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A B S T R A C T

A global nonlinear stability analysis is performed for a couple-stress fluid layer heated from below
saturating a porous medium with temperature-pressure dependent viscosity for different conducting
boundary systems. Here, the global nonlinear stability threshold for convection is exactly the same as
the linear instability boundary. This optimal result is important because it shows that linearized
instability theory has captured completely the physics of the onset of convection. The eigenvalue
problems for different conducting boundary systems are solved by using Galerkin method. The effects
of couple-stress parameter F , Darcy-Brinkman number Da and variable viscosity parameter on the
onset of convection are also analyzed. The use of Darcy-Brinkman model makes the system thermally
more stable than the Darcy model for all the different conducting boundary systems, couple-stress
parameter and medium permeability promotes stabilization, and the variable viscosity destabilizes the
system.

doi: 10.5829/idosi.ije.2012.25.03a.04

1. INTRODUCTION1

Conventional hydrodynamic stability theory is mainly
concerned with the determination of critical values of
Rayleigh number. This theory demarcates a region of
stability from that of instability. The potentials of linear
theory of stability and of the energy method are
complementary to each other. The linear theory gives
conditions under which hydrodynamic systems are
definitely unstable. It tells nothing about the stability of
the system. On the other hand, energy theory gives
conditions under which hydrodynamic systems are
definitely stable. It cannot with certainty conclude
instability. Suffering from its basic assumptions, the
validity of the linearized stability theory becomes
questionable. Hence, the non-linear approach becomes
inevitable to investigate the effect of finite disturbances.
The formulation and derivation of the basic equation of
a layer of fluid heated from below in porous medium
using Boussinesq approximation has been given in a
treatise by Joseph [1]. When a fluid flows in an isotropic
and homogenous porous medium, the gross effect is
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represented by the Darcy’s Law. The study of a layer of
fluid heated from below in porous media is motivated
by both theoretically and its practical application in
engineering.

Among the applications in engineering disciplines
one can find the application of the present study in food
process industry, chemical process industry,
solidification and centrifugal casting of metals. The
oldest method of nonlinear stability analysis which can
deal with finite disturbances is the energy method,
originated by Orr [2] and its recent revival has been
inspired by the work of Serrin [3] and Joseph [4,5].
Rapid improvements of the classical energy theory have
been made in recent years (Galdi and Padula [6]). The
motivation of the present study is due to the application
of energy method, pioneered and developed in its
modern use way by Straughan [7, 8]. Straughan [9]
developed a sharp non-linear energy stability analysis
for the Darcy’s equations of thermal convection in a
fluid saturated porous medium and the results obtained
are the best possible showing that subcritical
instabilities are not possible. By selecting the optimally,
it has been possible to sharpen the stability bound in
many physical problems [8]. A nonlinear stability
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analysis of fluids by using generalized energy stability
theory has been considered by many authors [10-15].
Recently, Sunil and Mahajan [16-21] studied the
nonlinear stability analysis for thermal convection in a
magnetized ferrofluid heated from below saturating a
porous medium. They found that the non-linear critical
stability magnetic thermal Rayleigh number does not
coincide with that of the linear instability analysis, and
thus indicates that the subcritical instabilities are
possible. However, it is noted that, in the case of non-
ferrofluid, global nonlinear stability Rayleigh number is
exactly the same as that for linear instability.

There are a lot of analyses of performance and
experiment in the couple-stress lubricant. Stokes [22]
proposed the simplest theory called the Stokes
microcontinum theory and which could be used for the
simulation of couple-stress fluid. This kind of couple-
stress model is intended to take account of the particle-
size effects, and it is also very useful in the scientific
and engineering application. One of the applications of
couple-stress fluid is its use to the study of the

