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A B S T R A C T

There are two different ways of using SMA wires as actuators for shape control of flexible structures; 
which can be either embedded within the composite laminate or externally attached to the structure. Since 
the actuator can be placed at different offset distances from the beam, external actuators produce more 
bending moment and, consequently, considerable shape changes with the same magnitude of the actuation 
force comparing to the embedded type. Such a configuration also provides fast convection which is very 
important in shape control applications that require a high-frequency response of SMA actuators.
Although combination and modeling of externally-attached SMA actuator wires and strips have been 
considered by many researchers, these studies have some weaknesses neglecting them yields a number of 
errors between theoretical and experimental results. In this work, the aforementioned limitations of 
attaching actuators to the smart structures have been removed and a flexible beam actuated by two active 
SMA actuators is nonlinearly modeled. The Brinson constitutive equations and thermoelectric equations 
for SMA materials are coupled with the nonlinear beam behavior and the coupled system of equations is 
numerically solved for some particular practical cases. The analysis method done in this paper can be 
easily extended to the complicated smart structure with externally-attached SMA wires.

doi: 10.5829/idosi.ije.2012.25.03a.07

1. INTRODUCTION1

Smart materials have been extensively used in recent 
years for their great potentials to revolutionize 
engineering applications and design, particularly for 
active and passive control of structures. Among these 
materials, shape memory alloys (SMAs) have been 
receiving more attention and study due to their ability to 
develop extremely large recoverable strains, as well as 
great force. SMAs are applied in a wide variety of fields 
such as aerospace, medical, civil and mechanical 
engineering [1].

Having adaptive structure is another characteristic 
for these SMA materials that has largely been 
considered in vibration control rather than shape
control. One way of using SMA as actuator in these 
flexible structures is embedding or bonding it to the 
surface of the host material so that the moment of the 
actuating force deforms the structure. Although 
increasing the distance between the bonded actuator and 
the neutral axis of the structure enhances the moment, as 
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a linear function, the flexural stiffness of the structure 
increases as a square of this distance [2]. Another 
difficulty of using SMA actuator in embedding form is 
its heat transfer. This problem constrains the high 
frequency response of SMA actuator which is very 
important in shape control applications where fast 
structure response is needed. 

To overcome the limitations of bonded or embedded 
SMA actuators in structures, they can be externally 
attached to the structure. This configuration can be 
advantageous in several aspects. First, the actuators can 
be placed at different offset distances from the neutral 
axis of the structure and; consequently, produce more 
bending moment and shape change with the same 
magnitude of the actuation force (with respect to the 
embedded type) [3]. In addition, the increase in the 
flexural stiffness of the structure can be condoned.  
Such a configuration, also, eliminates the heat transfer 
problem mentioned before for embedding SMA within 
composite laminate. 

Due to the fact that beams play an important role in 
structural mechanics, some researchers have paid 
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particular attention to the combination of flexible beams 
with SMA wires and strips. Chaudhry and Rogers [2], 
for example, considered the bending of beam under 
external attachment of SMA wire and demonstrated the 
possibility of using this configuration for shape control 
applications. The weakness of this research is that the 
actuation force of the SMA wire was not derived from 
the constitutive equations and a fixed value of an 
attached load was used. In addition, in order to solve the 
derived equations and get a closed form solution, they 
made use of linear Euler–Bernoulli beam assumption. 
Therefore, the region in which these results were valid 
was limited and could not be extended to large 
deflection cases. It is shown in that paper by increasing 
the number of points on the beam through which the 
actuator passes, the actuation force for getting a 
specified tip deflection soars accordingly. However, in 
these configurations the beam behavior is less 
nonlinear; consequently, the tip deflection or shape 
control turns out to be easier. Increasing the number of 
points on the beam through which one SMA actuator 
passes, as well as increasing the number of the 
actuators, therefore, is a great advantage for control 
applications. Likewise, Shu et al. [3] developed a 
thermomechanical model to predict the structural 
response of a flexible beam actuated with externally 
SMA wire actuators. They first carried out a 
geometrically nonlinear static analysis to investigate the 
deformed shape of a flexible cantilever beam caused by 
an externally-attached SMA wire actuated electrically. 
In that paper a one-dimensional simplification of the 3D 
model developed by Boyd and Lagoudas [4] was used 
for predicting the thermomechanical response of the 
attached SMA actuator. The actuation force applied by 
the SMA actuator to the beam was evaluated by solving 
a coupled problem combining a thermodynamic 
constitutive model of SMAs with the heat conduction 
equation in the SMA and the structural model of the 
beam. Despite the fact that two SMA wires –one active 
and another inactive- were attached to the Shu's 
experimental beam set-up, they did not take into 
account the coupling effect of the inactive wire with the 
beam structure, nor did they take into account the effect 
of the beam section twist. 

