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A B S T R A C T  

   

An M/M/1 queueing system with second optional service and unreliable server is studied. We consider 
that the server works at different rate rather than being idle during the vacation period. The customers 
arrive to the system according to Poisson process with state dependent rates depending upon the 
server’s status. All customers demand the first essential service whereas only some of them demand the 
second optional service. A customer either may leave the system after the first essential service with 
probability (1-r) or at the completion of the first essential service go for second optional service with 
probability r (0≤r≤1). The server may breaks down according to Poisson process during the busy and 
working vacation duration. Both service times in vacation and in service period are exponentially 
distributed. The matrix geometric technique is used for the analysis of the concerned queueing system. 
The sensitive analysis is also performed to examine the variation of the system performance 
characteristics with various input parameters. 
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1. INTRODUCTION1 
 
Queueing model with vacations provide performance 
prediction of many congestion situations encountered in 
computer, communication, manufacturing, production 
systems, etc.. Several researchers have contributed 
significantly in this direction [1]. Lee et al. [2] studied 
Mx/G/1 queueing system with N-policy and single 
vacation. GI/M/c queue with two classes of vacation 
mechanism was considered by Chao et al. [6, 3]; in the 
first case all servers take vacation simultaneously 
whereas in second class of vacation, each server takes 
its own vacation. Bacot et al. [4] generalized a single 
server bulk input batch service queues with multiple 
vacations. The classical single server vacation model 
was generalized by Seri and Finn [5] by considering 
working vacation. Simple explicit formulae for the 
mean, variance of the number of customers in the 
system were provided. Arumuganathan et al. [6] 
considered Mx/G/1 queueing system with multiple 
vacations, setup times and closedown times under N-
policy. An M/G/1 queue was studied by Wu et al. [7] by 
considering the multiple vacations and exhaustive 
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service discipline; the server was assumed to work at 
different service rates rather than completely stopping 
the service during vacation. A queueing system with c 
servers and a threshold type vacation has been 
considered by Tian et al. [8]. Ke [9] studied the 
operating characteristics of an Mx/G/1 queueing system 
under a variant vacation policy. Lin and Ke developed a 
cost model to determine the optimal values of the 
number of the servers and working vacation rate for 
M/M/R queue with vacation. 

In many real cases, the server may experience 
breakdowns, so that a more realistic queueing model is 
that which incorporates the assumption of unreliable 
server. Cao et al. [10] investigated an M/G/1 queueing 
model with repairable server. Reliability analysis of 
M/G/1 queueing system with server breakdowns and 
vacations has been examined by Li et al. [11]. Wang et 
al. [12] analyzed the retrial queue with server 
breakdowns and repairs. Ke [13] studied the N-policy 
M/G/1 queue with server vacations, startup and 
breakdowns. Almasi et al. [14] examined a single server 
retrial queue with finite number of homogeneous 
sources of calls and a single removable server. Stability 
conditions are provided by Sherman et al. [15] for an 
M/M/1 retrial queue with infinite capacity orbit. Mx/G/1 
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system under vacation policies with startup/closedown 
times has been examined by Ke [16]. Wang et al. [17] 
considered a single unreliable server in an Mx/M/1 
queueing system with multiple vacations. M/G/1 
queueing system with a single removable and unreliable 
server has been considered by Wang et al. [18], by 
assuming that the server needs a startup time before 
providing the service. Yang and Alfa [19] studied a 
multi server queueing system with identical unreliable 
server with phase type distributed service time.  

Most studies on queueing models have considered 
the main service. However, in many real service 
systems some customers require the main as well as 
subsidiary services provided by the server. A pioneer 
work on such queueing situation was done by Madan 
[20], who first introduced the concept of second 
optional service while studying the time dependent as 
well as steady behavior of an M/G/1 queueing system 
with no waiting capacity, using supplementary variable 
technique. An M/G/1 queueing system with second 
optional service has also studied by Madan [20]. Medhi 
[21] proposed an M/G/1 queueing model with second 
optional channel and developed the explicit expressions 
for the mean queue length and mean waiting time. 
Supplementary variable technique was used to develop 
the time dependent probability generating function in 
terms of their Laplace transform for M/G/1 queue by 
Al- Jararha and Madan [22]. Mx/G/1 queueing system 
with two phases of heterogeneous service under N-
policy was examined by Choudhury and Paul [23]. 
Wang [24] considered an M/G/1 queueing system with 
second optional service and server breakdowns based on 
supplementary variable technique. Mx/G/1 queueing 
system was studied with additional second phase of 
optional service and unreliable server by Choudhury et 
al. [25]. 

