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A B S T R A C T  

   

In this paper, the effect of anisotropy on the free vibration of laminated rectangular plate supporting a 
localized patch mass is investigated. The two variable refined plate theory is applied to define the third 
order displacement field of a composite rectangular plate. The plate is considered to have simply 
supported boundaries. The equations of motion for rectangular plate are obtained by calculus of 
variation. Parametric study of non-dimensional natural frequencies is carried out and the influences of 
geometrical parameters such as aspect ratio of the plate, size and location of the patch mass on these 
frequencies are also studied. First, the results obtained are compared with those reported using several 
plate theories. In the next step, the effect of anisotropy on free vibration of plates for different types of 
lamination are studied. The numerical results are found to be in a very good agreement with well 
known published papers for the case of vibration analysis of loaded and unloaded plates. 

 
doi:10.5829/idosi.ije.2012.25.03b.09 

 
1. INTRODUCTION1 
 

Composite materials are simply a combination of 
two or more different materials that may provide 
superior and unique mechanical and physical properties. 
These materials have high strength to weight ratio 
compared with other materials. Practically, these 
materials are exposed to various loading conditions such 
as distributed patch mass, transverse and in-plane 
loadings and etc. hence it is necessary to investigate 
their response to these loading conditions. Srinivas and 
Rao [1] studied the bending, vibration and buckling 
behavior of simply supported thick orthotropic 
rectangular laminated plates and obtained normal and 
shear stresses under the effect of uniformly distributed 
transverse load. Withney and Pagano [2] investigated 
free vibration response of a composite plate using first 
order shear deformation theory (FSDT) and employed 
the Yang-Norris-Stavski (YNS) theory to study the 
cylinrical bending of anti-symmetric cross-ply and 
angle-ply plate strips with sinusoidal loading. Bert and 
Chen [3] presented a closed form solution for the free 
vibration of simply supported anti-symmetric 
rectangular plates based on the YNS theory. Shankara 
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and Iyengar [4] obtained finite element solutions for 
free vibration of laminated composite plates by higher-
order shear deformation theory. Reddy [5] carried out 
free vibration analysis of anti-symmetric angle-ply 
laminated plates considering the effect of transverse 
shear deformation using finite element method (FEM). 
In other work, Reddy [6] classified a set of equilibrium 
equations for the kinematic models proposed by 
Levinson and Murthy. Khdeir and Reddy [7] obtained 
the free vibration response of angle-ply and cross-ply 
laminated composite plate using second order shear 
deformation theory. Wong [8] studied the effect of 
distributed patch mass on the plate vibration response. 
In his work, the effects of shear deformation and rotary 
inertia were not considered and Rayleigh-Ritz method 
was used to find the response of a rectangular plate. 
Shimpi and Patel [9-10] used the two variable refined 
plate theory for simply supported orthotropic plates and 
the results obtained were compared with non-
dimensional central displacement in the through 
thickness direction. Alibeigloo et al. [11] studied the 
vibration response of anti-symmetric rectangular plates 
with distributed patch mass using third order shear 
deformation theory (TSDT) and obtained the first 
natural frequency of the plate considering the size and 
location of the distributed mass on the top surface of the 
plate. Alibeigloo and Kari [12] also studied the forced 
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vibration response of anti-symmetric laminated 
rectangular plates with distributed patch mass. Seung-
Eock et al. [13] employed the two variable refined plate 
theory (RPT2) for plates which are under the action of 
the transverse and in-plane forces and obtained the 
stiffness and mass matrices using Hamilton principle. 
They compared the non-dimensional deflection obtained 
by various theories namely the classical laminate plate 
theory, the first order shear deformation theory, the 
higher order shear deformation theory and the refined 
plate theory. They showed that the RPT2 gives more 
accurate results of deflection and buckling load than the 
HSDT in comparison with the three-dimensional 
elasticity solution. Seung-Eock et al. [14] also carried 
out buckling analysis of isotropic and orthotropic plates 
using the two variable refined plate theory. A closed 
form solution of a simply supported rectangular plate 
subjected to in-plane loading was obtained using 
Navier's method. In this paper, the non-dimensional first 
natural frequency of vibration with simply supported 
boundary conditions and under the effect of a patch 
mass in arbitrary dimensions and positions is obtained. 
The effect of various parameters such as position of the 
patch mass and the aspect ratio of the plate on free 
vibration are also studied. 
 