Similar work was carried out by Brinson et al. [5]. 
The case studied by them was a cantilever beam with 
externally-attached SMA wire.  The work took 
advantage of Brinson’s constitutive law for 
thermomechanical behavior of SMAs and then coupled 
it with linear and nonlinear behavior of the controlled 
beam. In spite of the fact that they considered the effects 
imposed by the nonlinear terms, the connection point of 
the SMA wire to the base was selected at the root of the 
beam and this limited the mentioned results especially 
for the practical case where this point can be at any 
position. In addition, only one SMA wire was chosen 

for the actuation of the beam and the compound effect 
of the SMA heat transfer equation with the model was 
ignored. Moallem et al. [6], on the other hand, proposed 
a nonlinear control scheme for deflection control of a 
flexible beam system using shape memory alloy wires. 
Taking the equation of linear Euler–Bernouli beam and 
thermal characteristics of SMA wire into account, they
developed a control scheme in order to regulate the 
force exerted by an SMA actuator attached to a flexible 
beam. Although two SMA wires -one active and another 
inactive- in a diagnostic configuration were used, they
neglected the effect of inactive wire in the system of 
equations. Elsewhere, Sohn [7] investigated the control 
performance of a flexible beam structure by adopting 
SMA actuator with robust control algorithm. Here, an 
antagonistic type of actuator using two SMA wires is 
installed to a flexible beam structure. The governing 
equation of motion of the proposed flexible structure is 
obtained via Hamilton’s principle by considering the 
linear Bernoulli-Euler beam. In addition, the dynamic 
characteristics of the SMA wire actuator are 
experimentally identified and incorporated with the 
governing equation. Although the proposed model has 
the inadequacies of the aforesaid research, it is 
sufficient and accurate for vibration control, where the 
structure is in small deflection mode. 

In the present research, the above limitations of 
attaching SMA actuators to the smart structures have 
been resolved and nonlinear modeling of a flexible 
beam actuated by two active SMA actuators is carried 
out. In the first section of this paper, nonlinear 
formulation for a flexible beam, under two applied 
forces, is derived. One of these forces is applied at the 
tip of the beam and the other in the middle. To consider 
the generality of the modeling, the connection point of 
the SMA wires to the base is selected at any position in 
a plane. 

In the second section, the Brinson thermomechanical 
constitutive equation of SMA wires is reviewed due to 
its simplicity and its applicability to the entire range of 
thermomechanical conditions. Thermoelectric heat 
transfer equation of SMA actuators and the response of 
one SMA wire under the step and ramp input current in 
free-stress case have been investigated in the third 
section. Finally, in the last section the thermoelectric 
heat transfer and thermomechanical equations of SMA 
wires coupled with non-linear load deflection behavior 
of a beam are solved numerically and the beam, as well 
as wires behavior is shown for some practical cases.

2. NON-LINEAR ANALYSIS OF A FLEXIBLE BEAM 
UNDER TWO AXIAL FORCES

A real smart structure can be made from several 
actuators and complex structural members. Because of 
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the nonlinear and hysteric behavior of shape memory
alloy under temperature and stress variation, the 
prediction of the functionality of such structures in all 
loading conditions turns out to be complicated. It should 
be mentioned here that since in shape control 
applications the wires temperature will often be affected 
by the resistive heating and the wires electrical current 
is considered as the control parameters, the control 
parameter in this paper also is the electrical currents of 
the wires and the control targets are the wires strain or 
the wires' connecting point deflections! Knowing the 

beam behavior under actuation of different actuators can 
also be helpful to understand the smart structures 
behavior. In addition, since the tip position of the 
structure is supposed to be controlled by two SMA 
actuators, a smart structure composed of an elastic beam 
and two different SMA wires under their thermal 
excitation is considered. The arrangement of the beam 
and the two SMA wires prior and after deformation is 
schematically shown in Figure 1! Since most of the 

SMAs undergo a change in behavior under cycling 
loading [5], it is assumed that the SMA wires have been 
initially stabilized and then attached to the beam. 
Incidentally, before attaching the SMA wires to the 
beam they are subjected to a tensile stress in order to 
induce some prestrains in wires. Next, one side of the 
wire.1 and wire.2 is attached to the beam with offset 
distances 1d and 2d , respectively. The wire.2 is 

attached to the tip of the beam while wire.1 is attached 
to the middle. As stated before, in order to have 
generality in modeling, the other sides of the wires are 
fixed to the base at ),( 0101 YX and ),( 0202 YX positions, 

respectively. Increasing the temperature of SMA wires 
cause martensite to austenite transformation in wires, 
which creates stress and strain in the beam and as a 
result deflect it!

Let ),( 11  and ),( 22  be the coordinates of points 

on the beam in which the wires are attached and ),( 11 yx

and ),( 22 yx are the coordinates of wires end points in 

the fixed YX  Cartesian coordinate system, 
respectively as shown in Figure 2. Also, assume that the 
pair ))(,( xwx defines the coordinate of any points on 

the beam in the mentioned coordinate system in which 
the )(xw is the deflection of the point x from the X-

axis! Moreover, )(xw is the slop of the any point of the 

beam with x coordinate. It is clear from this figure that 
the relations between 2211 ,,, yxyx and 2211 ,,,  can 

be written as:
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Figure 1. The schematic illustration of the beam structure and 
SMA wires prior and after deformation.

Figure 2. Free body diagram of the deflected beam.

Moreover, the cosines and sinuous of the parameters 

1 and 2 , denoted respectively by 2211 ,,, SCSC , are:
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By getting moment about point ))(,( xwx , the 

distribution of bending moment, M, along the beam 
span is obtained as:
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The differential equation governing the bending 
moment and the beam deflection is:
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Knowing the two axial forces 1F and 2F , one cannot 

find out the deflection )( xw of the beam because there 

are four unknowns 2211 ,,,  that finding them 

requires four equations. Thses equations are:       
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The first two of Equation (5) indicate that pair points 
),( 11  and ),( 22  are on the beam and therefore 

should satisfy the beam bending equation. The third and 
fourth equations are the inextensional hypothesis of the 
beam indicating that the length of the beam remains 
unchanged in the  beam axial direction after bending. 

