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ABSTRACT     In this investigation, a two-fluid model consisting of a core region of suspension of 
all the erythrocytes (particles) in plasma (fluid) assumed to be a particle-fluid mixture and a 
peripheral layer of cell-free plasma (Newtonian fluid), has been proposed to represent blood flow in 
small diameter tubes with magnetic effects . The analytical results obtained in the proposed model for 
effective viscosity, velocity profiles and flow rate have been evaluated numerically for various values 
of the parameters. Quantitative comparison depicted that present model represents blood flow at 

hematocrit (≤ 40%) and in vessels up to 70μm in diameter. Using experimental values of the 

parameters, the flow rate for normal and diseased blood has been computed and compared with 
corresponding values obtained from a well known experimentally tested model in the literature. The 
effects of a magnetic field have been used to control the flow, which may be useful in certain 
hypertension cases, etc.
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) ذرات( قرمز هايگلبول ذرات معلق با هستهي از ناحیهیک  شامل سیالی دو یک مدل، این تحقیقدر    چکیده

 عاري از سلولپلاسما از  محیطی یک لایه وفرض می شود،  مایع -ذرات مخلوطیک که  ،)مایع(پلاسما در 

 .استپیشنهاد شده  مغناطیسی اثرات با کوچک قطر با در لوله هاي جریان خون براي نشان دادن، ) نیوتنیسیال (

 به صورتسرعت جریان سرعت و، پروفیل موثر گرانروي پیشنهادي براي مدل به دست آمده در تحلیلینتایج 

را   که مناسب بودن مدل مورد مطالعه کمی مقایسه. است شده ارزیابی پارامترها مختلف مقادیر براي عددي

با استفاده . باشدمی μm70 قطر تا در عروق و) ٪40≤( هماتوکریت در نجریان خودهد می نشاننماید،تایید می

یک  از به دست آمده معادلمقادیر با محاسبه و بیمار سالم و خونبراي  سرعت جریان، پارامترهاتجربی از مقادیر

که  ریان،ج کنترل براي میدان مغناطیسیاثرات از .است شده معتبرو آزمایش شده تجربی در لیتریچر مقایسه مدل

استفاده شده است مفید باشد ، و غیرهفشار خون بالا موارد از بعضی در ممکن است

1. INTRODUCTION

Physiological fluid dynamics is a relatively new 
area that deals with the fluid dynamics of MHD
biological fluids. During the last few decades, 
extensive literature has become available on MHD
flows of biological fluids. 

Such flows have numerous applications in 
bioengineering and medical sciences. The Blood 
vessels are part of circulatory system, which easily 
pass nutrients, blood, hormones, and other
important substances to and fro from body cells 
which maintain homeostasis. Furthermore, the 
blood vessels are responsible for transmitting 

blood throughout the body. The three major types 
of blood vessels are: arteries, veins, and capillaries.
The blood flow in the small vessels of human 
circulatory system has become a matter of great 
significance for scientific research for many years. 
Mathematical approach of the problem has gone 
through prolonged changes and modifications 
resultingfrom new evidence uncovered through 
improved experimental measurements. New blood 
vessels provide nutrients to proliferating cancer 
cells, which is in favor of tumor growth. Tumor 
cells need an adequate blood supply in order to 
perform vital cellular functions. Accordingly, the 
disturbance of blood flow is good predictor of the 
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causes of disease, hence regional blood flow 
measured which permits earlier cancer detection. 
Nowadays approach to cancer treatment is 
multidisciplinary, one that involves varying
combination of surgery, radiation therapy, 
chemotherapy, and targeted therapies. Small blood 
vessel disease is a chronic medical condition,
which adversely affects coronary arterial and
jeopardizes heart health. Consistently, and in close 
association with the onset of atherosclerosis, small 
blood vessel disease impacts arteries ability to 
expand in order to accommodate proper
blood flow.

One of the leading causes of deaths in the world is 
heart related diseases. The heart diseases mainly 
occur due to temporary deficiency of oxygen or 
blood supply to the heart. This deficiency may be 
due to a constriction or obstruction in the blood 
supply to that part; the constriction involves the 
deposition of some fatty substances like 
cholesterol, cellular waste product, calcium, etc. 
The atherosclerosis may cause heart attack.

