5:1. The 
Finite Element simulation fails to march above a critical 
time, as the sample becomes very thin and the surface of 

the sample very large, hence high aspect ratio of 
elements. Such a problem does not arise in the SPH 
methodology. Although there is not experimental data 
on the ending steps to make a comparison between 
methods of FEM and SPH, the above reasoning might 
lead us to the conclusion that SPH is more versatile than 
FEM for high deformation of the materials. 

Meanwhile, in SPH approach, including in the 
present study, no smoothing is used while in Finite 
Element method, because of pressure fluctuations arisen 
due to the discontinued motion of nodes, the relatively 
cumbersome smoothing is inevitable. 

 
 
 

 
Figure 6. Resultant load at the top side, for Bn=0.5 and v=-1 
 
 
 

 
 
 

 
Figure 7. Resultant load at the top side, for Re=10 and v=-1 
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6. CONCLUSION 

 
The main aim of this work was to evaluate a particle 
method for the simulation of large deformation of a 
squeezed material because of their simplicity in 
application, time saving, and programming. The three-
step SPH, which guaranties the incompressibility 
constraint, was chosen and applied to the deformation of 
squeezed materials during their large deformations in 
two different loading boundary conditions. 

Results were compared with those previously 
obtained by Finite Element Method for both boundary 
conditions. Although both methods represented the 
same behavior, their results differed in some aspects. 
This might be due to the fact that no remeshing occurs 
in SPH method because of its ability in simulation of 
large deformations. In addition, because of its meshfree 
nature and assumption of wall particles, load and 
velocity boundary conditions are not directly applied to 
the fluid particles which are closer to the real test. The 
aforementioned reasons, besides its higher order 
interpolation function, lead to a successful application 
of Bingham formula within the SPH methodology. 
Consequently, the deformations are considerably 
smoother. These facts candid the presented SPH method 
as a fast and simple method for future studies of 
viscoplastic materials.  
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 چکیده
 

  

. یک به کار گرفته شده استجهت بررسی رفتار گذراي مواد ویسکوپلاست SPHدر این مقاله یک روش عددي بدون شبکه 
این . سازي تغییر شکل بزرگ نمونه و سطح آزاد آن بدون فرآیند دشوار تولید شبکه انجام شدکارگیري این روش شبیهبا به

گیرد و حفظ مشخصه غیرقابل تراکم بودن کار میکننده را بهاصلاح-اي یک تکنیک صریح پیشگوسه مرحله SPHروش 
 Papanastasiouمـدل سـاختاري    سـازي، همچنین در این شبیه. کنددله فشار پوآسون تضمین میمواد را با حل یک معا

شـرط  . ابت مورد استفاده قرار گرفته اسـت جهت مطالعه تغییر شکل نمونه تحت دو شرط مرزي نیروي ثابت و سرعت ث
به منظور . مرزي عدم لغزش با تصویر کردن سرعت مواد ویسکوپلاستیک بر روي ذرات دیواره به خوبی اعمال شده است

نیروي اعمال شده در شرط مرزي سرعت ثابت و همچنـین    تصدیق درستی این روش عددي در طی فرآیند تراکم نمونه،
نتایج گویاي این مطلـب  . انددر شرط مرزي نیرو ثابت محاسبه شده و با نتایج مشابه دیگر مقایسه شده تغییر ارتفاع نمونه

سازي مواد ویسکوپلاستیک که تحت تغییر شـکل  است که این روش می تواند به عنوان یک روش قابل اطمینان در شبیه
  .کار رودبه گیرند،زیاد قرار می
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