Knowing the two axial forces 1F and 2F and by 

solving the Equations (3-5) iteratively, utilizing the 
bisection technique, one is able to find out the beam 
deflections.

3. SIMULATION RESULT OF BEAM EQUATIONS

Before the response of the beam under the thermal 
actuation of SMA wires is investigated, first the load 
deflection behavior of the beam is simulated. In order to 
see the behavior of the beam under different load 
conditions, a short series of simulation is run with the 
beam arrangement illustrated in Figure 1. The geometry 
parameters and material properties of an aluminum 
beam is given in Table 1 as an example. Since for a 
beam actuated by one force the nonlinear theory tracks 
the experimental data more accurately and the linear 
theory is valid only for small deflections [5], these 
simulations are run for nonlinear assumptions (i.e. 

0)(  xw ) that have more generality with respect to 

linear ones (i.e. 0)(  xw ).

Figure 3 shows the variation of the end point 
deflection (point 2A in Figure 1) with respect to the 

change in 1F and 2F . From this figure two points can be 

born in mind. First, in large 1F and 2F forces the system 

is much nonlinear and sensitive to loading variations; 
that is, position control at large deflections is greatly 
difficult. Second, as it turns out the change in the end 
point deflection with respect to 2F is more severe than 

with respect to
1F ; i.e., because of the larger moment of 

2F about the base of the beam, the specified variation of 

2F , when the same variation in 1F is enforced, leads to 

more deflection change in the end point. Thus, it can be 
inferred that to control the position of the end point it is 
easier to change 1F rather than 2F . 

This explains why the configuration shown in Figure
1 uses two forces for control position rather than one 
force. Although the end point position can be controlled 
by either 1F or 2F , this brings about two problems. 

First, if 2F is applied, albeit the end point can reach to 

the large deflection, the position control of this point 

TABLE 1.  Geometry parameters and material properties of 
an aluminum beam used for numerical simulations.

ValueUnitSymbolParameter

400mm1L
Length of the beam at 
connection point with 
wire.1

200mm2L
Length of the beam at 
connection point with 
wire.2

25mmbWidth

1.27mmtThickness

5mm1dFirst Force Offset 
Distance

10mm2dSecond Force Offset 
Distance

(0,5)
mm ,
mm),( 0101 YX

Position of First Force 
Support

(0,10)
mm ,

mm
),( 0202 YX

Position of Second Force 
Support

70GPaEYoung modulus

will be difficult. Applying 1F , plus 2F , not only 

increases the end point workspace (as it is shown in 
Figure 4), but also its controllability. Second, although 
the controllability is great, using 1F cannot lead to the 

large deflection positions.

4. THERMOMECHANICAL CONSTITUTIVE 
RELATIONS FOR SMA WIRES

Shape memory behavior in SMAs is caused by a 
reversible thermoelastic crystalline phase transformation 
between a high symmetry parent phase (austenite) and a 
low symmetry product phase (martensite). This phase 
transformation occurs as a function of both stress and 
temperature. At zero stress, phase transformation occurs 
at temperatures denoted by As, Af, Ms and Mf, which 
respectively represent austenite start, austenite finish, 
martensite start and martensite finish. At temperatures 
below Ms, application of stress causes a transformation 
from ‘twinned’ martensite to the stress-preferred or
‘detwinned’ martensite. This process results in large
strains at relatively constant stresses. These strains can 
be completely recovered by heating the material beyond 
Af and then cooling without applying any stress. This is 
called the shape memory effect (SME). On the other 
hand, at temperatures above As, the application of stress 
causes a transformation from austenite to the detwinned 
martensite [8]. By removing the stress this process is
reversible in a hysteresis loop, and is called 
pseudoelasticity.

The behavior of SMAs primarily is a function of 
three variables: stress, strain and temperature, and their 
corresponding rates. The SMA constitutive models 
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attempt to describe the SMA behavior as a function of 
these variables. Most of these constitutive models 
employ specific material parameters that are determined 
by experimentation for a particular material.

Several three-dimensional constitutive models have 
been developed for SMAs. However, none of these 
models is widely used in engineering applications due to 
the fact that the developed models are too complicated 
and need many parameters to be specified. An 
advantage of 1-D models is that the parameters are 
engineering-based and simply determined by typical
mechanical engineering experiments.  In addition, since 
SMA wires are one-dimensional structures, these three 
dimensional models should be simplified to acquire 
application for these 1-D components.

Tanaka model is one of the first constitutive 
formulations for SMAs [9]. It is assumed that strain, 
temperature and martensite volume fraction are the only 
state variables in this model and the stress is calculated 
as a function of these variables. Furthermore, phase 
transformation kinetics is expressed in exponential form 
and is a function of stress and temperature. Liang and 
Rogers [10] formulated a model based on the rate form 
of the Tanaka constitutive equation except a cosine 
model was replaced by the exponential model for the 
martensite volume fraction. 

Figure 3. Deflection variation of the end point with F1 and F2

changes.
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Figure 4. Achieving larger deflection by F1 interference; the 
deflection variation of the end point with F2 changes while F1

is fixed.