0 0,  ,  ,  ,UT    mechanism of lubrication of synovial
joints, which has become the object of scientific
research. A human joint is a dynamically loaded bearing
that has auricular cartilage as the bearing and synovial
fluid as the lubricant. When a fluid film is generated,
squeeze-film action is capable of providing considerable
protection to the cartilage surface. Ramanaiah [23]
applied the couple-stress fluid model to analyze the long
slider bearing. Shehawey and Mekheimer [24] applied
the couple-stress model to analyze the peristalsis
problem for its relative mathematical simplicity. Das
[25] proposed the analysis of elastohydrodynamic
theory of line contacts. Das [26] studied the slider
bearing lubricated with couple-stress, magnetic
parameters and the shape of bearings. Gupta and
Sharma [27] also used the couple-stress fluid model to
carry out a hydrostatic truest bearing. Sharma, et al [28]
and Sharma and Thakur [29] have studied the problems
of couple-stress fluid heated from below in porous
medium in hydromagnetic and rotation separately.
Malashetty et al. [30] have studied the onset of
convection in the couple-stress fluid saturating a porous
layer by using the thermal non-equilibrium model.
Abdallah and Lotfi [31] proposed an efficient numerical
scheme to solve the direct lubrication problem for
journal bearing lubricated with couple-stress fluids,
which consists of the modified Reynolds equation, the
film thickness equation, and the boundary for the
pressure field. Hsu et al. [32] studied the combined
effects of couple-stress and surface roughness using
journal bearings lubricated with the non-Newtonian
fluid. It was found that the combined effects of couple-
stress and surface roughness can improve the load
carrying capacity and decrease the attitude angle and

friction parameter. Lahmar [33] also found that the
lubricants with couple-stress fluid would increase the
load carrying capacity and stability, and decrease the
friction factor and the attitude angle. The above
researches are about the application of couple-stress
fluids, and all the results of their studies emphasized
that the couple-stress fluids are more stable than the
traditional Newtonian fluids. More recently, Sunil et al.
[34] studied the global stability analysis for thermal
convection in a couple-stress fluid.

At normal operating conditions, the viscosity of an
incompressible fluid is assumed to be independent of
the pressure. However, it is well known that the
viscosity of a fluid can change with pressure, and if the
pressure range is significantly large, the viscosity can
change by several orders of magnitude. Thus one could
consider such liquids as incompressible fluids with
pressure dependent viscosities. In his celebrated paper
on the response of fluids, Stokes [35] notes that the
viscosity of a fluid could depend upon its pressure.
However, based on the experiments of Du Buat on the
flow of water in canals and normal operating conditions,
Stokes suggested that the viscosity could be considered
a constant for flows. Stokes is however very careful to
delineate the class of flows wherein viscosity might be
considered a constant and he also remarks that such an
assumption would be invalid under other flow
conditions. More recently, Laun [36] has modeled the
viscosity of polymer melts through:

     0 0, exp     Up T p p T T   

where 0 is the viscosity at pressure 0p and
temperature UT , and  and  are non-negative
constant. There have been numerous other experiments
by Bair and co-workers that show that the dependence
of the viscosity on the pressure is exponential [37].
Mention must also be made of the work of Martin-
Alfonso and co-workers [38, 39] wherein an intricate
relationship between the temperature, viscosity and
pressure are provided for bitumen. Rajagopal et al. [40]
extended the approximation due to Oberbeck and
Boussinesq to the case of a fluid whose viscosity
depends on both the temperature and pressure. They
showed that the principal of exchange of stabilities
holds and that the critical Rayleigh numbers for the
linear and nonlinear stability coincide.

The objective of the present article is to study the
nonlinear stability analysis of couple-stress fluid heated
from below saturating a porous medium of high
permeability with temperature-pressure dependent
viscosity via generalized energy method using a
Brinkman model [41] for different conducting boundary
systems by Galerkin method. It is believed that for the
flow of a high porosity porous medium the Brinkman
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equation removes some of the deficiencies and gives
preferable result. In the work of Qin and Kaloni [42], it
was remarked that for high porosity materials and when
boundary layer effects need to be taken into account,
Brinkman model is superior to that of Darcy. Here, we
establish the optimal result, that is the linear instability
and nonlinear stability Rayleigh numbers coincides with
each other, couple-stress parameter F and medium
permeability in Darcy-Brinkman model stabilizes the
system whereas variable-viscosity parameter
destabilizes the system. This problem, to the best of our
knowledge, has not been investigated yet.

