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A B S T R A C T  

   

This paper presents a set of linearized equations which was derived for the motion, relative to an 
elliptical reference orbit, of an object influenced by J2 perturbation terms. Approximate solution for 
simulations was used to compare these equations and the linearized keplerian equations to the exact 
equations. The inclusion of the linearized perturbations in the derived equations increased the high  
accuracy of the solution significantly in the out of orbit plane direction, while the accuracy within the 
orbit plane remained roughly unchanged. In fact, it will be determined whether the inclusion of this 
disturbance provides a significant increase in accuracy over Melton’s problem. Becuase of replacing  
approximate terms (e, M) in this solution, for continues accuracy increase of time-varying parameters 
containing θ(t) and RO(t) , this solution could be useful in the element-errors evaluation and analysis of 
orbital multiple rendezvous missions, that are involved to the short-period terms. 
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NOMENCLATURE   
a Semi-major diameter (km) n Mean angular rate (rad/s) 

e Eccentricity of reference orbit ω Argument of perigee (rad/s) 

f True anomaly of reference orbit (rad) θ Argument of latitude at epoch (deg) 

h Specific angular momentum (m2/s) ECI Earth Centered Inertial 

i Inclination angle (deg) ⊕R  Mean radius of the Earth (km) 

M Mean anomaly    

 
1. INTRODUCTION1  
 
The study of the dynamics of relative motion between 
spacecraft customarily begins with the Clohessy-
Wiltshire equations [1]. They are a set of linearized 
equations for the motion, relative to a circular reference 
orbit, of an object in an inverse square gravity field. 
Tschauner and Hempel [2] first solved the problem for 
motion relative to an elliptical orbit, but they had to 
regularize the problem, resulting in a solution that does 
not explicitly include time. Other approaches by 
Lancaster [3] and Berreen and also Sved [4] include the 
time dependence, but they are limited to coplanar 
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motion. Abrahamson and Stern [5] present a somewhat 
more general method that treats the problem for either 
elliptical or hyperbolic orbits. However, the solution is 
in terms of the eccentric anomalies, so that one must 
still solve the Kepler problem to obtain the explicit time 
dependence for each particular application. More recent 
efforts provide representations of the three-dimensional 
relative motion, but all of these motions are functions of 
either the true or eccentric anomaly of one satellite [6]. 
Solution of the Kepler problem is conceptually and 
numerically straight forward, but in instances where an 
onboard calculation of relative motion is required for 
estimation purposes, a direct, non-iterative algorithm 
would be preferred. In this regard, Melton [7] provides a 
method for generalizing the linear equations of motion 
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to an elliptical orbit which enables the determination of 
a closed-form, time-explicit, approximate solution. Ross 
[8] gives a set of equations based on the C-W equations 
which incorporates the J2 gravitational perturbations. He 
states in his paper introduction: "In principle, these 
equations can be developed for elliptical reference 
orbits as described by Melton" [8]. 
     The objective of this paper is to develop a set of 
linearized expressions for the motion, relative to an 
elliptical reference orbit, of an object influenced by 
time-varying approximate perturbation terms.  they will 
now be developed for the time-varying quantities 
containing θ(t) and RO(t) that had been referred by 
Melton [7]. The approximate solutions from numerical 
simulations have been used to compare basic equations 
given by Melton [7] and exact equations of motion. It 
will be determined whether the inclusion of the linear 
perturbations provides a high accuracy relative motion 
dynamics between two Spacecraft. 

 
 
 

2. BASIC EQUATIONS OF MOTION 
 
The following subsections will review the linearized 
equations for the motion, relative to an elliptical 
reference orbit, to compare these equations and the 
equations given by Melton to the exact equations of 
motion.  
 