The major drawback for both of the Tanaka and the 
Liang and Rogers models in their original form is that 
they only describe the phase transformation from 
martensite to austenite and its reverse transformation. 
These models cannot be applied to the detwinning of the 
martensite that is responsible for the SME at lower 
temperature, because the SME is caused by the 
conversion between stress-induced martensite and 
temperature-induced martensite. This problem was 
solved by Brinson model [11]. In this model the 
martensite volume fraction ( ) is separated into stress-

induced ( s ) and temperature-induced components 

( T ):

Ts   (6)

The first form of the constitutive equation in this model, 
relating the state variable stress ( ), strain ( ) and 
temperature ( T ), was:

0 0 0 0 0

0

( ) ( ) ( ) ( )

( )
s sE E

T T

               
 

(7)

where ),,,( 0000 T represent the initial state or 

original condition of the material and  is thermal 
coefficient of expansion. In this equation E is the 
module of elasticity and assumed to be a linear function 
of the martensite volume fraction:

)()( AMA EEEE   (8)

and  is called phase transformation coefficient and is 
defined:

)()(  EL (9)

where L is the maximum recoverable strain. It was 

shown by Brinson et al. [12] that this constitutive 
equation could be reduced to the simplified form of:

)())(( 0TTE sL   (10)

The critical stress-temperature profiles used in 
Brinson model are shown in Figure 5. The evolution 
equations for calculation of the martensite fractions 
according to temperature and stress can now be 
represented.

Figure 5. Critical stress–temperature profiles used in Brinson 
model.
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4. 1. Conversion to Detwinned Martensite:     For 
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In these equations the constants Aa , Ma , Ab , 
Mb

are four material constants in terms of transition 
temperatures As,  Af ,  Ms, and Mf as:
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The original Brinson model [11], in the case when 

sf MTM  and cr
f

cr
s   , can only be used with 

specific initial conditions, otherwise it gives rise to a 
physically inadmissible volume fraction ( 1 ). 

Although after Brinson's original model, Bekker and 
Brinson developed a kinetics that was robust and did not 
permit volume fractions to exceed unity [12], Brinson's 
original model is still widely used in formulae 
describing the behavior of SMAs.  To meet the above 
conditions, a modification of Brinson's martensite 
kinetics by Chung et.al. is developed [14]. In this 
formulation, the Equation (12) is revised as: 
For 
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It is shown in literature [15] that this modification 
satisfies the following statements, regardless of initial 
conditions:

1) In all condition: 1 .

2) If cr
f  then 1s .

3) If 
fMT  then 1 .

In this paper, for analysis of the SME and 
superelastic behavior of SMA components, the Brinson 
model with the corrected evolution kinetics developed 
by Chung et.al is applied. In order to obtain the required 
thermomechanical properties of a Ni–Ti alloy, 
experimental measurements were carried out on a 
FlexinolTM actuator wire, manufactured by Dynalloy, 
Inc. For the experiment, one-way shape memory, 0.01
inch diameter (0.254 mm), low temperature (70 ◦C), Ni–
Ti SMA actuator wire has been selected. The details of 
these tests are reported in a separate paper [15] and the 
experimentally derived parameters related to Brinson 
model are tabulated in Table 2.

5. THERMOELECTRIC HEAT TRANSFER EQUATION 
OF SMA ACTUATORS

In most shape and position control applications that 
SMA wires are used as actuators their temperature is 
changed more by resistive heating of electrical currents 
rather than the surrounding medium; i.e., in the former, 
the electrical current is the control input while in the 
latter the SMA wire temperature. Therefore, the heat 
transfer problem of a thin SMA wire actuator with 
resistive heating is investigated in the current study.

Shu et al. [3] showed that for the long wires, used in 
many control applications, the equation governing the
aforementioned problem can be reduced into the 
following simplified equation:

  2)()(
4)(

),( JTtTTh
Dt

tT
TC eambv  




(15)

where )(tT is the temperature of the wire at time t, D

the diameter of the wire, e the electrical resistivity of

the wire, J the magnitude of the current density (i.e.
I A where A is the wire cross section area), ambT the 

ambient temperature, ),( TCv the heat capacity and 

),( DTh the convective heat coefficient.

If in this equation the heat capacity is assumed to be 
fixed, the term ( )q t  (where q is a constant index 
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representing the total latent heat in the course of
transformation and  the martensite volume fraction) 

should be added to this equation. However, by 
considering the inconstant heat capacity, this term is not 
needed any more.

Bhattacharyya et al. [16] proposed an empirical 
relation describing the dependence of vC on T and 

 as follows:
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for the forward transformation, and
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(17)

for the reverse transformation. It should be mentioned 
here that these equations are somewhat different from 
the equations that used in their paper because, as 
discussed in the previous sections, stress has a profound 
effect on the transformation temperature but in their 
study, Bhattacharyya et al. overlooked this effect on 
transformation temperature.

The convection coefficient as a function of the wire 
temperature and its diameter is as follows [3]:

Nu
D

k
DTh ),( (18)

TABLE 2. Experimentally derived SMA parameters and 
properties.

Material Parameter Value

fM 43.9      [°C]

sM 48.4      [°C]

sA 68         [°C]

fA 73.75     [°C]

AC 6.73      [MPa/°C]

MC 6.32      [MPa/°C]

L 4.1         [%]

AE 31.5       [GPa]

ME 20          [GPa]

s 25         [MPa]

f 78         [MPa]

where k is the thermal conductivity of the surrounding 
air and Nu the average Nusselt number for free 
convection of the SMA wire. In this empirical model, 
the dimensionless Nusselt number can be related to the 
Rayleigh number ( PrGrRa  ) as follows:

mRaCNu  (19)

where the dimensionless Grashof number Gr and the 
Prandtle number Pr are given as [3]:        

3

2

2( )
,       P r

( )

pCT T gD
G r

kT T









 


(20)

In Equation (20), g is the gravitational acceleration 

( 281.9  smg ),  ,  , 
pC and k the kinematic 

viscosity, viscosity, heat capacity at constant pressure 
and thermal conductivity of the surrounding air, 
respectively. 