 
2. BASIC FORMULATION 

 
A rectangular plate with length, width and thickness 
equal to a, b and h respectively is considered.  The plate 
supports a distributed patch mass, massM , with 
dimensions equal to c and d in the x and y-direction, 
respectively which is located in arbitrary position 
( , )x y′ ′  in Figure 1. The mass is considered to be placed 
on the upper surface of the plate. The global Cartesian 
coordinate system is chosen with the origin at the corner 
and on the middle plane of the plate, z=0. Therefore, the 
domain of plate is defined as ax ≤≤0 , by ≤≤0  and 

22 hzh ≤≤− .  
In order to proceed with the formulation of the 

problem using the two variable refined plate theory 
(RPT2), it is assumed that the displacements ),,( wvu  
of the plate are small in comparison with the thickness 
of the plate, hence the strains involved are considered to 
be infinitesimal. On the other hand, the transverse 
normal stress in the z-direction, zσ , is very small in 
comparison with the in-plane stresses, xσ  and yσ . As a 
consequence of the above definition, the stress–strain 
relations can be reduced from a 66×  matrix to a 55×  
matrix which can reduce the complexity of the problem. 
The total displacement of the plate in the z-direction (W) 
is assumed to be consisting of three components, aw  

(extension), bw  (bending) and sw  (shear) which are 
functions of x , y and the time [13].  

),,(),,(),,(),,,( tyxwtyxwtyxwtzyxW sba ++=  (1) 

The displacements in the x and y-directions are also 
defined as [13]: 

),,(),,(),,(),,,( tyxutyxutyxutzyxU sb ++=  

),,(),,(),,(),,,( tyxvtyxvtyxvtzyxV sb ++=  
(2) 

The bending components of displacements i.e. bu  
and bv  are considered to be similar to their 
corresponding components of displacements, u  and v  
(component of extension) as defined in the classical 
plate theory (CPT). It means that: 

( )xwzu bb ∂∂−= ,      ( )ywzv bb ∂∂−=  (3) 

Considering the fact that the shear stresses zxτ  and 

zyτ  are zero at upper and lower faces of the plate, 
2hz +=  and 2hz −= , respectively, the shear 

displacement su  and sv  can be written as  [13]: 
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Each layer is assumed to have orthotropic material 
property, hence the stress-strain relations in the 
direction of the principle axes of orthotropy are found to 
be as: 
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where ijQ  are the components of the reduced 
stiffness matrix and are expressed in terms of material 
properties of each layer. 
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Equation (5) represents the stress-strain relations in 
an especially orthotropic material, where the principle 
axes of orthotropy are parallel to the geometric axes of 
the plate (x, y), i.e. the direction of application of the 
load.  

In order to define the stress-strain relations in the 
geometrical coordinate system of the plate, that is the 
global Cartesian coordinate system, the components of 
the reduced stiffness tensor should be transformed 
according to the transformation law of fourth order 
tensors. Hence, the stress-strain relations in the global 
coordinate system are: 
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Figure 1. A rectangular plate with a localized patch mass 
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where k  indicates the layer number and ijQ  are the 
material constants of the kth lamina in the laminate 
coordinate system.  

In order to obtain the equations of motion by the 
Hamilton principle, the strain energy and the kinetic 
energy of the plate are first defined. The definition of 
the strain energy is as follows: 

∫=
V

ijijplate dVU εσ
2
1  (8) 

The strain energy of the plate can be written as [13]: 
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where { }N , { }M  and { }Q  are the stress resultants of the 
total N layers of the plate and defined in Appendix. 