2. 1. Nonlinearity of the Exact Equations   The 
exact equations describing the motion of an object in an 
inverse square gravitational field follow directly from 
Newton’s second law and his law of gravitation. It can 
be written in vector form as: 

3R R
R
µ

=&&  (1) 

     In this equation, R is the position vector of the object 
relative to the inertially fixed of the gravitational field 
and µ is the gravitational coefficient. Equation (1) can 
be written in component form as: 

3 3 3X ,Y , ZX Y Z
R R R

µ µ µ= = =&& && &&  (2) 

 That R  parameter is equal to 12 2 2 2( )X Y Z+ + .  
      The relative motion between two spacecraft in orbit 
is determined simply by

2 1R R R∆ = − , that is shown in 
Figure 1. Although the above equations may appear 
straightforward, they are nonlinear. Thus, they can be 
difficult to analyze. Linearized equations provide 
approximations to nonlinear equations. Their reduced 
accuracy is accepted as a trade-off for their relative 
mathematical simplicity. As an alternative to Equation 
(1), the motion of an object in orbit can be described 
relative to a reference orbit, and the equations for this 
relative motion can be linearized. 

  
Figure 1. Position of chaser S/C relative to target S/C 

 
 
 
The linearization is made possible by the assumption 
that the distance of the object from the reference orbit is 
very small compared to the size of the reference orbit 
itself. The gravitational field about a perfectly uniform, 
perfectly spherical mass has an inverse square relation. 
However, the earth is neither perfectly uniform nor 
perfectly spherical, and the inverse square relation 
describes closely, but not exactly, the earth’s actual 
gravitational field. This perturbation force is referred to 
as the J2 perturbation acceleration and is given by 
Kaplan [9] as follow: 
 

( )
2 2 2

2
5 2 2

3 ˆ ˆ ˆ = 5 1 I J 5 3 K
2

J R Z ZP X Y Z
R R R
µ ⊕

    
− + + −    

    

  
(3) 

     This expression gives the J2 perturbation 
acceleration in the Earth Centered Inertial (ECI) 
coordinate directions in terms of the ECI coordinates. 
Although this perturbation force is small, its effect can 
cause the motion of an orbiting object to depart 
significantly from the pure inverse square motion, or 
Keplerian motion. Incorporating this perturbation into 
the equations provides a more accurate description of 
the actual motion of an orbiting object [1]. 
 
2. 2. Linearized Keplerian Equations   The analysis 
of the linearized equations of motion for a spacecraft 
subject to a pure inverse square gravitational field will 
be presented in this subsection. Although this derivation 
of equations was well known, its results are considered. 
Nonlinear equations for this case are as follows [10]: 
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     Next, it will develop approximate linearized 
expressions for the terms on the right side of Equation 
(4). The position vector given by has the magnitude: 

1
2 2 2 2( )OR R x y z = + + + 

  (5) 

     If it assumed that the distance of the object from the 
reference orbit is small compared to the reference orbit 
radial distance, 2 2 2 2( ) Ox y z R+ + << , then, linearized case 
is obtained as follows: 

2
3

2
3

3

2 2 0

2 0

0

O

O

O
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y y fx fx f y
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z z
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(6) 

     Equations (6) give the linearized equations of motion 
with respect to an elliptical reference orbit. These 
equations contain time-varying, periodic coefficientsf& , 
f&& and RO. 

 
2. 3. Ross’s Equations to Circular Orbit   Ross [8] 
derived a set of linearized equations of motion for a 
spacecraft in a nearly circular orbit with the effects of J2 
perturbations included. The equations were derived by 
adding the effects as perturbation terms to the C-W 
equations. The primary work involved deriving, for the 
x, y and z directions, linearized expressions for the J2 
perturbation acceleration, in terms of x, y and z. Ross 
simply the derivation of this perturbation acceleration 
and gives the result [8]: 

( ) (

) (

) ( )

2 2
2 2 22
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     In the above equations, i is the inclination of the 
circular orbit and t is the time since passage of the 
ascending node and n is mean angular rate of circular 
reference orbit [8]. 
 
2. 4. Melton’s Equations to Elliptical Orbit   Melton 
provides a time-explicit solution for the relative motion 
between elliptical orbits. The equations presented by 
Melton which were the basis for the development of his 
solution are equivalent to equations as follows [7]: 
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     The portions of Melton’s work that are pertinent to 
this paper are the expressions that he provides as 
approximations for the time-varying coefficients in 
Equation (8). 

