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A B S T R A C T  

   

An intelligent method based on adaptive neuro-fuzzy inference system (ANFIS) for identifying 
Manning’s roughness coefficient, n, in modeling of alluvial channels e.g. rivers is presented. The 
procedure for selecting values of the Manning n is subjective and requires engineering judgments and 
skills developed primarily through experience. During practical applications, researchers often find that 
a correct choice of the Manning n can be crucial to make a sound prediction of hydraulic problems. In 
this paper, an ANFIS model is set up to predict the Manning coefficient of river channels, with the 
mean bed particle size, mean flow depth and channel bed slope, as some three input parameters. The 
regression equations are also applied to the same data. Statistic measures are then used to evaluate the 
performance of the models. Based on the comparison of the results, it is well found that the ANFIS 
model presented here gives some better estimates than the other empirical relationships. Also, a 
sensitivity analysis showed that mean flow depth has a greater influence on the Manning coefficient 
than the other independent parameters in ANFIS model. 
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1. INTRODUCTION1 
 
The Manning n is a coefficient  which represents the 
roughness or friction applied to the flow by the channel. 
The procedure for selecting values of Manning’s n is 
subjective and requires judgment and skill which are 
developed primarily through experience. Governmental 
agencies and private sectors in developed nations such 
as the USA are still doing research on predicting n 
values for rivers [1]. The Manning equation is an 
empirical equation that is applied to uniform flow in 
open channels to calculate mean water velocity and is a 
function of the channel velocity, hydraulic radius and 
channel slope. The Manning formula is also known as 
the Gauckler–Manning formula, or Gauckler–Manning–
Strickler formula in Europe. It was first presented by a 
French engineer Philippe Gauckler in 1867, and later re-
developed by the Irish engineer Robert Manning in 
1890. The Gauckler–Manning formula states (in SI 
units): 
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where, V is the cross-sectional average velocity (m/s), n 
is the Gauckler–Manning coefficient, R is the hydraulic 
radius (m) and S is slope of the water surface or channel 
bed slope (m/m). Hydraulic radius, R, is defined as the 
ratio of the channel cross-sectional area, A, to its wetted 
perimeter, P. The discharge formula Q=AV, can be used 
to manipulate Gauckler–Manning's equation by 
substitution for V. Solving for Q then allows an estimate 
of the volumetric flow rate (discharge) without knowing 
the limiting or actual flow velocity. The Gauckler–
Manning coefficient, often denoted as n, is an 
empirically derived coefficient, which is dependent on 
many factors, including surface roughness and sinuosity 
[2]. In natural streams, n values vary greatly along its 
reach, and will even vary in a given reach of channel 
with different stages of flow. By the year 1997, it was 
also considered by Mohammadi. Most researches show 
that n will decrease with stage, at least up to bank-full. 
Overbank n values for a given reach will vary greatly 
depending on the time of year and the velocity of flow. 
Summer vegetation will typically have a significantly 
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higher n value due to leaves and seasonal vegetation. 
Research has shown, however, that n values are lower 
for individual shrubs with leaves than for the shrubs 
without leaves [3]. This is due to the ability of the 
plant's leaves to streamline and flex as the flow passes 
them thus lowering the resistance to flow. High velocity 
flows will cause some vegetation (such as grasses and 
forbs) to lay flat, where a lower velocity of flow through 
the same vegetation will not cause it [4]. 

Manning n is often assumed to be a constant that is 
independent of either flow discharge or depth [1]. 
However, Chow [5] indicates that the value of n is 
highly variable and depends on a number of factors: (1) 
surface roughness – fine sediment size such as sand will 
result in a relatively low value of n and coarse 
sediments such as gravels, in a high value of n; (2) 
vegetation – may also be regarded as a kind of surface 
roughness depending on the height, density, distribution 
and type of vegetation; (3) channel irregularity – 
comprises irregularities in wetted perimeter and 
variations in cross section, size and shape along the 
channel length. A gradual and uniform change in cross 
section, size and shape will not appreciably affect the 
value of n; (4) channel alignment – smooth curvature 
with large radius will give a relatively low value of n; 
(5) silting and scouring –silting may change a very 
irregular channel into a comparatively uniform one and 
decrease n, whereas scouring may do the reverse and 
increase n; (6) obstruction – the presence of log jams, 
bridge piers, and the like tends to increase n; (7) size 
and shape of channel – an increase in hydraulic radius 
may either increase or decrease n depending on the 
condition of the channel; and (8) stage and discharge – n 
value in most streams decreases with increase in stage 
and discharge  [1]. However, the n value may be large at 
high stages if the banks are rough and grassy.  