The total kinetic energy is the summation of the 
kinetic energy of the plate and the kinetic energy of the 
uniformly distributed patch mass with dimensions c and 
d acting on the top surface of the plate. 

platemass TTT +=             (10) 

The kinetic energy of plate is defined as: 
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Substituting Equations (1) to (4) into Equation (11), and 
considering the limits of integration in the plate, the 
kinetic energy of plate can be written as: 
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where 20 , II are the inertia terms as below:     
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The kinetic energy of the distributed patch mass 
( massM ) which is located on the top surface of the plate 
( )2hz =  can be written as: 
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where mρ  and mh  are the density of the patch mass and 
its thickness in the z-direction, respectively. It is 
observed that the ranges of integration for Equations 
(12) and (14) are different. Hamilton principle is 
employed to obtain the coefficients of mass and 
stiffness matrices.  

Substituting the displacements field in the relevant 
strain energy and kinetic energy terms, integrating the 
results and obtaining their first variation, the equations 
of motion are found. Substituting Equations (9), (12) 
and (14) into Equation (15) that called Hamilton 
principle and carrying out integration by parts, the 
equations of motion are derived as: 

( )∫ =−+
2

1

0
t

t

dtTUVδ  (15) 

where δ  presents a variation with respect to x and y. 
Here V denotes the work done due to applied loads. 
Since primary aim is in the free vibration analysis, the 
energy due to applied forces is zero. Substitution  of 
displacements into Equation (15) and integrating the 
equation by parts, the equations of motion are obtained 
as: 
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Finally, by collecting the coefficients of parts, the 
governing equation of plate vibration is obtained as 
below: 
[ ] [ ]( ){ } { }02 =− λωMS  (17) 

where [S], [M], ω  and λ  are the stiffness [13], mass 
matrices, natural frequency and the vector of unknown 
coefficients, respectively.  

For convenience, the non-dimensional natural 
frequency of plate is defined as [11]: 

2

2

a
h E

ρ
ω ω=  (18) 

 
 
3. PROBLEM DEFINITION 

 
Now, a set of boundary conditions are considered and it 
is called the SS-2 boundary condition that is applied for 
an anti-symmetric angle-ply laminate and is defined by . 
K. Seung-Eock et al. [13]. 

In order to satisfy the boundary conditions, the 
following displacement fields are assumed: 
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(20) 

where amπ=α , bnπ=β  and mnU , mnV , bmnW , 

smnW , amnW   are coefficients.  
 
 
4. RESULTS AND DISCUSSION 
 
Three sets of dimensionless material properties are 
considered:  
MAT1: 

25.0,5.0,6.0,40 1221322321221 ===== νEGEGEGEE  

MAT2: 

3.0,6.0,4.0, 1221321222321 ===== νEGEGEGopenEE  

MAT3: 

25.0,5.0,2.0, 1221321222321 ===== νEGEGEGopenEE  

At first, the effect of the distributed patch mass is 
not considered and vibration response of a plate without 
the patch mass is studied. The results are then compared 
with the results obtained using the second order shear 
deformation theory for angle-ply and cross-ply square 
laminated plates as reported by Khdeir and Reddy [7]. 
The results obtained with ha  as a parameter for four 
layers anti-symmetric angle-ply, MAT1 with 

213 6.0 EG = , 2]45/45[ −  and two layer cross-ply ( )90/0 , 
MAT3 are presented in Table 1. Comparison of the 
results indicates that the results obtained using the 
present method are lower than those of the second order 
shear deformation theory. This difference reduces as the 
ratio ha  increases. Table 2 shows the effect of aspect 
ratios on the natural frequencies of a four-layer 
composite plate. The accuracy of the RPT2 is presented 
with comparing of well known published results. In 
order to evaluate the accuracy of the RPT2, the % error 
is calculated as: 