2
3

2( ) 1 2 cos (1 5cos 2 ) ( )
2

h ef t e M M O e
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 
= + + + + 

 
&

 
(9a) 

2 3
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2( ) sin ( sin2 3 cos sin ) ( )hf t en M e n M n M M O e
a

 = − + + + 
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(9b) 

2 2
2 3

4( ) 1 4 cos (3 7cos 2 ) ( )
2

h ef t e M M O e
a

 
= + + + + 

 
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     where, M is the mean anomaly and is given 
by ( )− pn t t and h is specific angular momentum, a is 
semi-major diameter, f is true anomaly and e is 
eccentricity of reference orbit [11]. 
     The equations were generated using Lagrange’s 
generalized expansion theorem. They are truncated 
series expansions that are functions of e and M, and are 
approximate to the order of e2. Melton [7] provides as 
the equation: 

2
31 cos (1 cos2 ) ( )

2
OR ee M M O e

a
= − + − +  (10) 

       Presumably for the purpose of providing an 
approximate expression for the quantity 3

01/ ( )R t : 

33 2
3

1 1

1 cos (1 cos 2 )
2

OR ea e M M
≅

 
− + − 

 

  

(11) 

     This expression would be suitable for use in a 
computational algorithm. However, it would not be 
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suitable for the purposes of creating a combined 
algebraic expression, since it would produce a lengthy 
expression in the denominator [7].  
 
 
3. DEVELOPMENT OF MELTON’S PROBLEM 
 
The primary task of this paper, the analysis of the 
linearized equations of motion for a J2-perturbed object 
relative to an elliptical reference orbit, will be presented 
in this section. This derivation follows the same general 
procedure as outlined in Ross’s paper for the case of a 
circular reference orbit. Whereas the basis equations 
used by Ross [8] were the C-W equations, the basis 
equations for this analysis are as described Equations 
(8) to (11). 
     The first step in this analysis is to find, in terms of 
the orbit frame coordinate variables x, y, z, linearized 
expressions for zonal perturbation acceleration in the 
orbit frame coordinate directions. These expressions 
will be linear in Cartesian frame and will have constant 
or time-varying periodic coefficients. The expression 
for zonal perturbation acceleration in the ECI frame was 
used in Ross’s paper as given Equation (3). This 
equation gives perturbation acceleration as a function of 
position in space, and is independent of the motion of 
the object under consideration. This can also be written: 

2 2
2

2 22
7

2 2

5
3 1 5

2
5 3
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Y

Z

P Z R X
J RP Z R Y

R
P Z R Z

µ ⊕

 − 
   = −  
   −   

  
(12) 

     Therefore, it is to linearize the quantity 71/ R in 
Equation (12). This can be accomplished as follows:  

2 2 2 2 2 2

2 2 2

2
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2   ( ) 1 )
( ) ( )

O

O
O O

R X Y Z R x y z
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     By the considering of the assumption that 
2 2 2 2( ) Ox y z R+ + <<  , allows can be written: 

7
2

7 7

1 1 21
( ) ( )O O

x
R R t R t

−
 

≅ + 
 

  (14) 

 

     This expression can be further simplified by using 
the binomial series approximation and neglecting terms 
containing [ ]/ ( ) n

Ox R t , 2≥n . Therefore:  

7 7

1 1 71
( ) ( )O O

x
R R t R t

 
≅ − 

 

  (15) 

     The quantities X, Y and Z in Equation (12) can be 
transformed by: 

( )O
N O

X x R t
Y C y
Z z

+   
   =   
      

  
(16) 

     That the direction cosine matrix ( ( )=N O O N TC C ) is 
defined by Ross [8]. When Equations (13) to (16) are 
substituted into Equation (12) and algebraically 
expanded, each of the resulting terms has an nth order 
product of x, y, and z in the numerator and a quantity 

4+n
OR  in the denominator, where, for a particular term, n 

is equal 0, 1, 2, 3 or 4. Thus, the terms all have the 
form: 