Chow [5]suggested three values (minimum, normal, 
maximum) of n for each kind of channel. Table 1 gives 
values of n from Chow [5] relevant to the present study 
(at bankfull stage). 

The term bankfull was originally used to describe the 
incipient elevation on the bank where flooding begins. 
In many stream systems, the bankfull stage is associated 
with the flow that just fills the channel to the top of its 
banks and at a point where the water begins to overflow 
onto a floodplain [6]. The most common definition of 
bankfull stage is the elevation of the active floodplain 
[7]. Another common definition of bank-full stage is the 
elevation where the width to depth ratio is a minimum 
[8]. In the field bankfull stage defines the boundary 
between the active channel which carries the systems 
sediment and floodplain features which dissipate 
energies of higher flows. A number of inventory, 
assessment, and design strategies have been developed 
utilizing the bankfull stage concept [9]. Figure 1 shows 
schematic view of bankfull level in a typical cross 
section. 

TABLE 1. Suggested Manning’s n for natural streams (after 
Chow [5]) 
Type of channel and 
description Minimum Normal Maximum 

Clean, straight, full 
stage, no rifts or deep 
pools 

0.025 0.030 0.033 

Same as above, but 
more stones and weeds 0.030 0.035 0.040 

Clean, winding, some 
pools and shoals 0.033 0.040 0.045 

Same as above, but 
some stones and weeds 0.035 0.045 0.050 

Same as above, but 
more stones 0.045 0.050 0.060 

Same as above, lower 
stages, more ineffective 
slopes and section 

0.040 0.048 0.055 

Sluggish reaches, 
weedy, deep pools 0.050 0.070 0.080 

 
 

 
Figure 1. Schematic view of bankfull level in a typical cross 
section [10] 
 
 

Due to complexities of physical processes, the exact 
value of Manning’s n in Manning equation, is often 
uncertain. Many empirical formulations for estimating 
the n value in practical problems have been suggested in 
the past. Due to the difficulties in determining the 
values of empirical parameters, estimation of these 
parameters in modeling large scale problems are 
tedious, time-consuming, and with a high degree of 
uncertainties [11]. Currently, there are various Manning 
coefficient equations that have been developed based on 
different approaches to predict n. It is still difficult to 
obtain a general equation to provide accurate estimation 
of Manning coefficient due to a lack of knowledge of 
some physical processes associated with channel 
formation and maintenance. 

In recent years, the new procedures of intelligent 
techniques such as fuzzy logic, artificial neural 
networks (ANN), neuro-fuzzy, genetic programming, 
decision support systems, support vector machines, and 
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fuzzy genetic programming used to describe different 
complex problems in various branches of science. One 
of the most practical methods of these new procedures 
is adaptive neuro-fuzzy inference system (ANFIS). In 
the previous years, the fuzzy logic has been used in the 
water resources and environmental engineering such as 
river pollution management [12], water demand 
forecasting [13], wastewater treatment [14], 
hydrological time-series modelling [15], stage-
discharge-sediment concentration [16], modeling 
monthly mean flow in a poorly gauged basin [17], flood 
forecast model [18], suspended sediment estimation [19, 
20], modelling of evaporation from the reservoir [21], 
fluvial hydraulics [22], forecasting of river flow [23], 
and scour depth prediction [24]. 

To the best knowledge of authors, no work has been 
reported in the literature that addresses the application 
of ANFIS approach for the estimation of Manning 
coefficient in alluvial channels at the bankfull stage. 
This provided an impetus for the present investigation. 
In this research, first, using a field database, schemes of 
ANFIS model were trained, and then an empirical 
equation was derived by regression analysis from the 
same data. Finally, this study regression equation, other 
proposed equations and ANFIS model were compared 
with other field database based on mean square error 
(MSE) and determination coefficient (R2).  
 