2. MATHEMATICAL FORMULATION OF THE
PBOBLEM

Consider an infinite, horizontal layer of thickness ‘ d ’
of incompressible thin couple-stress fluid with
temperature-pressure dependent viscosity heated from
below saturating an isotropic homogeneous porous
medium of porosity  and medium permeability 1K .
The fluid is assumed  to occupy the layer  0,   dz .
The temperature T at the bottom and top surfaces

0,z d are  andL UT T , respectively, and a uniform
temperature gradient  

  
 

dT
d z

 is maintained. The

gravity field  0,0, g g pervades the system in the
negative z-direction (Figure 1).

The equations governing the flow of an
incompressible couple-stress fluid (utilizing the
Boussinesq approximation), are given by the following
[22, 43]:

0
ˆ 0  kp g

    2
0

1

1ˆ ,        k qUP g T T p T
K

   

(1)

2  q 0 (2)

0 q (3)

2
0 0


    


qm TC C T T

t
   (4)

Figure 1. Geometrical configuration of the problem.

where 0 , q , g , t , p , P,  ,  ,  ,  , 1K , mC , 0C

and  are the reference density of the fluid, filter
velocity, acceleration due to gravity, time, pressure field
due to gravity, pressure due to thermal expansion of the
fluid, coefficient of viscosity, coefficient of visco-
elasticity, effective viscosity, thermal conductivity,
permeability of porous medium, overall heat capacity
per unit volume, specific heat at constant pressure and
coefficient of thermal expansion, respectively and
assume that LT and UT are the constant temperatures
of the lower and upper surfaces of the layer.

The appropriate boundary conditions to append to
Equations (1-4) :

   L UT x, y,0, t T ,  T x, y,d, t T , 

  0p x, y,d, t p (5)

where 0p is the reference pressure.
Now, it is convenient to non-dimensionalize

Equations (1-5) by introducing the following set of non-
dimensional quantities and parameters
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
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


 
   


  

 



  
  

(6)

where,  0 0 , Up T  is the viscosity at the

reference state  0 , Up T , 2R  is the thermal Darcy-
Rayleigh number, Da is the Darcy-Brinkman number,
Da is the Darcy number and F is the couple-stress
parameter. With this scaling the non-dimensional form
of Equations (1-5) becomes (omitting the asterisks):

ˆp  k 0 (7)

    2 ˆ, 0UT
P p T F Da R T

T
 

        
 

q q k
 (8)

0  q (9)

2T T T
t


    


q (10)

0p  at 1z  (11)



Sunil and R. Devi / IJE TRANSACTIONS A: Basics Vol. 25, No. 3, (July 2012) 221-229 224
q 0 at 0,  1z  (12)

LTT
T

  at 0z  (13)

LTT R
T

  at 1z  (14)

Our aim is to study the steady static conduction
solution to Equations (7-14), given by the following
system of :

 1p z   (15)

q 0 (16)

 1 UT
T R z

T
     (17)

01
2
zP z P     

 
(18)

In order to study the stability of the conduction
solution, we introduce the perturbations:

ˆ ˆ ˆ ,  ,   and  to ,  ,  ,u v w p P T p P    q i j k q

respectively, i.e.:

,   ,   ,T T p p p P P P         q q q  (19)

From Equations (7-10), we find that the
perturbations satisfy:

    2 ˆ,P p T F D a R           q q k 0 (20)

0 q (21)

2Rw
t

     


q   (22)

in    2 0, 0,d   with the initial condition:

   0,0x x  x  (23)

and the boundary conditions:

 , , , 0 at 0,  0 at 0, 1p x y d t z u v w z        (24)

,   and Pq  must subject to the boundary conditions and
we assume that ,   and Pq  are periodic in x, y with
periods 2  and 2x ya a  in the x and y directions. Let
us denote by V the period cell

 2 20, 0, 0, 1
x y

V
a a

  
    

    

 

and let  1 22 2
x ya a a  be the wave number.