This study brings out many interesting fluid 
mechanical phenomena due to the magnetic field 
and presence of the peripheral layer. Blood has 
been modeled as two –fluid model with the core 
region consisting of suspension of all the 
erythrocytes, and plasma in the peripheral region 
as a newtonian fluid. It is noted that the velocity 
and flow rate decreases, while the effective 
viscosity increases with magnetic field  and 
hematocrit . The experimental studies and the 
theoretical treatments of blood flow phenomena 
are very useful for the diagnosis of a number of 
cardiovascular diseases and development of 
pathological patterns in human or animal 
physiology, and for other clinical purposes and 
practical applications. 

Many researchers have studied blood flow in artery 
by considering blood as either Newtonian or non-
Newtonian fluids. The study of magnetic field is 
very important both from theoretical and practical 
point of view; because most of the natural flow 
problems are connected with magnetic field. 
Experimental investigation of Cokelet [1] and
theoretical observations of Haynes [2] indicate that 
blood can no longer be treated as a single-phase 
homogenous viscous fluid in small size vessels (of 
diameter ≤ 1000μm). It is surprising to note that 
the individuality of the red cells (of diameter 8μm) 
is important even in such large vessels (with 

diameter up to 100 cells diameter). Accurate 
description of flow in capillary vessels, whose 
diameters (4-10μm) are equal or smaller than that 
of a red blood cell, requires consideration of red 
cells as discrete particles. Also, certain observed 
phenomena in blood flow including Fahraeus-
Lindqvist effect (decrease of apparent viscosity 
with decreasing diameter of blood vessels), non-
Newtonian behavior, and so on cannot be 
explained fully by considering blood as a single-
phase homogenous fluid [3, 4].

Consider two-phase theoretical model to address 
pulsatile blood flow in the entrance region of an 
artery [5]. Srivastava et al. [6] studied the theory to 
study the effects of external body acceleration on 
blood flow through small diameter tubes while 
Srivastava [7, 8] dealt with the problem of blood 
flow through stenotic vessels representing blood by 
an erythrocytes-plasma suspension. And most 
recently, Jung et al. [9, 10] discussed steady and 
pulsatile flow of particulate buildup on the inside 
curvature of coronary artery using multiphase of 
dense suspension hemodynamic. Haynes [2] 
presented a two-fluid theoretical model for blood 
flow consisting of a core region of suspension of 
all the erythrocytes as a homogeneous Newtonian 
viscous fluid and a cell-free plasma layer as a 
Newtonian fluid of constant viscosity (equal to the 
viscosity of water). 

Bugliarello and Sevilla [11] presented blood in 
small diameter tubes by a two-layered model 
assuming peripheral and core fluids as Newtonian 
fluids of different viscosities. Following the 
theoretical study of Haynes [2] and experimentally 
tested model of Bugliorello and Sevilla [11], two-
fluid modeling of blood flow has been discussed 
and used by a good number of researchers. 
Chaturani and Upadhya [12, 13]] addressed the 
flow of blood in small diameter tubes using the 
two-layered model of micro-polar and couple 
stress fluids, respectively. Pralhad and Schultz
model used a two-fluid model of polar fluid to 
analyze the flow of blood through stenotic arteries
[14]. Two-fluid model analyses have been carried 
out by Srivastava [8, 15, 16] to observe the effects 
of a non-symmetrical stenosis on blood flow 
characteristics. A mathematical analysis of blood 
flow through arteries using finite element has been 
presented previously [17]. Galerkin approaches 
and studied a MHD flow in stenosis artery using 
finite difference technique [18]. However, the 
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suction phenomenon of tissue in blood vessels has 
not been given any consideration in these studies. 
For a realistic approach this factor influences the 
blood flow in vessels.