 
2. MATERIALS AND METHODS 
 
2. 1. ANFIS Model     The concept of Fuzzy Logic (FL) 
was conceived by Zadeh [25] and presented not as a 
control methodology, but as a way of processing data by 
allowing partial set membership rather than crisp set 
membership or non-membership.  

The ANFIS is the abbreviated of adaptive neuro-
fuzzy inference system. ANFIS, first introduced by Jang 
[26], is a universal approximator and, as such, is capable 
of approximating any real continuous function on a 
compact set to any degree of accuracy [27]. Actually, 
this method is like a fuzzy inference system with this 
different that here a backpropagation is used which tries 
to minimize the error. The performance of this method 
is like both ANN and FL. In both ANN and FL case, the 
input pass through the input layer (by input membership 
function) and the output could be seen in output layer 
(by output membership functions). Since, in this type of 
advanced fuzzy logic, neural network has been used, 
therefore, by using a learning algorithm the parameters 
are changed until the optimal solution is reached. 
Actually, in this type the FL tries by using the neural 
network advantages to adjust its parameters. As we 
know, the difference between real and network output in 
ANN is one of the common methods to evaluate its 
performance [28]. Therefore, ANFIS uses either 

backpropagation or a combination of least squares 
estimation and backpropagation for membership 
function parameter estimation [27]. Some of the 
definitions are necessary to know which are described in 
the following paragraphs: 

Membership Function: is a function through which it 
would be possible to present the input. The aim of using 
this function is by using the weights which is with the 
inputs, the functional overlap between the inputs would 
be defined and lead to output determination. 

Rules: is some instruction which through them it 
would be possible for input that by using the 
membership values and their definitions, give the final 
output. 

It is a network statement of Sugeno-type fuzzy 
models and is introduced by Jang [26]. The structure of 
an ANFIS is shown in Figure 2. Figure 2 (a) shows the 
fuzzy reasoning mechanism for the Sugeno model to 
derive an output function f from a given input vector 
[x,y]. The corresponding equivalent ANFIS 
construction is shown in Figure 2 (b). 
 
 

 
Figure 2. Structure of ANFIS system:  
(a) Fuzzy inference system;  
(b) Equivalent ANFIS architecture [29] 

 
 
Let x and y be the two typical input values fed at the 

two input nodes, which will then transform those values 
to the membership functions (say bell-shaped) and give 
the output as follows. (Note in general, w is the output 
from a node, m is the membership function, and Mi and 
Ni are fuzzy sets associated with nodes x, y). 
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where; a1, b1, and c1 are changeable premise parameters. 
Similar computations are carried out for the input of y to 
obtain μNi(y). The membership functions are then 
multiplied in the second layer, e.g: 

)().( xxw NiMii µµ=       (i=1,2) (3) 

where, x (or y) is the input to the node; Mi (or Ni) is a 
linguistic label (such as ‘low’ or ‘high’) associated with 
this node, characterized by the form of the membership 
functions in this node and can be any suitable function 
that is continuous and piecewise differentiable such as 
Gaussian, trapezoidal shaped, generalized bell shaped 
and triangular shaped functions. Figure 3 shows 
membership functions in this study.  

Such products or firing strengths are then averaged: 

∑= iii www /              (i=1,2) (4) 

Nodes of the fourth layer use the above ratio as a 
weighting factor. Furthermore, using fuzzy if-then rules 
produces the following output: (an example of an if-then 
rule is: if x is M1 and y is N1, then f1= p1x+q1y+r1) 

( )iiiiii rxqxpwfw ++=        (i=1,2) (5) 

where; p, q and r are changeable consequent 
parameters. The final network output f was produced by 
the node of the fifth layer as a summation of all 
incoming signals, which is exemplified in Eq. (5). A 
two-step process is used for faster training and to adjust 
the network parameters to the above network. In the 
first step, the premise parameters are kept fixed, and the 
information is propagated forward in the network to 
layer 4. In layer 4, a least-squares estimator identifies 
the important parameters. 
 