3. NONLINEAR STABILITY ANALYSIS

Since, we have assumed that the viscosity is an analytic
function of the temperature and pressure, for sufficiently

small disturbances, we can expand  the viscosity in the
following manner:

     
0

1, ,
!

n
n

n
n

p T p T z
n T

   




      
q q (25)

where
   ,z p T  (26)

On multiplying Equation (20) by q , Equation (22)
by  , and then integrating over V , we get:

   2 2' , 0R w F Da p T      q q   (27)

2 21
2

d R w
dt

     (28)

where  denotes the integration over V and 

denotes the  2L V norm.
To study the nonlinear stability of the basic state, an

2L energy,  E t , is constructed by using Equations (27)

and (28), and the evolution of  E t is given by:

0 0
dE I D
dt

  (29)

where
21

2
E   (30)

 0 1I R w   (31)

   2 2 2
0D z F Da      q q   (32)

with  as the positive coupling parameter. We now
define,

0

0

max
H

I
m

D
 (33)

where H is the space of admissible solutions. Then, we
require 1m  so that:

0 0
d E a D
d t

  (34)

where 0 1 ( 0).a m   From the Poincar inequality, we
have:

22 2
0 2D E    (35)

this gives:
2

02d E a E
d t

   (36)

implying

   2
02 0a tE t e E  (37)

Thus, E decays at least exponentially fast and
nonlinear stability is assured for all values of E(0). It is
important to note that this result holds for all initial data.
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3. 1. Variational Problem We now return to
Equation (33) and use calculus of variation to find the
maximum problem at the critical argument 1m  . The
associated Euler-Lagrange equations after taking
transformations ˆ q q (dropping caps) are:

     2 1 ˆ2 2 1 2F Da z R   


      q q k (38)

 2 12 1 0R w 


    (39)

where  is a Lagrange’s multiplier introduced, since q
is solenoidal. On taking curl curl of Equation (38) and
then taking third component of the resulting equation,
we find:

     2 42 2 2wz z w F Da w
z

     


 

  2
1

11 0R    


(40)

Now, we assume a plane tiling form

     , ( ), ( ) ,w W z z g x y  (41)

where 2 2
1 0g a g   , a being the wave number [9, 44] .

The wave number is found a posteriori to be non-
zero, so from Equations (40) and (39), we see that

,W  satisfy

     22 2 2 22 2F Da D a W z D a W     

   2 12 1 0z DW Ra     


(42)

   2 2 12 1 0D a R W    


(43)

subject to the boundary conditions
20, 0, 0W D W    at 0,  1z  (Free-

Free conducting boundaries),
(44)

2

0, 0, 0    at    0

0, 0,  0    at   1

W DW z

W D W z

     

     

(Rigid-

Free conducting boundaries),

(45)

0, 0, 0W DW    at 0,  1z 
(Rigid-Rigid conducting boundaries).

(46)

For linear instability analysis, we return to the
perturbed Equations (20-22) and after neglecting the
nonlinear terms, arrive at the linearized form

    2 ˆ, 0P p T F Da R         q q k   (47)

0  q (48)

2Rw
t


  


  (49)

Performing the standard normal mode analysis
technique, we obtain the eigenvalue problem in the form
with boundary conditions Equations (44)-(46).

     22 2 2 2F Da D a W z D a W     

  2 0z DW Ra   

(50)

 2 2 0D a RW    (51)

This eigenvalue problem is exactly the same as that
of the eigenvalue problem Equations (42-45) obtained
by nonlinear stability analysis. Hence, in the presence of
couple-stresses, the critical Rayleigh numbers for the
linear and non-linear stability problems coincide.