Many authors have paid attention on matrix 
geometric approach which is used to solve the more 
complex queueing problems having phase 
arrivals/services [26]. A matrix geometric 
approximation for tandem queues has been examined by 
Gomez [27] with blocking and repeated attempts. 
Matrix geometric solution of the nested QBD chains 
was given by Choi et al. [28]. The queue length 
distribution was computed by Gray et al. [29] using 
matrix geometric method for a queueing model with 
multiple types of server breakdowns. Ke and Wang [30] 
used matrix geometric theory in studying the machine 
repair problem with R servers who take vacation of 
random length. A single server working vacation 
queueing model with multiple types of server 
breakdown via matrix geometric approach was 
described by M. Jain and A. Jain [31]. 

In this paper, we develop a working vacation 
queueing model with second optional service and 
unreliable server. The server may breaks down during 

the vacation as well as while  working. The paper is 
organized as follows. In section 2, we outline the 
underlying assumptions and notations to develop 
mathematical model under study. The governing steady 
state equations are constructed by taking appropriate 
transition rates. In section 3, matrix geometric solution 
of the system is given. In section 4, various performance 
characteristics of the system are formulated explicitly in 
terms of steady sate probabilities. In section 5, we 
perform comparative study of the system characteristics 
for various input parameters. In the last section, 
conclusions and future scopes of the work are provided.  

 
 

2. MATHEMATICAL MODEL 
 
We consider a single server vacation model with second 
optional service and unreliable server. The following 
assumptions are made to describe the model; 
v A single server queue begins with a working 

vacation, when the system is empty. During the 
vacation the customers arrive in Poisson fashion to 
the system with rate λV. 

v The customers are served at mean rate of µV during 
the working vacation and the server is prone to 
breakdown with mean rate αV. When the server 
breaks down during vacation, it is sent for repair 
with rate βV. 

v When the server is not on working vacations, the 
customers arrive to the system according to Poisson 
process with rate λB. 

v Two types of services are provided to the customers. 
The first essential service is needed to all arriving 
customers with mean rate µ1. As soon as the first 
service of a customer is completed, then with 
probability r, he may opt for the second service or 
else with probability (1-r), he may opt to leave the 
system. The second service times are assumed to be 
exponentially distributed with mean service rate µ2. 

v Assume that the life time of the server is 
exponentially distributed with mean 1/α1 in first 
essential service. In second optional service, the 
server may fails according to exponential 
distribution with rate α2. 

v After breakdown, the server immediately sent for 
repair. The repair time distributions while server 
fails during essential and optional service phases are 
exponentially distributed with mean rate β1 and β2, 
respectively.   

v The server immediately starts to serve the customers 
after it is fixed. 
For mathematical formulation purpose, we define 

the following steady state probabilities: 
P(0,n,V) Probability that there are n \  customers in the 

system when the server is on working 
vacation 
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P(1,n,V) Probability that there are n customers in the 
system when the server is in broken down 
state during working vacation  

P(1,n,B) Probability that there are n customers in the 
system when the server is rendering first 
essential service 

P(2,n,B) Probability that there are n customers in the 
system when the server is rendering second 
optional service 

P(3,n,B) Probability that there are n customers in the 
system and the server is in broken down state 
while rendering first essential service 

P(4,n,B) Probability that there are n customers in the 
system and the server is in broken down state 
while rendering second optional service 

The steady state equations governing the model are 
constructed as follows: 
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3. MATRIX GEOMETRIC SOLUTION 
 

The theory of matrix geometric approach was developed 
[26] to solve the stationary state probabilities for the 
vector state Markov Process with repetitive structure. 
Consider the generator matrix Q as shown below: 



