 

 
Figure 3. Membership functions in this study 

 
 
In the second step, the backward pass, the chosen 
parameters are held fixed while the error is propagated. 
The premise parameters are then modified using 
gradient descent. Apart from the training patterns, the 

only user-specified information required is the number 
of membership functions for each input. The description 
of the learning algorithm is given in Kisi [29], 
Azmatullah et al. [30]and Tahmasebi and Hezarkhani 
[28]. 
 
2. 2. Database  The total data set of 661 measurements 
covers a wide range of flow conditions of sand, gravel 
and cobble bed channels. All 661 available data points 
were split randomly into two separate individual groups: 
training and testing. Therefore, 561 data points which 
describe alluvial channels were used for models training 
and validation and the remaining 100 data points were 
used for testing or comparison of models. Also, in total 
data set, 124 and 537 data points were sandy and gravel 
bed channels, respectively. The data includes Simons 
[31], Kellerhals et al. [32], Charlton et al. [33], Church 
and Rood [34], Andrews [35], Bathurst [36], Van den 
berg [37], Soar and Thorne [38], Pitlick and Cress [39], 
Parker et al. [40], Mccandless [41], Rinaldi [42], Wohl 
et al. [43], Wohl and Wilcox [44], Parola et al. [45], 
Sherwood et al. [46], Christiane et al. [47], Arbeláez et 
al. [48]and Kallio [49]. Table 2 shows the ranges of the 
used dataset for all applying groups (Training and 
Testing). 
 
2. 3. Application of ANFIS for Estimating n  The 
following scenarios are considered in building the 
ANFIS model (see Figure 4) with the inputs and output 
shown in the network. From the group of training data 
sets used in this study, around 80% were used for 
training (chosen randomly until the best training 
performance was obtained), while the remaining 
patterns (20%) were used for validating the ANFIS 
model. The method involves the training of ANFIS with 
bankfull discharge (Q), median size of bed particles 
(d50), and channel slope (S) as input and the Manning 
coefficient (n) as output. 
 
 
 
TABLE 2. Data range in this study (Total 661 measurements) 
Notations Training data Testing data 

Number of data 561 100 

W (m) 1.25-832 1.25-104 

Q (m3/s) 0.137-16950 1.2-510 

S (-) 0.00004-0.2 0.00005-0.031 

D50 (m) 0.00003-0.4 0.00019-0.176 

n 0.003-0.2 0.014-0.1 

h (m) 0.1-14 0.2-3.2 

V (m) 0.1-8.6 0.58-3.27 

τ*(-) 0.0004-1.6 0.0005-0.52 
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Figure 4. Adaptive neuro-fuzzy structure in this study 

 
 

 
Figure 5.  Agreement between observed and predicted values 
in training process  

 
 

TABLE 3 . Data range in this study 
 (Total 661 measurements ) 

Membership function 
Performance in training process 

R2 MSE (×10-3) 

Gaussian    0.70 1.83 

Bell 0.68 1.94 

Two sigmoid 0.68 2.23 

Pi curves 0.66 2.91 

Triangular 0.65 3.85 

Trapezoidal 0.67 2.92 

 
 

The performance of models configurations was 
evaluated based on coefficient (R2) and mean-square 
error (MSE) of the linear regression line between the 
predicted values from the neural network model and the 
desired outputs, as follows: 
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where Oi and ti are target and network output for the ith 
output, Oi is the average of target outputs, and P is the 
total number of considered events. 

Training of neuro-fuzzy has several steps. At the 
first step of training, the initial fuzzy sets should be 
determined. During training, all of the training dataset 
would be present to network and it tries by learning the 
spatial relationship between the data minimize the error. 
Sometime lower error could not guaranty the better 
performance of network and it may be because of 
network overtraining [28]. By error monitoring of 
training dataset, it would be possible to supervise on 
network training. The objective function which has been 
used here is MSE. Definitely, the aim of using this 
network or the entire models is to reach the smallest 
error and also it is true here.  

According to the strategy based on the rank of MSE, 
several networks were investigated to obtain the desired 
structure that was done according to our base. As 
mentioned earlier, three type fuzzy membership 
functions were selected to describe the input and output 
variables. This is translated in 33 =27 rules (regarding 
the three inputs with three fuzzy sets) as shown in 
Figure 3. 