For obtaining C and m in Equation (19), the value of 
h should be correlated with a set of experimental data. 
using a generalized reduced gradient algorithm (GRG) 
to minimize the average fit error with respect to the 
collected data, Pathak et al. [18] found the following 
value for these values for the two Rayleigh regimes:

22

210

1010142.0,477.1

1010038.0,875.0








RaformC

RaformC
(21)

Since it is found that the Ra number for the wire in hand 
is in the second Rayleigh regime, the corresponding C
and m values are chosen.

It should be mentioned that the physical parameters 
of Equations (18) and (20) should be evaluated at the 
average temperature (

2
amb

ave

TT
T


 ). The properties 

of air at atmospheric pressure are obtained form Table 
A-5 of [17]. These properties are tabulated in Table 3.

Since the working temperature of the SMA wire in 
hand is between C40 (below CM f

44 ) and C140 (the 

austenite finish temperature at MPa450 ) and by 
assuming the temperature of surrounding air as 

CTamb
20 , the average temperature is between 

CTC ave
 8030  and the data of this table is sufficient. 

By assuming that the value of these parameters is 
changed linearly between 300°C and 400 °C, the value 
of Grashof number Gr and the Prandtle number Pr in 
any temperature can be easily computed by Equation 
(20). Then by using Equations (18-21), the convection 
coefficient can be obtained in each temperature in the 
mentioned working temperature range. 

Figure 6 shows the change of convective coefficient 
with the temperature of SMA wire. As it is seen the 
convective heat transfer increases as the wire 
temperature is increased. It is due to the fact that by 
rising the wire temperature (by assuming the fixed 
ambient temperature) the rate of heat transfer climbs
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Figure 6. Convective heat transfer coefficient of SMA wire 
versus temperature.

due to increase of temperature difference between the 
actuator and the ambient. It is found that the change of 
h with temperature can be fitted by a 4-degree 
polynomial and the maximum error of this fitting is 
below 0.15°C. This fitted equation is:

)..()(41.962.071T

0.02586T-0.0001654TT10-4.034)(
12

234-7





CmWhandCT

Th


(22)

In order to solve the Equation (15), three other 
parameters ( qCv ,0 and e ) should be obtained. By 

performing the differential scanning calorimetric (DSC) 
test, the first and second parameters are obtained as:

)..(10046.2 136
0

 CmJCv


39 .100656.0  mJq

Although the electrical resistivity is also a function 
of the wire temperature , its change with temperature is 
not considerable (below 8%) and lack of reliable data 
also forces us to select the average resistivity of
austenite and martensite phases reported by manufacture 
(Dynalloy, Inc) and this was: me .1080 8  . The 

related heat transfer parameters are summarized in 
Table 4.

Since the heat capacity is a function of temperature 
and stress (Equations (16) and (17)), by knowing the 
current of the wire solely, in order to obtain the 
temperature profile, it is not possible to solve Equation 
(15) independently from constitutive equation of SMAs 
and nonlinear beam equation, Therefore, this equation 
should be coupled with other equations and then all of 
coupled equations should be solved simultaneously.  

In special cases, if the heat capacity and convection 
coefficient are assumed to be fixed then the Equation 
(15) will be simplified into the following equation:

  2)(
4)(

JTtTh
Dt

tT
C eambv 




(22)

By getting Laplace transformation, the linear 
transfer functions between 2J and T may be written as:

s
h

DC
h

D

J

sT
sG

v

e

4
1

4)(
)(

2







(23)

The time constant and the settling time of the 
response in this transfer function, as well as the steady-
state value attained for a step current input, respectively,
are:       

2

0

,      ,      
4

1
lim ( ).

4

v v
settling tim e

e
ss s

C D C D
t

h h
D

T sG s J
s h






 

 
(24)

These equations can be helpful to obtain the 
approximate input current to reach maximum desired 
temperature, and the approximate time that the current 
should persist (for step current input) before running the 
simulation. For example, in special cases, by assuming

)..(10046.2 36
0 CmJCC vv

 ,

)..(101.4656)55( 12  CmWCThh  ,

mD 41054.2  , and by supposing that the maximum 
desired  temperature is CTss

140 , the following 

values are obtained for the time constant, settling time 
and the step input current:

1.29(sec),      5.13(sec),      0.85( )settling time stept I A   

In free stress case (i.e. Mpa0 ) and under the 

step and ramp input current, the corresponding 
temperature profile is obtained (by numerical solving of 
Equation (15))  and is shown in Figure 7. 
As it is seen from this figure, the total cooling time is 
more than the corresponding heating time (for step 
input: sec10sec,5  coolingheating tt and for ramp input 

sec14sec,9  coolingheating tt ).

TABLE 3. Properties of air at atmospheric pressure at 300, 
350 and 400 K [17].

)(KT )
.

(
CKg

KJ
C p 

)
.

10( 5

sm

Kg )10(
2

6

s

m )
.

(
Cm

W
k



300 1.0057 1.8462 15.69 0.02624

350 1.0090 2.075 20.76 0.03003

400 1.0140 2.286 25.90 0.03365

TABLE 4. Heat transfer parameters used for simulations.

Material Parameters Value Unit

0vC 610046.2  13 ..  CmJ 

q 9100656.0  3. mJ

e 81080  m.

ambT 20 C

)(Th Refer to Equation (22) 12 ..  CmW 
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Figure 7. Response of the SMA actuator under electrical 
different current profile in free stress case.