−−−

−−−
−−−

=

012

012

012

0110

0100

AAA
AAA

AAA
AAB

BB

Q
 

The matrix can be decomposed in to sub matrices B00, 
B01, B10, A0, A1, A2  as follows: 
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Let X be the vector of the steady state probabilities 
with Q as coefficient matrix, such that XQ=0, and the 
normalizing condition is Xe=1, where e is the column 
vector of appropriate dimension with all elements equal 
to 1. Let us partition X as [ ].......,,, 210 XXXX =  where: 

][ ,0,00 VXX =  
1],,,,,,[ ,,4,,3,,2,,1,,1,,0 ≥= iXXXXXXX DiDiBiBiViVii  

We examine the existence of a solution of the form, 
RXX ii 1−=  or  1,1

1 ≥= − iRXX i
i  (13) 

Since, Xi depends only on the state transition between 
level (i-1) and level i, the balance equations are given 
by: 

0101000 =+ BXBX  (14) 

02211010 =++ AXAXBX  (15) 
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1,021101 >=++ +− iAXAXAX iii  (16) 

In Equation (13), R is a square matrix and is the 
unique minimal non negative solution to the non linear 
matrix equation  

02
2

10 =++ ARRAA  
(17) 

The matrix R can be computed by successive 
substitution in the recurrence relation R(0)=0 

0,)()1( 1
12

21
10 ≥−−=+ −− nAAnRAAnR  (18) 

Finally, we are interested to calculate the vector 
X=[X0, X1, X2,……] for this purpose. The balance 
equations for the boundary states given by Equations 
(14) and (15) can be written in matrix form as: 

0)( 210 =+ RAAX  (19) 

1)( 1
0 =− − eRIX  (20) 

where, e is the column matrix of suitable dimension 
having all elements 1; this gives a unique solution for 
X=[X0, X1, X2,……]. 

 
 

4. PERFORMANCE MEASURES 
 

The validity of the model and the system performance 
characteristics can be analyzed by computing the system 
performance characteristics, in terms of the steady state 
probabilities explicitly. Some of the system 
performance indices are as follows: 

v Probability that the server is on working vacation is 
obtained as: 
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v Probability that the server is in broken down state 
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v Probability that the server is busy with first essential 
service is: 
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v Probability that the server is busy with second 
optional service is: 
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v Probability that the server is in broken down state 
while failed during first essential service is: 
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v Probability that the server is in broken down state 
while failed during second optional service is: 
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v Average number of customers in the system is: 
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v Throughput is given by: 
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5. SENSITIVITY ANALYSIS 
 
In order to determine the performance of the working 
vacation queueing system with second optional service 
and unreliable server, we perform a computational 
experiment by a program developed in MATLAB using 
matrix geometric technique discussed in section 3. The 
Tables 1-5 and Figures 1-6 depict the variation of the 
system performance characteristics with respect to the 
various input parameters. We assume the following 
basic input data for different tables: 
TABLE 1:

 
λB=0.3, µ1=6, µ2=4, µV=2,    
α1=0.05, α2=0.03, αV=0.02,  
β1=3.5, β2=2.5, βV=1.5, r=0.2 

TABLE 2:
 

λV=0.1, µ1=6, µ2=4, µV=2,  
α1=0.05, α2=0.03, αV=0.02,   
β1=3.5, β2=2.5, βV=1.5, r=0.2 

TABLE 3:
 

λV=0.1, λB=0.3, α1=0.05, α2=0.03,  
αV=0.02, β1=3.5, β2=2.5, βV=1.5,   
r=0.2 

TABLE 4:
 

λV=0.1, λB=0.3, µ1=6, µ2=4, µV=2,  
β1=3.5, β2=2.5, βV=1.5 

TABLE 5:
 

λV=0.1, λB=0.3, α1=0.05, α2=0.03,  
αV=0.02, r=0.2, µ1=6, µ2=4 

Tables 1 and 2 show the variation in long run 
probabilities of different states of the server by varying 
arrival rates. It is clear from tables that PWV and PDV 
show decreasing trend with increased value of arrival 
rates whereas PB1, PB2, PD1, PD2 have increased values 
for higher arrival rates. Table 3 summarizes the effect of 
increased service rates on the long run probabilities. It is 
evident from table that the increased service rate results 
in decreased PB1, PB2, PD1, PD2, keeping the working 
vacation service rate µV as constant. Table 4 illustrates 
that the probabilities of the server being busy and under 
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repair state, follow increasing trend for increased server 
breakdown rates α1, α2 whereas PWV and PDV have very 
dormant decrement with the increase in failure rates. 
Table 5 presents the comparison between probabilities 
of server status for different repair rates β1 and β2 by 
keeping βV as constant. We observe that the vacation 
state probabilities of the server increase with the 
increase in the value of repair rate while the 
probabilities of the server being busy and under repair 
show decreasing pattern.   