−×= 12100%
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The % error in values of the non-dimensional first 
natural frequencies for a/h=10 and a/h=50 is shown in 
Figure 2. It is observed from Figure 2 that the % error of 
the RPT2 with the YNS and HSDT has the same results 
(when ba 2≈  and a/h=10). The ranges of the % error  
with corresponding values of the FEM, YNS, HSDT 
and TSDT are inside the intervals [0.1664 3.4017], 
[0.6591 2.7373], [0.0268 1.8973] and [0.0002 1.6531], 
respectively. It is interesting to know that the % error 
increases with increasing the a/h ratio for the FEM and 
also decreases for YNS, HSDT and TSDT.    

Now, a distributed patch mass, massM , at the centre 
of the plate )by,ax( 22 =′=′  with the following 
properties is considered: 
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With above definition of patch mass properties, the 
kinetic energy of mass is obtained as below: 
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Using Equation (14), the arrays of mass matrix are: 
011 2136.1 IM = , 022 1.2136 IM = ,

 034 5436.2 IM =  (23) 
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035 5436.2 IM = , 045 5436.2 IM = ,
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The effect of the distributed patch mass on vibration 
response of isotropic plate is studied.  

Then, the results are compared with the results 
obtained using the three order shear deformation theory 
for angle-ply laminates as reported by Alibegloo [11]. 
The results obtained with ( )ha  as a parameter are 
presented in Table 3. In Figure 3, the results obtained by 
the present study (RPT2) are compared with the results 
obtained by (TSDT) method [11]. It is considered the 
same position of patch mass for anisotropic plate. In 
Table 4, the effect of anisotropy on free vibration of 
rectangular different laminated plates with patch mass at 
the centre of the plate for MAT2 is presented  ( 21 EE  
aspect ratio is also variable). As shown by Table 4, the 
results of FNF for anisotropic plate [ ]αα−αα ///  are 
greater than the results for anisotropic plate 
[ ]α−ααα ///  and also isotropic plate [ ]α−αα−α ///  
with patch mass. In the next step, the distributed patch 
mass in three different positions of the plate is 
considered and the results of FNF for anisotropic 
different laminated plates are compared together in 
Table 5.  These three positions of the distributed patch 
mass are assumed as:  

2,4 11
byax =′=′ , 2) 4,2 22

byax =′=′ , 3) 5,6 33
byax =′=′  

and properties of the distributed patch mass are 
considered as ..bdac,.MM platemass 2030 ===  
The arrays of mass matrix for these three positions are 
defined in Appendix. Table 5 shows the effect of ha  
and ba  ratios on free vibration of four-layer 
anisotropic plates with patch mass. Increasing of the 
foregoing ratios leads to increase of the non-
dimensional first natural frequencies. On the other hand, 
the effects of these ratios on anisotropic laminated plate 
[ ]αα−αα ///  are greater than anisotropic laminated plate 
[ ]α−ααα /// . Due to symmetry imposed by the 
boundary conditions of the plate, it is observed that 
patch mass in position 1 and position 2 would have 
similar natural frequencies of vibration. 
 

5. CONCLUSION 

 
In this study, the two variable refined plate theory 

for vibration study of laminated composite isotropic and 
anisotropic plates with patch mass was developed. 
Firstly, the governing equation of rectangular plate 
vibration with a patch mass was obtained by this theory. 
On the other hand, the effect of various parameters such 
as size and location of distributed patch mass, different 
aspect ratios and different types of anisotropy on the 
natural frequency of plate vibration was studied. To 
illustrate the accuracy of RPT2, the results obtained by 
this theory were compared with the results obtained by 
the well known theories. The main conclusions are as 
follows: 
1) The RPT2 is variationally consistent and number of 

unknown functions involved in this theory is only 
two. 