It is due to this fact that the heating is mostly controlled 
by the magnitude of the input current term 2Je , while 

the cooling rate depends only on the heat convection 
between the SMA wire and surrounding air and it is a 
linear function of the temperature difference between 
the actuator and the ambient temperature (the 
(

4
( ) ( ) ambh T T t T

D
    ) term). The areas specified by A and 

B are the regions where the specific heat changes in the 
reverse and forward transformations. It seems, in this 
special simulation, that the corresponding time to these 
regions is shorter than the total heating or cooling time 

and assuming constant specific heat does not lead into 
much error.

However, as will be shown in the later simulations, 
in the presence of stress, this time is not ignorable and 
assuming constant specific heat yields erroneous results.

6. SIMULATION OF STRUCTURAL RESPONSE AND 
RESULTS

Computer simulations of the SMA actuated beam model 
were performed in MATLAB. Block diagram of the 
model is shown in Figure 8. As it is seen from this 
figure, the inputs of the SMAs actuated beam model are 
the wires currents while its output is the strain of the 
corresponding wires. The geometry of the aluminum 
beam to be investigated in this study is given in Table 1. 
In addition, the material parameters of the SMA 
actuator wires are given in Table 2. 

Since different initial conditions of each SMA wire 
(different detwinned martensite volume fraction and 
prestress) as well as different algorithms of heating and 
cooling of each SMA, affect the behavior of stress-
strain in each wire and the beam behavior, several cases 
are studied for simulation. In the initial state of each 
parameter, the superscript ‘1’ refers to the wire-1 and 
the superscript ‘2’ refers to the wire-2. To observe the 
effect of considering or neglecting the SMA wire-1 on 
the variation of parameters, two graphs are illustrated in 
some figures: one by considering the effect of SMA 
wire-1 (entitled by Case-A) and another by neglecting
the effect of SMA wire-1 (entitled by Case-B); i.e. 
assuming that only wire-2 is connected to the beam.

In addition, in all simulations the ON-OFF current is 
applied to the wires. The duration of ON-section of the 
current at each simulation is selected in such a way that 
both wires temperature saturate to their steady state. 
Therefore, it is not same for all simulations and there is 
a slight difference between these duration times. Also, 
the OFF-section duration of the current is selected in
such a way that both wires temperature reach to the 
ambient temperature.

Figure 8. Block diagram of the flexible beam actuated by SMA actuators.
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6. 1. First Simulation     
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In order to investigate the sole effect of thermal 
actuation of wire-2 on the beam behavior, in this 
simulation the temperature of wire-2 is changed by 
applying the input step current 0.85A while no current 
applied to wire-1. As a result, the temperature of wire-1
is fixed at 40°C (with 100 MPa initial prestress) and the 
temperature of wire-2 is increased from 40°C to 136°C.

In Figure 9, the stress of wire-2 is plotted as a 
function of its temperature changes for Case-A and 
Case-B. The light dashed lines on the plot indicate the 
transformation strips displayed earlier in Figure 5. It is 
seen from this figure that even in this simulation the 
wire-1 is inactive but ignoring it can contribute to 
erroneous prediction of stress in the wire-2. In other 
words, in the cases where the effect of wire-1 is 
neglected, the model over predicts the stress of wire-2. 
As will be shown later this matter is more severe in the 
cases that the SMA wire-1 has thermal actuation beside 
the SMA wire-2. Similarly, in Figure 10, the stress of 
wire-1 is shown as a function of the wire-2 temperature 
when the effect of SMA wire-1 is not neglected (Case-
A). In the same way, Figure 11 shows the deflection of 
the end point as a function of the wire-2 temperature 
changes, in the heating and cooling process, for Case-A 
and Case-B. It is seen in this figure that ignoring the 
effect of wire-1 underpredicts the deflection of the end 
point.

Correspondingly, Figure 12 shows the change of 

stress-induced ( s ) martensite fraction of wire-2 as a

function of the wire-2 temperature for Case-A and Case-
B. As it is seen from this figure there is not any 
significant difference between the result of Case-A and 
Case-B for this special simulation. Likewise, in Figure 
13 the temperature change of wire-2 as a function of 
time is shown for Case-A and Case-B.

By comparing the results of Case-A and Case-B in 
this simulation it is concluded that for applications 
where precise modeling is required the effect of all 
SMA wires should be considered, even if some of them 
are inactive and have no thermal actuation. Since Case-
A consider the effect of inactive SMA wire-1 and has 
more precise result, the subject of the following 
paragraphs is Case-A.
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Figure 9. Stress in the SMA wire-2 as a function of its 
temperature for Case-A and Case-B in the first simulation.
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simulation.
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This is just simulated to show the sole effect of 
thermal actuation of one wire on the beam behavior. To 
investigate the behavior of the beam under the both wire 
thermal actuations there are infinite patterns.

The same thermal actuation for both of the wires 
turns out to be the simplest way in the first glance but it 
has ample practical applications, especially in the 
control processes. Further explanation of this is beyond 
the scope of this paper.

In addition, there are infinite selections for initial 
stress-induced marteniste fraction ( s ) of wires. 