In Figures 1-6, we plot the variation of the queue 
length with respect to different parameters such as 
failure rate, repair rate, service rate, etc.. Figures 1-6 
depict that the average queue length E[N] follow an 
increasing trend for higher values of arrival rate λ.  

In Figures 1 and 2, E[N] depicts a clearly increasing 
pattern with the increase in server breakdown rate. This 
trend indicates that the system performance 
tremendously affected by the server breakdown and will 
lead to increased congestion. From Figures 3 and 4, it is 
noticed that initially there is a gradual decrement in  the  

 
 

TABLE 1. Long run probabilities of the server status by 
varying λv 
λv Pwv PDv PB1 PB2 PD1 PD2 

0.1 0.4071 0.3029 0.1040 0.1685 0.1147 0.0785 

0.2 0.4009 0.3015 0.1301 0.1725 0.1194 0.0975 

0.3 0.3498 0.2222 0.1506 0.2256 0.1393 0.1084 

0.4 0.3050 0.2107 0.1810 0.2520 0.1577 0.1137 

0.5 0.3005 0.2072 0.1978 0.2612 0.1654 0.1262 

0.6 0.2777 0.2047 0.2437 0.2734 0.1676 0.1373 

0.7 0.2119 0.1453 0.2556 0.3661 0.1666 0.1404 

0.8 0.1439 0.1317 0.3271 0.5934 0.1635 0.1469 

0.9 0.0994 0.0932 0.3619 0.5812 0.1585 0.1557 

 
 
TABLE 2. Long run probabilities of the server status by 
varying λB 
λB Pwv PDv PB1 PB2 PD1 PD2 

0.1 0.5975 0.4833 0.0016 0.0519 0.0172 0.0233 

0.2 0.4820 0.4847 0.0034 0.0819 0.0212 0.0476 

0.3 0.4660 0.4799 0.0055 0.1191 0.0264 0.0743 

0.4 0.3493 0.4749 0.0080 0.1641 0.0322 0.1054 

0.5 0.3322 0.3697 0.0111 0.2179 0.0381 0.1434 

0.6 0.3147 0.3645 0.0150 0.2819 0.0437 0.1917 

0.7 0.2968 0.2591 0.0202 0.3582 0.0486 0.2546 

0.8 0.1780 0.1536 0.0269 0.4500 0.0524 0.3385 

0.9 0.1600 0.0480 0.0358 0.5630 0.0551 0.3520 

average queue length but later on a sharp decrement can 
be seen in E[N] on increasing the repair rate of the 
server. Therefore, by keeping higher repair rate, the 
performance of the system can be improved. Figures 4-6 
depict how service rates affect the average queue length. 
 
 
TABLE 3. Long run probabilities of the server status by 
varying µ1 and µ2 
µv µ1 Pwv PDv PB1 PB2 PD1 PD2 

3 

2 0.0054 0.0017 0.3369 0.3169 0.2718 0.1720 

4 0.2329 0.1104 0.2912 0.2778 0.1841 0.0882 

6 0.2607 0.2199 0.1678 0.2542 0.1477 0.0795 

8 0.2890 0.2634 0.1082 0.2091 0.1191 0.0651 

µ2 Pwv PDv PB1 PB2 PD1 PD2 

1 0.0082 0.0024 0.3301 0.3028 0.2601 0.1102 

3 0.2408 0.1212 0.2721 0.2493 0.1792 0.0828 

5 0.2841 0.2652 0.1390 0.2391 0.1408 0.0729 

7 0.2988 0.2981 0.0998 0.1830 0.1118 0.0539 

 
 
TABLE 4. Long run probabilities of the server status by 
varying α1 and α2 
α v α1 Pwv PDv PB1 PB2 PD1 PD2 