4. METHOD OF SOLUTIONS

Equations 42 and 43 with given boundary conditions are
solved by using Galerkin-type method. Accordingly, we
set the solutions satisfying the boundary conditions as:

1

n

i i
i

W AW


 (52)

1

n

i i
i

B


   (53)

in which Ai, Bi are constant and the basis functions iW ,

i will be represented by the power series satisfying the
boundary conditions. When the series Equations (52)
and (53) are substituted back into Equations (42) and
(43), and the Galerkin procedure of demanding that the
residues be normal to the basis functions is applied, we
obtain a system of homogeneous linear algebraic
equations

0ji i ji iC A D B  (54)

0ji i ji iE A F B  (55)

The coefficients jiC to jiF involve the inner products
of the basis functions and are given by:

     2 2 22 4 2ji j iC F Da D W D W a F Da z      
  

   4 22 2j i j iDW DW a F Da a z W W    
 

 2 j iz W DW 

 2 1
ji j i

a
D R W


  





 1
ji j iE R W


  




22 2ji j i j iF D D a     

where the inner product is defined as  
1

0

d z       .

The polynomial types of basis functions which satisfy
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the boundary conditions are used to solve the eigenvalue
for different types of boundaries.

4. 1. Free-free Conducting Boundaries In this
case, the boundary conditions are:

2    0i i iW D W    at 0,  1z 

The basis functions satisfying the boundary
conditions are:

2 3 12       and      =i i i i i
i iW z z z z z      

4. 2. Rigid-free Conducting Boundaries In this
case, the boundary conditions are:

    0i i iW DW    at 0z  ,

2    0i i iW D W    at 1z 
The basis functions satisfying the boundary

conditions are:
1 2 3 13 5 2       andi i i i i

i iW z z z z z        

4. 3. Rigid-rigid Conducting Boundaries In this
case, the boundary conditions are:

    0i i iW DW    at 0,  1z 

The basis functions satisfying the boundary
conditions are:

1 2 3 12       and      =i i i i i
i iW z z z z z       

In order to have a nontrivial solution for Equations
(54) and (55), the determinant of the coefficient matrix
should be zero. That is,

     D
0

     F
ji ji

ji ji

C
E

 (56)

From Equation (56), we get thermal Darcy-Rayleigh
number  in terms of coupling parameter  , wave
number a , couple-stress parameter F , Darcy-
Brinkman number Da and variable viscosity parameter
 . Then, optimum value of  is determined by the
condition 0




, and is found to be 1 . After fixing

the values of couple-stress parameter F, Darcy-
Brinkman number, Da and variable viscosity
parameter,  , we find approximations for critical wave
number, ca and critical thermal Darcy-Rayleigh
number, .c

5. DISCUSSION OF RESULTS AND CONCLUSIONS

The effects of couple stress-fluid in porous medium
with temperature-pressure dependent viscosity on the

onset of convection are investigated for free-free, rigid-
free and rigid-rigid conducting boundary systems. The
critical thermal Darcy-Rayleigh number c and critical
wave numbers ca , obtained by Galerkin method, are
shown in Tables 1-3 for different values of various
parameters.

Table 1 shows the variation of critical wave number
ca and critical thermal Darcy-Rayleigh number c

with couple-stress parameter F for different values of
variable viscosity parameter  and 0Da  (Darcy
model). This table shows that in the absence of couple-
stress parameter F and variable viscosity parameter  ,
when Darcy model is used, the critical thermal Darcy-
Rayleigh number for different conducting boundary
systems (free-free, rigid-free, rigid- rigid) are 39.79,
44.80 and 45.54, respectively. But, when F goes on
increasing, the critical thermal Darcy-Rayleigh number
also keeps increasing showing the stabilizing effect of
couple-stress parameter F for all the conducting
boundary systems which we have considered here.
Furthermore, it is also clear from this table that variable
viscosity parameter  has the destabilizing effect on the
onset of convection as with the increase in  , c goes
on decreasing for all the three types of conducting
boundary systems.