4

1 ,     0,1.,..,4
b c d

n
O O

x y zC b c d n
R R

+ + = =  (17)  

     where, b, c and d are zero or positive integers and C 
is some constant expression. The employing once again 
the assumption that the distance of the object from the 
reference orbit is small compared to the size of the 
reference orbit, can be written:  

0,     2,3,4
b c d

n
O

x y z b c d n
R

≈ + + = =  (18)  

     Thus, the perturbation acceleration expressions can 
be approximated by retaining only the terms for which 
n=0, 1. These approximate expressions are given below 
by Equations (19). Hence, the symbolic manipulator, 
Maple was used for many of the steps to simplify the 
lengthy algebraic expressions. The Results are shown in 
Table 1.  Equations (19) are the linearized expressions 
for the perturbation acceleration in the ECI coordinate 
directions in terms of the orbit frame coordinates x, y, 
and z. These equations can be transformed to give the 
perturbation accelerations in the orbit frame coordinate 
with the equation: 

1

2

3

x
O N

y

z

P P
P C P
P P

   
   =   
      

  
(20)  

     Substituting Equations (19) into Equations (20) and 
simplifying gives (see Table 2). Expressions will now 
be developed for the time-varying quantities containing 
θ(t) and RO(t). These expressions will be in the form of 
approximate truncated series which are functions of e 
and M. Solutions for time-varying quantities related to 
the motion of an elliptical orbit can be expressed as 
Fourier-Bessel series expansions. Taff [12] gives as the 
following: 

2

1

1cos 2 ( ) cos( )n
n

ef e J ne nM
e

∞

=

−
= − + ∑  (22)  

2

1

2sin 1 ( )sin( )n
n

f e J ne nM
n

∞

=

′= − ∑  (23)  

1

1 2 ( ) cos( )n
n

a J ne nM
r

∞

=

= + ∑  (24)  

     In the above equations, nJ are the Bessel functions 
of the first kind of order n, and ( ) ( ) /n nJ ne J ne e′ = ∂ ∂ . 
These Bessel functions can be expressed as series 
expansions, as given in Battin [13], by following 
expression. 
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TABLE 1. Linearized Perturbation Expressions in the ECI Coordinate 
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TABLE 2. Linearized Perturbation Terms in the Orbit Coordinate 
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     Note should be taken not to confuse J2 (ne) with the 
constant J2 associated with the gravitational field. 
Substituting Equation (25) into Equation (22) to (24) 
and carrying out the expansions for each gives: 
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2 31 cos( ) cos(2 ) ( )
( )
a e M e M O e

r t
= + + +  (28)  

     With these expressions, it could develop the 
expressions which we require for the time-varying 

quantities in Equation (21). In this equation (developed 
Ross’s Equations), θ(t) is the argument of latitude at 
epoch that has been replaced for nt in the Ross’s results: 

( ) ( )t f tθ ω= +  (29)  

     where, ω is the argument of perigee and f (t) is the 
true anomaly. The trigonometric angle-addition 
formulae could be to write: 
cos ( ) cos( ( )) cos cos ( ) sin sin ( )t f t f t f tθ ω ω ω= + = −  (30)  

sin ( ) sin( ( )) sin cos ( ) cos sin ( )t f t f t f tθ ω ω ω= + = +  (31)  

     By substituting Equations (26) and (27) into 
Equations (30) and (31), results are obtained as follows:  

2

2 2

2

9cos ( ) cos 1 cos cos cos cos 2
8

9 3                cos cos 3 1 sin sin
8 8

9                sin sin 2 sin sin 3
8

t e e M e M

be M e M
a

b be M e M
a a

θ ω ω ω

ω ω

ω ω

 ≅ − + − + 
 

 + + − 
 

− −

  
(32)  

2

2 2

2

9sin ( ) sin 1 sin cos sin cos 2
8

9 3                sin cos3 1 cos sin
8 8

9                cos sin 2 cos sin 3
8

t e e M e M

be M e M
a

b be M e M
a a

θ ω ω ω

ω ω

ω ω

 ≅ − + − +  
 + + −  

+ +

  
(33)  