One of the most important steps in neuro-fuzzy 
modeling is the fuzzy membership values definition. As 
mentioned earlier, some membership functions specified 
by three parameters were used in the present model. 
There are six membership functions, Gaussian, Bell, 
two sigmoid, pi curves, triangular and trapezoidal 
membership functions. MSE is used to determine how 
much the network has reached the desired output values. 
Results show that network with Gaussian membership 
function can estimate Manning coefficient of alluvial 
channels at the bankfull stage better than other 
functions. Table 3 shows performance of proposed 
ANFIS model. Also, Figure 5 shows results of ANFIS 
model versus observed data in training process. 
 
2. 4. Sensitivity Analysis    The sensitivity tests are 
commonly carried out to ascertain the relative 
significance of each independent parameter. The results 
of sensitivity analysis for the Manning coefficient 
parameters are shown in Table 4. This table provides a 
comparison between the ANFIS model (with Gaussian 
membership function) of all independent parameters and 
ANFIS model having one of the independent variables 
removed in each case.  
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TABLE 4. Sensitivity analyses of the ANFIS model 

Parameter 
Performance in training process 

R2 MSE (×10-3) 

All 0.70 1.83 

No h 0.13 4.23 

No S 0.14 4.60 

No d50 0.62 2.34 

 
 

 
Figure 6. Agreement between observed and predicted values 
for regression equation  
 
 

Table 4 indicates that h and d50 have respectively 
the most and the least effects on the Manning 
coefficient (n). These results are consistent with the 
current understanding of the relative importance of the 
various parameters on the Manning coefficient of 
alluvial channels. 

2. 5. Regression Analysis for Estimating 
Manning’s Coefficient    A nonlinear regression 
method was used to get the regression between 
parameters and Manning coefficient equation using 80% 
data after removing the outliers in the data set. It leads 
to the following equation for estimation of n in alluvial 
channel at the bankfull stage. 

474.0
50

012.1251.124.1 −= dShn  (8) 

Figure 6 shows results of regression equation versus 
observed data for regression equation. 

The range of applicability of the proposed Manning 
coefficient equation is a channel width 0.1<W<850 m, 
bankfull discharge 0.1<Q<17000 m3/s, mean flow depth 
0.05<h<14 m, mean flow velocity 0.01<V<9 m/s, mean 
bed particle size 0.00003<d50<0.4 m, channel slope 
0.00004<S<0.2 and 0.02<τ*<1.6, respectively.  
 
 
3. RESULTS AND DISCUSSION 
 
Several available equations to predict values of n for 
rivers can be found in the work done by Ghani et al. [1]. 
These equations can be categorized as: (1) equations 
that are based on bed sediment size; (2) equations that 
are based on the ratio of flow depth or hydraulic radius 
over sediment size; and (3) equations that includes 
water-surface slope besides bed sediment size and 
hydraulic radius or flow depth [1]. In these equations 
the mean flow depth of channel (h), instead of the 
hydraulic radius (R) is used. As it can be seen from the 
above reasoning, R is physically more significant than h 
for narrow channels. Nevertheless, almost all practical 
cases are referred to wide channels, in which it is 
possible to accept the approximation: R=h [50]. 
 

 
 

TABLE 5. Comparison of equations 

Input Parameter Reference Equation R2 

Training 
R2 

Testing 
MSE Testing 
(×10-3) 

D50 Strickler [51] 6/1
501.21

1 dn =
 

- 0.18 2.25 

d50, R or h 

Limerinos [52] 
)/(235.0

113.0

5010

6/1

dRLog
Rn

+
=

 
- 0.04 4.40 

Bray [53] 
)/(2.209.1

113.0

5010

6/1

dhLog
hn

+
=

 
- 0.18 1.96 

d50, S and R 
Brownlie [54] [ ] 167.0

50
1112.01374.0

50 034.0)/(893.1 dSdRn ××=  - 0.31 1.98 

Bruschin [54] 3.7/1
50

6/1
50 )/()38.12/( dRSdn ××=  - 0.32 1.79 

d50, S and h 
This study 474.0

50
012.1251.124.1 −= dShn  0.50 0.62 1.13 

This study ANFIS model 0.70 0.74 0.53 



183                                               A. Bahramifar et al. / IJE TRANSACTIONS B: Applications   Vol. 26, No. 2, (February 2013)  177-186 

 

A comparison of ANFIS model with empirical 
equations has been carried out to assess the accuracy of 
the intelligent models over the regression methods in the 
prediction of the Manning’s coefficient at the alluvial 
channels using the testing data. As mentioned earlier, 
Table 2 shows range of effective hydraulic parameters 
in testing data set. 