0.02 

0.01 0.0078 0.0025 0.5328 0.3194 0.1691 0.0174 

0.03 0.0064 0.0020 0.6210 0.3209 0.1729 0.0205 

0.05 0.0052 0.0016 0.6350 0.3231 0.1832 0.0247 

0.07 0.0043 0.0011 0.6520 0.3301 0.1929 0.0391 

α2 Pwv PDv PB1 PB2 PD1 PD2 

0.02 0.0059 0.0019 0.5197 0.3273 0.1337 0.0431 

0.04 0.0056 0.0014 0.5431 0.3309 0.1568 0.0910 

0.06 0.0052 0.0011 0.5578 0.3746 0.1691 0.0943 

0.08 0.0049 0.0009 0.5629 0.3809 0.1731 0.0971 

 
 
TABLE 5. Long run probabilities of the server status by 
varying β1 and β2 
βv β1 Pwv PDv PB1 PB2 PD1 PD2 

2.5 

3 0.0951 0.0216 0.5374 0.3294 0.1148 0.1481 

5 0.0953 0.0217 0.4438 0.3019 0.1031 0.1423 

7 0.0954 0.0217 0.3368 0.3000 0.1009 0.1409 

9 0.0959 0.0319 0.2291 0.2902 0.0962 0.1399 

β2 Pwv PDv PB1 PB2 PD1 PD2 

2 0.0944 0.0314 0.5242 0.3616 0.1443 0.1988 

4 0.0958 0.0316 0.5297 0.3220 0.1201 0.1701 

6 0.0961 0.0319 0.4038 0.3201 0.1179 0.1516 

8 0.0979 0.0324 0.3981 0.2201 0.2124 0.0998 
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Figure 3. Average queue length vs λ  
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6. CONCLUDING REMARKS 
 
In many stochastic systems, there may occur a situation 
in which the first service is essential to all arrivals 
whereas second service is needed by only some of them. 
Similarly breakdown is a remarkable and unavoidable 
phenomenon in the service facility of a queueing 
system, because system performance deteriorates 
seriously by the server breakdown and limitations of the 
repair capacity. In this paper, we have studied the effect 
of second optional service and unreliable server on the 
performance measures for working vacation queueing 
model. The queue with working vacation may be 
applicable in modeling of many practical situations 
related to computers, communications, and productions 
systems, etc., wherein the server works at different 
service rates rather than completely stopping the service 
during a vacation.  

The inclusions of realistic factors such as unreliable 
server, optional service, working vacation, etc. make 
our model more versatile from application point of 
view. Using matrix geometric solution we have obtained 
some important performance measures, which may be 
useful for the system designers and practitioners 
involved in many industrial organizations operating in 
congestion scenario.  
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  چکیده
   

ما متوجه . د مطالعه قرار گرفته استبه همراه سرویس پشتیبانی اختیاري و سرور نامعتبر مور M/M/1بندي  یک سیستم رده
کاربران طبق فرایند . کند هاي متفاوتی کار می کار بودن در زمان تعطیلات، با سرعت شدیم که سرور به جاي بی

همه کاربران خواستار سرویس . سیستم دسترسی دارند بهو وضعیت سرور ) اینترنت(و با توجه به سرعت   (Poisson)پویسن
ممکن است یک کاربر بعد از . کنند می از سرویس پشتیبانی اختیاري استفاده ها  که فقط بعضی از ان در حالی لازم اولیه هستند

سرویس ) کار(در تکمیل  r  (0<r<1)که با احتمال  سیستم را ترك کند یا این )(r-1سرویس لازم اولیه با احتمال ) استفاده از(
هاي کاري پرازدحام و تعطیلات ممکن است  طبق فرایند پویسن، طی دوره. ندکده از سرویس پشتیبان اختیاري استفا ،لازم اولیه

صورت  دفعات سرویس در تعطیلات و هم مدت زمان سرویس به). احتمال خرابی سرور وجود دارد(سرور از کار بیافتد 
همچنین . دي استفاده شده استبن ژئومتریک براي انالیز وابستگی سیستم ردهاز روش ماتریس . نمایی توزیع شده است) توابع(

     .انالیز دقیقی براي بررسی تغییرات خصوصیات اجرایی سیستم با پارامترهاي ورودي متفاوت انجام شده است
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