However, since reaching to the larger deflection of 
beam is the goal of this paper we focus on the fully 
detwinned ( 1s ) martensite for initial state of the both 

SMA wires. When the simulation results  for this case 

(initial condition: 0,,1, 2
0

1
0

2
0

1
0   ss and heating 

algorithm: )(85.0II 21 currentOFFONA  ) is 

investigated, it is seen (Figure 14) that the full phase 
transformation in the heating process only occurs for the 
second wire and the first wire does not exit from the 
phase transformation state (between martensite and 
austenite phase) even with increasing the wires 
temperatures up to C150 . This is due to the fact that 
the stress-temperature profile for this wire is nearly 
parallel to phase transformation strips and increasing the 
wire temperature only increases the stress in wire-1
without departing it from this phase transformation 
state. Therefore, it is concluded that this simulation is 
not an appropriate case in this study.

To solve this problem, after several simulations it is 
concluded that for the same thermal actuation of the 
both wires, two solutions can be proposed. First, 
decreasing the initial stress-induced marteniste fraction 
of the wire-1 and second, enlarging the length of the 
wire-2 from the behind of the base in such a way that 
the connection point of wire-2 with the base (point 2Q
in Figure 1) does not change and the comparison with 
the previous obtained data remains valid.

The following second simulation is selected for the 
first solution and third simulation is selected for the 
second solution.

6. 2. Second Simulation
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As discussed before the initial stress-induced marteniste 
fraction of the wire-1 is decreased to 0.6 in this case in 
order to have full phase transformation for both wires in 
the heating and cooling processes. Figure 15 shows the 

stress of SMA wire-2 as a function of its temperature for 
Case-A and Case-B. Also, in Figure 16 the stress of 
SMA wire-1 is plotted as a function of its temperature
when the effect of this wire is not neglected (Case-A). 
Similarly, in Figure 17 the variation of wires 
temperature is plotted as a function of time in Case-A 
and Case-B. Correspondingly, Figure 18 shows the 
deflection of the end point as a function of time in the 
entire heating and cooling process for both 
aforementioned cases.  

Since both of the SMA wires are active and both of 
them have thermal actuation, the difference between the 
result of Case-A and Case-B is significant.
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Figure 13. Temperature change of the wire-2 as a function of 
time for Case-A and Case-B in the first simulation.
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Figure 14. Stress in each SMA wire as a function of their 
corresponding temperature changes.
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In other words, when the effect of SMA wire-1 is 
neglected in the simulation (Case-B) the model over-
predicts the stress of SMA wire-2 while under-predicts
the deflection of the end point. It is comprehensible 
because when the sole actuation of one wire is 
considered in analysis, the whole of actuation task 
should be done by one wire and its predicted stresses 
raises with respect to a case where two wires have 
thermal actuation. In addition, it cannot yield to larger 
deflection of beam, and the deflection of the beam is 
under-predicted. It clearly shows the advantage of using 
two active SMA wires for deflecting a beam: reaching 
larger deflection with less stress of each SMA wire.

It is also important to express this point that despite 
the stress-induced ( s ) marteniste fraction of wire-1 is 

only 0.6 and not 1, the maximum end point deflection 
for this simulation (Case-A)  is 127.4 mm and it is about 
18 mm more than the first simulation where there was 
only one wire actuation. It is also seen, as observed 
before in the first simulation, the cooling process 
duration is longer than the heating process duration.

6. 3. Third Simulation
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As discussed before, in this simulation the length of 
wire-2 is enlarged in such a way that the connection 

point of wire-2 with the base (point 2Q in Figure 1) 

does not change. This added length for wire-2 is

selected in such a way that if the stress-induced ( s ) 

marteniste fraction of the both wires is selected the 

maximum (i.e. 1s , in order to reach the maximum

deflection for the end point) the full phase 
transformation occurs for both wires. Figure 19 shows 
the stress of SMA wire-2 as a function of its 
temperature for Case-A and Case-B. 

Similarly, in Figure 20 the stress of SMA wire-1 is 
plotted as a function of its temperature when the effect 
of this wire is not neglected (Case-A). Correspondingly, 
in Figure 21 the variation of wire temperature is plotted 
as a function of time in Case-A and Case-B.  In the 
same way, Figure 22 shows the deflection of the end 
point as a function of the SMA wires temperature in 
Case-A and Case-B.

Similar to the second simulation, the difference 
between the results of Case-A and Case-B is severe and 
neglecting the effect of the wire-1 over predicts the 
stress of SMA wire-2 while under-predicts the 
deflection of the end point. 

It is also important to express this point that since 
the stress-induced (

s ) marteniste fraction of both SMA 

wires is 1, the maximum end point deflection for this 
simulation (Case-A) is 190 mm and it is about 80.6 mm 
more than the first simulation (74% increase) where 
there was only one wire actuation. This clearly shows 
the effect of one excess wire actuation in reaching large 
deflection for flexible structures. It is also seen from 
Figure 20, as observed in the first and second 
simulations; the cooling process duration is longer than 
the heating process duration.

It should be noted here that all of figures shown so 
far were only the first cycle response of the beam under 
the wires thermal actuation. Figure 23 shows the stress 
of SMA wires as a function of their corresponding 
temperatures by the subsequent second cycle actuation 
of SMA wires in third simulations (Case-A). Also, in 
Figure 24 the deflection of the end point is plotted as a 
function of time. The initial values of stresses, strains, 
deflections, etc. in this simulation are selected by the 
corresponding value obtained at the end of the first 
cycle simulation. As it is seen from these figures, at the 
end of the second cycle all of the variables come back to 
their corresponding initial values. This fact is valid for 
all subsequent cycles after the first cycle.