Table 2 shows the variation of critical wave number
ca and critical thermal Darcy-Rayleigh number c with

couple stress parameter F for different values of  and
0.05Da  (Darcy-Brinkman model). This table shows

that in the absence of couple-stress parameter F and
variable viscosity parameter  , when Darcy-Brinkman
model is used, the critical thermal Darcy-Rayleigh
numbers for free-free, rigid-free, rigid-rigid conducting
boundaries are 75.62, 102.92 and 133.16, respectively.
This table also shows the stabilizing effect of couple-
stress parameter F and destabilizing effect of variable
viscosity parameter  on the onset of convection as with
the increase in F , c goes on increasing and with the
increase in  , c goes on decreasing.

Furthermore, from both of these tables, we conclude
that for both the models (Darcy model and Darcy-
Brinkman model), couple-stress parameter has the
stabilizing effect on the onset of convection whereas
variable viscosity parameter  has the destabilizing
effect on the onset of convection. But, among these two
models, the use of Darcy-Brinkman model makes the
system thermally more stable for all the conducting
boundary systems which we have considered than the
Darcy model.
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TABLE 1. Variation of the Critical Thermal Darcy-Rayleigh
number c with couple-stress parameter F for various values
of  , 0.Da 

 F
Free-free Rigid-free Rigid-rigid

ca c ca c ca c

0

0 3.152 39.72 3.265 44.80 3.310 45.54

0.2 2.377 176.71 2.736 213.93 3.132 395.68

0.4 2.310 310.04 2.705 378.77 3.125 745.68

0.5

0 3.152 31.83 3.265 35.40 3.310 36.43

0.2 2.352 168.08 2.734 261.43 3.129 386.55

0.4 2.295 301.28 2.708 485.25 3.123 736.54

1

0 3.152 26.52 3.265 29.65 3.310 30.36

0.2 2.334 162.29 2.733 252.73 3.127 380.45

0.4 2.284 295.41 2.710 473.78 3.122 730.45

1.5

0 3.152 22.74 3.265 25.47 3.310 26.02

0.2 2.321 158.14 2.731 246.40 3.126 376.10

0.4 2.277 291.21 2.712 465.45 3.121 726.10

TABLE 2. Variation of the Critical Thermal Darcy-Rayleigh
number

c with couple-stress parameter f for various values
of  , 0.05Da  .

 F
Free-free Rigid-free Rigid-rigid

ca c ca c ca c

0

0 2.612 75.62 2.865 102.92 3.166 133.16

0.2 2.352 210.10 2.724 331.12 3.129 483.18

0.4 2.302 343.32 2.702 558.94 3.123 833.18

0.5

0 2.566 67.35 2.848 93.323 3.158 124.03

0.2 2.330 201.41 2.724 317.39 3.127 474.05

0.4 2.288 334.54 2.705 541.19 3.122 824.18

1

0 2.530 61.80 2.834 86.75 3.153 117.94

0.2 2.315 195.60 2.724 308.00 3.125 476.95

0.4 2.279 328.66 2.708 529.04 3.121 817.95

1.5

0 2.502 57.82 2.823 81.97 3.348 113.58

0.2 2.304 191.43 2.724 301.17 3.124 463.60

0.4 2.272 324.46 2.710 520.21 3.121 813.60

The variation of critical wave number
ca and thermal

Darcy-Rayleigh number c with variation in Darcy-
Brinkman number Da for different values of  and

0.3F is shown by Table 3. It is depicted from this
table that medium permeability in Brinkman model
delays the onset of convection because, as Darcy-
Brinkman number increases, the value of thermal
Darcy-Rayleigh number increases. Thus, medium
permeability has the stabilizing effect on the onset of
convection. Whereas variable viscosity parameter 
causes for the early onset of convection as with the

increase in  for the corresponding values of Da , the
thermal Darcy-Rayleigh number goes on decreasing for
all the conducting boundary systems.