2) As seen in section 4, the RPT2 has more 
consistency with TSDT compared to FEM, YNS 
and HSDT. 

3) The % error of the RPT2 in frequency value 
approaches to zero in respect of FEM from 1fba  
to ba 2≈  at .ha 10=  

4) The % error of the RPT2 in frequency value 
approaches to zero in respect of HSDT and TSDT 
at 1=ba  and .ha 10=  

5) Increasing the ratio of a/h can cause to increase the 
% error of RPT2 with FEM and decrease the % 
error for YNS, HSDT and TSDT. 

6) Considering the large values of a/h ratio, the RPT2 
has more consistency with YNS, HSDT and TSDT 
than FEM for rectangular composite plates.  

7) Amount of patch mass and its location leads to 
change fundamental frequencies.  

8) The lowest natural frequency of plate with 
symmetric boundary conditions occurs with the 
patch mass at the centre of the plate. The natural 
frequency increases with the patch mass moving 
towards the corner of the plate. 

9) The influences of aspect ratios on free vibration of 
anisotropic plates [ ]αα−αα ///  are greater than 
anisotropic plates [ ]α−ααα ///  and also isotropic 
plates [ ]α−αα−α ///  

 

TABLE 1. The non-dimensional first natural frequency 
 a/h 
Theory/Laminate 5 10 20 50 100 
SSDT / Angle ply[7] 12.928 18.665 21.954 23.252 23.458 
RPT2 / Angle ply 12.534 18.320 21.803 23.223 23.451 
SSDT / Cross ply[7] 7.609 8.997 9.504 9.665 - 
RPT2 / Cross ply 7.545 8.963 9.494 9.663 9.688 
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TABLE 2. The non-dimensional first natural frequency, MAT1, 