     So, the trigonometric double-angle law could be 
written: 
sin 2 ( ) 2sin ( )cos ( )t t tθ θ θ=  (34)  

2cos 2 ( ) 1 2sin ( )t tθ θ= −  (35)  

     As by Substituting Equations (32) and (33) into 
Equations (34) and (35), results are considered. For 
RO(t), Equation (28) could be written with approximate 
expression, as follows: 

2 3
3 3

1 1 (1 cos cos2 )
( )O

e M e M
R t a

≅ + +  
(36)  

     Algebraically expanding for Equation (36), it’s 
resulted as: 

2 2
3 3

1 1 3 91 3 cos cos 2
( ) 2 2O

e e M e M
R t a

 ≅ + + +  
  

(37)  

     Similarly, could be to derive the expressions: 

( )2 2
4 4

1 1 1 3 4 cos 7 cos 2
( )O

e e M e M
R t a

≅ + + +  
(38)  

( )2 2
5 5

1 1 1 5 5 cos 10 cos 2
( )O

e e M e M
R t a

≅ + + +  (39)  

     Therefore, by substituting the all of above 
approximate terms, independent of time, in the Equation 

(21) or same developed Ross’s equations, can be the 
approximate solution for development of Melton’s 
problem about linearization of equations for the motion, 
relative to an elliptical reference orbit under linearized 
J2 perturbation terms. In this development, obtained 
expansions are same shown that they will be functions 
of parameter e and M. 
 
 
4. SIMULATION RESULTS AND DISCUSSION 
 
For the errors evaluation and analysis, first it is required 
to define the initial conditions for presented problem. 
simulations are obtained and valided on the approximate  
solutions using initial conditions of a relative motion 
mission (see Table 3). 
    The plots for x, y, z, relative positions vs. time for 8 
orbit periods are shown in Figures 2 and 3. In x-
position, the exact keplerian and the exact perturbed 
curves have diverged noticeably by the end of the orbit 
period. The linear equations on the other hand nearly 
overlap each other over the entire period. Thus, high 
accuracy improvement can be discerned from this plot. 
For y-position, curves nearly overlap over most of the 
time range, until a divergence becomes apparent near 
the end of the orbit period. At this point, the two curves 
for the linearized equations continue to nearly overlap 
each other, as they diverge from the curves for the exact 
equations, which also continue to nearly overlap each 
other. This would seem to suggest that, at least in this 
position, the magnitude of perturbation is small relative 
to the error that exists between the exact and linearized 
keplerian equations. For z-position, the linear perturbed 
and exact perturbed results show very close 
correspondence over the entire orbit period.  
 
 

TABLE 3. Initial Conditions Relative to Reference Orbit 
Orbit Parameter Value 

Earth’s oblateness (J2) 61082.63 10  −×  

Mean radius of the Earth (
⊕R ) 36.378136 10  km×  

Gravitational coefficient (µ) 5 3 23.986004 10  km /s×  

Semi-major diameter (a) 1333.78 kmR⊕ +  

Eccentricity (e) 0.1  

Argument of perigee (ω) 90 deg  

Ascending node (Ω) 116.55 deg  

Inclination (i) 66.09 deg  

Initial true anomaly (f0) 0 deg  

Relative position (∆x)  [ ]90 90 90 m  

Relative velocity (∆v)  [ ]10 10 10 m/s  
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However, it should be noted that the keplerian solutions 
do not overlap as closely as the approximate perturbed 
solutions. The most useful aspect of the path plots is 
that they allow one to see the relative scale of the 
motion amongst the coordinate directions; axis scales 
for the plots were set equal (see Figure 4). 