7. CONCLUSION

In this paper, some drawbacks of the researches 
conducted on modeling of smart structures actuated by 
externally-attached SMA actuators have been resolved 
and the nonlinear modeling of a flexible beam actuated 
by two active SMA actuators was carried out. Nonlinear 
formulation of a flexible beam under two applied forces 
was first derived. Although, in the view of control, the 
tip deflection control of a beam can be achieved by only 
one wire but the sensitivity of the system to the 
actuation force of that SMA is great and this yields to 
difficult controllability of the system. Therefore, 
increasing the actuator number plays an important role 
in improving the degree of controllability of a beam. 
Using more than one actuator has also the advantage 
that shape control is accessible instead of solely position 
control of one point.

Next, the Brinson thermomechanical constitutive 
equation of SMA wires was reviewed due to its 
simplicity and its applicability to the entire range of 
thermomechanical conditions. In addition, the 
thermoelectric heat transfer equation of SMA actuators 
was presented. Finally, the Brinson constitutive model 
and heat transfer equations of SMA materials were 
coupled with the nonlinear beam behavior, and the 
coupled system of equations was numerically solved for 
some particular practical cases. 
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Figure 15. Stress in the SMA wire-1 as a function of its 
temperature for the second simulation.
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Figure 16. Stress in the SMA wire-2 as a function of its 
temperature for Case-A and Case-B of the second simulation.
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Figure 17. Temperature changes of each SMA wire as a 
function of time for the second simulation.
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Figure 18. Deflection of the end point as a function of time 
for Case-A and Case-B in the second simulation.
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Figure 19. Stress in the SMA wire-2 as a function of its 
temperature for Case-A and Case-B in the third simulation.
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Figure 20. Stress in the SMA wire-1 as a function of its 
temperature in the third simulation.
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Figure 21. Temperature changes of each SMA wire as a 
function of time for the third simulation.
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Figure 22. Deflection of the end point as a function of time 
for Case-A and Case-B in the third simulation.
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Figure 23. Stress in each SMA wires as a function of the 
wires temperature in the second cycle of actuation for the third 
simulation.
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Figure 24. Deflection of the end point as a function of time in 
the second cycle of actuation for the third simulation.

It was shown that after this first thermal cycle, the 
magnitude of the all parameters did not reach to their 
original initial value. It means that the cold states of the 
wires did not yield to the same beam shape as their hot 
states and so the beam did not recover its original shape. 
This occurred only in the first cycle of heating and 
cooling of wires and as it was shown that in the 
subsequent cycles the hot and cold shapes of the beam 
are the same. It was also seen that in the case where two 
SMA actuators are used, the maximum end point 
deflection increase 74% with respect to the case where 
only one actuator is used. This property shows the 
advantage of the beam model mentioned in reaching 
large deflection states. 

It is also seen that in the cases where there are two 
active SMA wires and both of them have thermal 
actuation, the results are significantly differ from the 
result where the main SMA wire is solely considered 
and the effect of the other is ignored. This different 
result is observed even in the cases where one of the 
wires is active and the other is inactive. It means that in 
order to have precise result the effect of all active and 
inactive SMA wires should be considered (like 
diagnostic configurations). It is also shown that if the 
effect of some of the SMA wires is neglected the stress 
in other wires is overpredicted and the deflection of 
beam is underpredicted with respect to the precise 
model.

The methodology employed in this paper can be 
easily extended to the complicated smart structure with 
externally-attached SMA wires. In addition, the 
appropriate parameters of these smart structures such as 
the geometry of structure, the arrangement and the 
material properties of SMA actuator wires can be 
selected by this method. Furthermore, the behavior of 
this smart structure can be easily simulated before the 
manufacture process and the optimal value of those 
mentioned parameters could be selected easily.
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  چکیده

: پذیر وجود دارد هاي انعطاف عنوان عملگر جهت کنترل شکل سازه دار به هاي آلیاژ حافظه دو روش براي استفاده از سیم

صورت  که در حالت نصب به ه دلیل اینب. ها ها درون لایه کامپوزیتی و دیگري نصب خارجی آن یکی استفاده از این سیم

تواند قرار گیرد، ممان خمشی بیشتري ایجاد کرده و در نتیجه  خارجی عملگر در فواصل بیشتري نسبت به تار خنثی می

دار سریع تر  جایی بالاتر، سیم حافظه هدلیل نرخ جاب هدراین پیکربندي همچنین ب. تواند پیدا کند سازه تغییر شکل بیشتري می

.توان با فرکانس بالاتري سازه را تحریک کرد شده و در نتیجه می خنک

اند، ولی تمامی این مطالعات داراي  دار بسیار مورد بررسی قرار گرفته هاي حافظه هاي ترکیبی با سیم اگرچه مدلسازي سازه 

در تحقیق . وري و تجربی شودتواند باعث ایجاد خطاي بسیار بین نتایح تئ ها می باشند که نادیده گرفتن آن هایی می ضعف

دار فعال  پذیر تحریکی توسط دو سیم حافظه هاي مطالعات قبلی برطرف شده و مدلسازي یک تیر انعطاف حاضر محدودیت

دار با  هاي حافظه معادلات ترمومکانیکی برینسون به همراه معادلات انتقال حرارت سیم. مورد بررسی قرار گرفته است

روش پیشنهادي در . معادلات غیرخطی تیر ترکیب شده و سیستم معادلات کوپله براي چند حالت خاص حل شده است

شوند،  دار، به صورت خارجی، تحریک می هاي حافظه هاي پیچیده که توسط سیم این مطالعه به آسانی قابل تعمیم به سازه

.باشد می
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