2]45/45[ −  

  a/b 

a/h Sources 0.2 0.6 0.8 1 1.2 1.6 2 

10 Reddy [5] 8.7240 12.9650 15.7120 18.6090 21.5670 27.7360 34.2470 

 Bert [3] 8.6640 12.8200 15.5400 18.4600 21.5100 27.9500 34.8700 

 Shankara [4] 8.5557 12.5588 15.1802 17.9735 20.8797 26.9916 33.5534 

 Alibeigloo [11] 8.5587 12.5646 15.1873 17.9829 20.8947 27.0306 33.6340 

 Present 8.6060 12.6424 15.2101 17.9784 20.9214 27.2818 34.1900 

20 Reddy [5] 9.4750 14.8960 18.5570 22.5840 26.8570 36.2490 46.7890 

 Bert [3] 9.3000 14.4500 17.9700 21.8700 26.1200 35.5600 46.2600 

 Shankara [4] 9.3011 14.3856 17.8458 21.6808 25.8363 35.0421 45.4096 

 Alibeigloo [11] 9.2661 14.3594 17.8217 21.6588 25.8174 35.0365 45.4305 

 Present 9.2825 14.3887 17.8302 21.6552 25.8278 35.1772 45.8175 

30 Reddy [5] 9.6670 15.3850 19.3040 23.6760 28.3810 38.9400 51.1320 

 Bert [3] 9.4360 14.8400 18.5600 22.7400 27.3500 37.8200 49.9800 

 Shankara [4] 9.4880 14.8427 18.5390 22.6911 27.2555 37.5907 49.5474 

 Alibeigloo [11] 9.4196 14.7896 18.4866 22.6371 27.1995 37.5341 49.4992 

 Present 9.4274 14.8038 18.4908 22.6352 27.2047 37.6112 49.7263 

40 Reddy [5] 9.7590 15.8530 19.6040 24.1180 29.0030 40.0710 53.0120 

 Bert [3] 9.4850 14.9800 18.7800 23.0800 27.8300 38.7200 51.5200 

 Shankara [4] 9.5724 15.0248 18.8134 23.0940 27.8286 38.6523 51.3324 

 Alibeigloo [11] 9.4754 14.9500 18.7384 23.0137 27.7409 38.5499 51.2217 

 Present 9.4799 14.9583 18.7408 23.0125 27.7439 38.5969 51.3642 

50 Reddy [5] 9.8160 15.6890 19.7590 24.3430 29.3210 40.6530 53.9890 

 Bert [3] 9.5070 15.0400 18.8900 23.2400 28.0600 39.1700 52.2900 

 Shankara [4] 9.6216 15.1177 18.9510 23.2956 28.1168 39.1932 52.2539 

 Alibeigloo [11] 9.5016 15.0261 18.8586 23.1948 28.0031 39.0503 52.0860 

 Present 9.5045 15.0315 18.8602 23.1940 28.0051 39.0815 52.1822 
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Figure 2. The % error of the RPT2 in non-dimensional first natural frequencies with corresponding value by FEM [5] (blue), 
corresponding value by YNS [3] (red), corresponding value by HSDT [4] (green) and corresponding value by TSDT [11] (black) 
(Left, a/h=10 and Right, a/h=50) 



229                                           R. Alibakhshi / IJE TRANSACTIONS B: Applications   Vol. 25, No. 3, (August 2012)  223-232 
 

 

TABLE 3. The non-dimensional first natural frequency, MAT1, 2]45/45[ −  
  a/h 

a/b Theory 10 20 30 40 50 

0.2 TSDT [11] 5.3728 5.8127 5.9078 5.9423 5.9585 

0.2 RPT2 5.4030 5.8227 5.8488 5.9122 5.9446 

0.4 TSDT [11] 6.4359 7.1545 7.3177 7.3777 7.4060 

0.4 RPT2 6.5018 7.1774 7.3283 7.3835 7.4095 

0.6 TSDT [11] 7.8768 9.0055 9.2748 9.3751 9.4227 

0.6 RPT2 7.9366 9.0264 9.2845 9.3803 9.4258 

0.8 TSDT [11] 9.5102 11.1744 11.5923 11.7503 11.8256 

0.8 RPT2 9.5487 11.1861 11.5973 11.7527 11.8269 

1 TSDT [11] 11.2448 13.5765 14.1934 14.4304 14.5442 

1 RPT2 11.2868 13.5870 14.1974 14.4321 14.5448 

1.2 TSDT [11] 13.0434 16.1777 17.0518 17.3932 17.5585 

1.2 RPT2 13.1349 16.2067 17.0646 17.4000 17.5624 

1.4 TSDT [11] 14.8956 18.9654 20.1612 20.6369 20.8689 

1.4 RPT2 15.0849 19.0383 20.1967 20.6571 20.8816 

1.6 TSDT [11] 16.8026 21.9349 23.5225 24.1660 24.4826 

1.6 RPT2 17.1292 22.0784 23.5961 24.2092 24.5103 

1.8 TSDT [11] 18.7684 25.0836 27.1374 27.9863 28.4075 

1.8 RPT2 19.2592 25.3224 27.2646 28.0625 28.4573 

2 TSDT [11] 20.7951 28.4084 31.0067 32.1021 32.6506 

2 RPT2 21.4663 28.7637 31.2024 32.2214 32.7294 

 
 

TABLE 4. The non-dimensional first natural frequency, MAT2, 45=α , 10=ha , 5=ab  

  21 EE  

Lamination  3 10 20 30 40 50 

[ ]αααα −///  

[ ]αααα /// −  

[ ]αααα −− ///  

Anisotropic 
Anisotropic 

Isotropic 

2.3777 
2.4509 
2.4170 

3.1280 
3.4579 
3.3041 

3.8942 
4.4488 
4.1924 

4.4884 
5.1890 
4.8643 

4.9798 
5.7836 
5.4082 

5.4003 
6.2802 
5.8650 
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Figure 3. Comparison of non-dimensional ( )ω  obtained by RPT2 and TSDT 
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TABLE 5. The non-dimensional first natural frequency, MAT1, 2]45/45[ −  
 a/h 