The principal conclusions from the above analysis
are as under:
 The result we establish is that both the linear

instability and nonlinear stability Rayleigh numbers
coincide.

 The use of Darcy-Brinkman model makes the
system thermally more stable for all the different
conducting boundary systems which we have
considered than the Darcy model.

 The couple-stresses and medium permeability both
have the tendency to slow down the motion of the
fluid in the boundary layer; thus reducing the heat
transfer from bottom to top. The decrease in heat
transfer is responsible for delaying the onset of
convection. Thus, both the couple-stress parameter
F and medium permeability promote stabilization.

 The variable viscosity has the tendency to grow up
the motion of the fluid in the boundary layer; thus,
increasing the heat transfer from bottom to top. The
increase in heat transfer is responsible for early
onset of convection. Thus, variable viscosity
destabilizes the system.

TABLE 3. Variation of the Critical Thermal Darcy-Rayleigh
number

c with darcy-brinkman number Da for various
values of  , 0.3F  .

 Da
Free-free Rigid-free Rigid-rigid

ca c ca c ca c

0

0.01 2.331 250.10 2.715 339.48 3.127 588.18
0.03 2.325 263.43 2.712 422.26 3.126 623.18
0.05 2.320 276.75 2.710 445.04 3.126 658.18
0.07 2.316 290.07 2.708 467.82 3.125 693.18
0.09 2.312 303.39 2.706 490.61 3.125 728.18

0.5

0.01 2.312 241.38 2.716 384.54 3.125 579.05
0.03 2.380 254.69 2.714 406.92 3.125 614.05
0.05 2.304 268.01 2.712 429.30 3.124 649.05
0.07 2.300 281.31 2.710 451.68 3.124 684.04
0.09 2.297 294.62 2.709 474.06 3.123 719.04

1

0.01 2.300 235.54 2.717 374.32 3.123 572.95
0.03 2.296 248.85 2.715 396.42 3.123 607.95
0.05 2.292 262.15 2.714 418.53 3.123 642.95
0.07 2.289 275.46 2.712 440.63 3.122 677.95
0.09 2.286 288.76 2.711 462.73 3.122 712.95

1.5

0.01 2.290 231.35 2.718 366.88 3.122 568.60
0.03 2.287 244.66 2.716 388.79 3.122 603.60
0.05 2.283 257.96 2.715 410.69 3.122 638.60
0.07 2.281 271.26 2.713 432.59 3.121 673.60
0.09 2.278 284.56 2.712 454.50 3.121 708.60
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چکیده

آنالیز پایدار غیر خطی جامع براي یک تنش مکمل در یک لایه سیال که تحت شرایط اشباع و محیط متخلخل گرم شده 
جا ایندر . انجام شده است،باشدهاي مرزي هدایتی متفاوت وابسته میر و دما در سیستمبه فشاروي گرانآن است و در 

به این علت که دست امده،بهنتیجه بهینه. شبیه لایه ناپایدار خطی استکاملاً،براي هدایتجامعآستانه پایداري غیرخطی 
مقدار . باشدایی را کنترل کرده است، مهم میجهفیزیک شروع جابطور کاملبه،دهد تئوري ناپایداري خطینشان می

ر تنش تاثیرات پارامت. وسیله روش گالرکین حل شده استهاي مرزي هدایت متفاوت بهمشخصه مسائل براي سیستم
جایی نیز مورد آنالیز قرار گرفته ه، در شروع جابرويگران، پارامتر تغییرات Daمن، عدد دارسی برینکFدوتایی 

هاي مرزي من پایداري حرارتی سیستم را نسبت به مدل دارسی براي همه سیستماستفاده از مدل دارسی برینک. است
ثباتی موجب بیرويگراندهد که تغییرات هدایتی متفاوت، پارامتر تنش دوتایی و افزایش پایداري نفوذ واسطه افزایش می
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