Figure 5 shows the error plots for the maximum 
errors of relative positions in the linearized solutions at 
8 orbit periods. The error between each of the linear 
solutions and the developed method (time-varying 
perturbed solution) was determined at each time step as 
compared to the perturbed non-linear exact solution. 
The simulation results show that Range error (%) for 
developed method as compare to Melton’s solution [7] 
is smoothly increased with the limited expansion of 
orbit periods due to applied approximate terms.  
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(a) Relative x-Position 
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(b) Relative y-Position 
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(c) Relative z-Position 

Figure 2. Comparison of the relative positions vs. time for 
discussed solutions at 8 orbit periods 
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Figure 3. Relative z-velocity vs. time at 8 orbit periods 
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Figure 4. Relative z-position vs. x-position 
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     The error results (Table 4) are shown the maximum 
errors in the linear solutions over one orbit period for a 
range of eccentricities. The error between each of the 
linear solutions and the approximate perturbed solution 
was determined at each time step as compared to the 
perturbed non-linear exact solution. These results seem 
to indicate that the equations developed in this paper do 
not significantly change the x- and y-position accuracy, 
regardless of eccentricity. So, results indicate a 
considerable increase in the z-position accuracy for 
eccentricities smaller than 0.3. For eccentricities greater 
than 0.3, the error is slightly greater. Therefore, the 
accuracy in the x- and y-directions, appears to be 
roughly unchanged 
 
 
TABLE 4. Comparison of values of z-Position error versus 
eccentricity (one orbit period) 

         Eccentricity(e) 0.1 0.2 0.3 0.4 

M
ax

. E
rr

or
 (%

) 

Solution Method     

Exact with J2 19.12 17.86 8.32 10.63 

Keplerian  17.23 13.65 6.47 7.47 

Melton [7] 19.87 11.23 6.24 6.82 

Developed method 8.26 3.14 2.12 2.84 

5. CONCLUSION 
 
A set of linearized equations was derived for the 
motion, relative to an elliptical reference orbit, of an 
object influenced by harmonic perturbations. 
Approximately, determined solutions were used to 
compare these equations and the linearized keplerian 
equations to the exact equations. The inclusion of the 
linear perturbations in the derived equations increased 
the accuracy of the solution significantly in the out of 
orbit plane direction, while the accuracy within the orbit 
plane remained roughly unchanged. Therefore, by 
reason of using approximate terms in the solution, for 
continues high accuracy increase of time-varying 
parameters, obtained results could be useful about the 
orbital element errors evaluation and analysis of orbital 
multiple rendezvous or formation flying missions. 
       In the future, the effective application of the 
linearized J2-perturbed terms on relative motion 
dynamics could be studied, such as the multiple 
rendezvous or formation flying missions which are 
involved with the short-period times. In addition, the 
study on inclusion analysis of higher-level linearized 
zonal harmonic perturbation terms over Melton’s 
problem could be done. 
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Figure 5.  Comparison of max.error between Melton and developed method 
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 چکیده
 

  

ارائه شده  J2شات در این مقاله یک دسته معادلات خطی شده براي حرکت نسبی در مدار مرجع بیضوي تحت نفوذ اغتشا
در . یک روش حل تقریبی نیز با رویکرد افزایش دقت و پایدارسازي معادلات حرکت اغتشاشی توسعه یافته اسـت . است

واقع هدف این تحقیق این است که نشان دهد، نفوذ اغتشاشات خطی شده در مسئله ملتون، سبب افزایش قابـل ملاحظـه   
دار شده، در حالیکه دقت در صفحه مـداري تقریبـا بـدون تغییـر بـاقی      دقت خطاي موقعیت در جهت خارج از صفحه م

حل مذکور با رویکرد افزایش  در روش Mو e مداري هاي تقریبی بر حسب دو پارامتر  به دلیل جایگزینی جمله. ماند می
هـاي   نحراف المـان تواند جهت ارزیابی هر چه بهتر ا ، نتایج حاصله می RO(t)و  θ(t)مل متغیر شا-دقت پارامترهاي زمان

مداري در فرآیندهایی همچون عملیات ملاقات چندگانه که هر یک با بازه زمانی کوتاه مدت مواجه هستند، بسـیار مـؤثر   
 .باشد

  
doi: 10.5829/idosi.ije.2013.26.04a.01 

 
 
 
 
 

 
 
 

  
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

 