Sharan and Popel [19] suggested a modification 
on the models of Haynes [2] and Bugliarello and 
Sevilla [11] assuming the viscosity in the 
peripheral layer to be higher than that of plasma 
due to additional dissipation of energy caused by 
the red cells motion near the cell-free layer. Wang
and Bassingthwaighte [20] applied the two-layered 
models of Haynes [2] and Sharan and Popel [19] to 
discuss the flow of blood in narrow curved tubes, 
etc. Kumar et al. [21] founded a performance of 
blood flow in stenosed arterial model. Kenjeres 
[22] developed a comprehensive mathematical 
model for simulations of blood flow under the 
presence of strong non-uniform magnetic fields.
Kumar and Saket [23] investigated reliability of 
convective diffusion process in stenosis blood 
vessels. Gupta [24] investigated finite element 
Galerkin’s scheme for flow in blood vessels with 
magnetic effects. Rathod and Tanveer [25] studied 
the plusatile flow of blood through a porous 
medium under the influence of periodic body 
acceleration by considering blood as a couple 
stress, incompressible, electrical conducting fluid 
in presence of magnetic field.

Kumar [26] proposed a computational model of 
blood flow in the presence of atherosclerosis. 
Gupta [27] developed a performance and analysis 
of blood flow through carotid artery. Kumar [28] 
made a performance modeling and analysis of 
blood flow and cross-sectional area of an artery 
with magnetic effects. Gupta et al. [29]
investigated steady blood flow in an artery with 
mild stenosis, by considering the blood as power-
law fluid under the influence of linear and 
quadratic radial variation of viscosity. Some 
researchers profound simulation of variable 
viscosity and Jeffrey fluid model for blood flow 
through a tapered artery with a stenosis and 
geometrical shapes [30-32].

The purpose of present paper is to investigate 
the flow of blood in small vessels involving a two-
fluid model with magnetic effects. The 
mathematical model considers a two-layered 
model of blood, consisting of a core region of 
suspension of all the erythrocytes (small spherical 
non-flexible particles), assumed to be a particle 
fluid suspension (i.e., a suspension of red cells in 

plasma) and a peripheral layer of plasma 
(Newtonian fluid). This study which presents a 
theoretical model for blood, seems to be the only 
one of its kind which enables one to observe the 
simultaneous effects of hematocrit and the 
peripheral layer on the flow characteristics while 
flowing through small vessels.

The organization of paper is as follows: The 
mathematical analysis of the problem along with 
requisite assumptions and notations has been 
provided in section 2. Section 3 presents the 
numerical results. Conclusion is given in section 4.

2. MATHEMATICAL ANALYSIS

Consider the axi-symmetric flow of blood in a 
uniform circular tube of radius R. The induced 
magnetic field is neglected. Blood is represented 
by a two-fluid model consisting of a core region 
(central layer) of suspension of all the erythrocytes 
assumed to be a particle-fluid mixture (i.e., a 
suspension of red cells in plasma) of radius R1 and 
a peripheral layer of plasma (Newtonian fluid) of 
thickness (R-R1) as depicts in Figure 1. The 
application of magneto-hydrodynamics in 
physiological problems is of growing interest. The 
flow of blood can be controlled by applying 
magnetic field of sufficient strength.

Figure 1. Flow Geometry of blood in vessels with 
magnetic effects

Under the simplified assumptions stated in [5], 
the governing equations of the flow are [7, 33-36]
as given below:   
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        where (r, z) are (radial, axial) coordinates, (uf, 
up) are the axial velocity of (fluid, particle) in core 
region (0 ≤ r ≤ R1), 0 0( , )u are the (viscosity , fluid 

velocity) in the peripheral region ( R1 ≤ r ≤ R), μs  ≅
μs (C) is the suspension viscosity in the core 
region, C denotes the constant volume fraction 
density of the particles (called hematocrit) and S is 
the drag coefficient of interaction between the two 
phases (fluid and particle). The expression for the 
drag coefficient of interaction S and empirical 
relation for the viscosity of suspension μs as given 
below[7, 37-39]:
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where ao is the radius of a particle and T is 
measured in absolute temperature.

The boundary conditions are the standard no-
slip conditions of velocities and shear stresses at 
the tube wall and the interface, and are given by:
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the shear stresses of the peripheral and central 
layers,  respectively.