In the present study, five empirical equations 
accompanied by this study regression equation and 
ANFIS model were evaluated based on the MSE and 
R2. These equations are shown in Table 5. Also, Figures 
7-13 show Manning coefficient prediction in each 
method, respectively. It can be seen that the ANFIS 
model predicted the Manning coefficient better than 
other methods.  
 
 
 

 
Figure 7. Observed values of n versus predicted values by 
equation of Strickler [51] 
 
 
 

 
Figure 8. Plot of observed and predicted n for equation of 
Limerinos [52] 

 
Figure 9. Plot of observed and predicted n for equation of 
Bray [52] 
 
 

 
Figure 10. Plot of observed and predicted n for equation of 
Brownlie [54] 
 
 

 
Figure 11. Plot of observed and predicted n for equation of 
Bruschin [54] 
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Figure 12. Plot of observed and predicted n for equation of 
this study 
 
 

 
Figure 13. Plot of observed and predicted n for ANFIS model 

 
 
4. CONCLUSIONS 
 
This study indicates the ability of adaptive neuro-fuzzy 
inference system (ANFIS) model to predict the 
Manning coefficient of alluvial channels. The ANFIS 
model performs better than the regression equations 
(Empirical formulas) in estimation of Manning’s 
coefficient in open channels. The ANFIS with Gaussian 
membership function was selected as optimum model to 
predict Manning coefficient. Also, sensitivity analysis 
of ANFIS model demonstrated that h and d50 have 
respectively the most and the least effect on the 
Manning coefficient (n). The results of the study are 
highly encouraging and suggest that an adaptive neuro-
fuzzy approach is viable for modeling Manning’s 
coefficient of alluvial channels. The study only used a 
few field data points of alluvial channels from available 
literature and further works using more data from 
various channels may be required to strengthen these 
conclusions. 
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 چکیده

 
   

 ومتمقابراي تشخیص ضریب  (ANFIS) روش هوشمند مبتنی بر سیستم استنتاج فازي عصبی تطبیقییک در این مقاله 
ذهنی بوده و نیاز  مانینگ n روش انتخاب مقادیر .ارائه شده است مثل رودخانه ها هاي آبرفتی کانالمانینگ در مدل سازي 

در کاربردهاي عملی، محققان اغلب . استمیسر از طریق تجربه  د که عمدتاًدار هاي مهندسی و مهارت ها به قضاوت
در این مقاله، یک . مسائل هیدرولیکی می تواند بسیار مهم و اساسی باشدمانینگ در بررسی  nمیدانند که انتخاب صحیح 

هاي آبرفتی، با استفاده از اندازه متوسط ذرات بستر، میانگین عمق  کانالبراي پیش بینی ضریب مانینگ در  ANFIS مدل
. دشهمان داده ها اعمال معادلات رگرسیون نیز به . دگردیکانال به عنوان پارامترهاي ورودي تشکیل  کف جریان و شیب

د داده می شوبراساس مقایسه نتایج، نشان . مقایسه هاي آماري براي ارزیابی عملکرد مدل ها مورد استفاده قرار گرفتآنگاه 
همچنین، تجزیه و تحلیل حساسیت نشان داد که . سایر روابط تجربی دارد نسبت بهبرآورد بهتري  ANFIS   که مدل

 .داردANFIS  مانینگ نسبت به دیگر پارامترهاي مستقل در مدلزبري میانگین عمق جریان تاثیر بیشتري بر ضریب 
  

doi: 10.5829/idosi.ije.2013.26.02b.08 

 
 
 
 
 
 

 