a/b Lamination 10 20 30 40 50 

Position 1  

0.2 
[ ]αααα −///  5.1686 5.4812 5.5464 5.5699 5.5808 

[ ]αααα /// −  5.9248 6.3796 6.4770 6.5123 6.5288 

0.8 
[ ]αααα −///  9.6697 10.9556 11.2588 11.3713 11.4247 

[ ]αααα /// −  10.5704 12.2834 12.7075 12.8672 12.9432 

1.4 
[ ]αααα −///  15.6051 18.8574 19.7285 20.0647 20.2264 

[ ]αααα /// −  16.7904 20.9722 22.1700 22.6425 22.8722 

2 
[ ]αααα −///  22.4899 28.7611 30.6523 31.4126 31.7851 

[ ]αααα /// −  23.9509 31.7737 34.3236 35.3791 35.9031 

Position 2  

0.2 
[ ]αααα −///  5.1873 5.4874 5.5493 5.5715 5.5819 

[ ]αααα /// −  5.9419 6.3857 6.4799 6.5139 6.5299 

0.8 
[ ]αααα −///  9.6783 10.9595 11.2608 11.3725 11.4254 

[ ]αααα /// −  10.5776 12.2872 12.7095 12.8684 12.9440 

1.4 
[ ]αααα −///  15.5793 18.8416 19.7198 20.0593 20.2229 

[ ]αααα /// −  16.7713 20.9576 22.1614 22.6372 22.8686 

2 
[ ]αααα −///  22.4069 28.6941 30.6119 31.3870 31.7678 

[ ]αααα /// −  23.8950 31.7157 34.2856 35.3542 35.8860 

Position 3  

0.2 
[ ]αααα −///  6.1358 6.5294 6.6089 6.6372 6.6504 

[ ]αααα /// −  7.0136 7.5981 7.7175 7.7602 7.7801 

0.8 
[ ]αααα −///  11.3638 13.0331 13.4101 13.5479 13.6128 

[ ]αααα /// −  12.2959 14.5948 15.1317 15.3289 15.4218 

1.4 
[ ]αααα −///  18.0563 22.3655 23.4754 23.8945 24.0943 

[ ]αααα /// −  19.0972 24.7965 26.3612 26.9582 27.2435 

2 
[ ]αααα −///  25.5836 33.9495 36.4142 37.3800 37.8470 

[ ]αααα /// −  26.6909 37.3022 40.7176 42.0805 42.7428 
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  چکیده

   

از . شـود  تأثیر ناهمسانگردي برروي ارتعاشات آزاد صفحات مستطیلی حامل توزیع جرم پیوسته بررسی می در این مقاله،
. گردد تئوري دو متغیر اصلاح شده صفحه براي تعریف میدان جابجایی مرتبه سه صفحات کامپوزیتی مستطیلی استفاده می

هاي طبیعی بدون بعـد و نیـز    مطالعه پارامتریک فرکانس. آید رکت صفحه توسط محاسبه واریاسیون بدست میمعادلات ح
هـا بررسـی    تأثیرات سایر پارامترهاي هندسی از قبیل نسبت ظاهر صفحه، اندازه و مکان جرم پیوسته برروي این فرکانس

صفحات مقایسه شده و در مرحله بعد اثـر    ندین تئوريدر ابتدا نتایج بدست آمده با نتایج گزارش شده توسط چ. شود می
نتایج حاصله نشان . گیرد چینی متفاوت مورد تحلیل قرار می ناهمسانگردي روي ارتعاشات آزاد صفحه براي چندین نوع لایه

عاشات صفحات بارگذاري شده و بارگذاري نشده دهنده دقت بالاي تئوري بکار رفته با نتایج متشر شده در زمینه تحلیل ارت
  .باشد می
  

doi: 10.5829/idosi.ije.2012.25.03b.09
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