The expressions for the velocities u0, uf and up   
obtained as the solutions of Equations (1) – (3),
using the boundary conditions (6) – (8), are given 
as:
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The flow flux (volumetric flow rate) is given by
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Substituting Equations (9) – (11) into Equation 
(12), the expression for flow flux as given by:
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    , a non-dimensional 

suspension parameter. The use of the fact that total 
flux is equal to the sum of the fluxes across the two 
regions (peripheral and   core) determines the 
relations [2, 40-42].

1R R (14)

Substituting Equations (14) into Equation (13), 
yields the following expression for the effective 
(apparent) viscosity as given below:
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where R1 = R (i.e., in the absence of the 
peripheral layer), above results reduces to the case 
of a single layered model of a particle-fluid 
suspension as given below:
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It is worth mentioning that in the absence of the 
particles (i.e., C = 0), the core mixture changes to 
the same fluid as in the peripheral region and thus 
the role of the peripheral layer automatically 

12 2

0
2 2

0

4 3(8 3 ) 3 39

2 (2 3 )

C C C M
S

a C


      





IJE Transactions A: Basics                                  Vol. 25, No. 2, April 2012 - 193

disappears. In addition, when core mixture behaves 
as a single-phase fluid of constant viscosity (i.e., 

1 0s    ), one obtains the same expression for 

effective viscosity derived from steady Newtonian 
fluid model of Bugliarello and Sevilla [11] as

0
4 ' 41eb


  


 

(17)

Equation (17) recovers the result obtained in 
Haynes [2] when μo = 1cp.

3. NUMERICAL RESULTS

In the present section, numerical results have been 
provided to explore the effects of various 
parameters on the velocity profiles, flow rate, etc. 
For this purpose, we develop a program coded in 
MATLAB software. The results have been 
numerically worked out for various combinations 
of the parameters involved in the solution. The 
corresponding results obtained from the theoretical 
model of Haynes [2], considering a two-phase fluid 
in the core region and experimentally tested steady 
flow model of the literature [2, 6, 11, 43] using a 
single- phase fluid (blood) of constant viscosity for 
a given hematocrit have been evaluated for the 
experimental values of the parameters available 
from the published literature of [6, 11, 43, 44] at 
25.5 0C. The value of α is calculated from the 

relation: α = 1- ε/R, in which ε ≅ ε (C) denotes the 
peripheral layer thickness for a given hematocrit 
[2].

Owing to the significance of viscosity, the 
effective viscosity at 20% and 40% hematocrit (red 
cell concentration) has been computed for different 
size blood vessels. The results obtained are 
arranged in Table 1 and compared with the 
corresponding theoretical values of Haynes [2] and 
Chaturani and Upadhya [13], and experimental 
values of Bugliarello and Sevilla [11]. For 
numerical computation of the results for effective 
viscosity given in Equation (15), the mixture 
viscosity μs has been computed using empirical 
relation (5) for two values of the pressure gradient,       
– dp/dz =67.5 dyne/mm3 and 76.0 dyne /mm3 The 
effective viscosity deviates from experimental 
value with increasing hematocrit and also with the 
vessel size. 

Effective Viscosity (cp)
Vessel 

Diameter (μm)
α Present

Haynes
[2]

Bugliarello & 
Sevilla [11]

Chaturani & 
Upadhya [13]

20% Hematocrit, ε=4.67 μm
20 0.382 1.211 1.247 1.245 1.261

30 0.588 1.240 1.340 1.334 1.389

40 0.766 1.265 1.429 1.420 1.511

70 0.866 1.315 1.753 1.607 1.679

100 0.906 1.340 1.753 1.723 1.869

40% Hematocrit, ε=3.12 μm
20 0.688 1.243 1.423 1.391 1.445

30 0.792 1.282 1.656 1.581 1.709

40 0.844 1.390 1.979 1.741 2.080

70 0.910 1.355 2.307 2.075 2.440

100 0.937 1.377 2.624 2.272 2.667

However, one notices that present model 
exhibits Fahraeus – Lindqvist effect (i.e., apparent 
viscosity of blood decreases with decreasing 
diameter of blood vessel). The axial velocity 
profiles (uf, up and uo) computed from the present 
theory (Equations (9) – (11), the corresponding 
model derived (using erythrocytes-plasma 
suspension to represent blood in the core region 
similar to the present proposed model) from 
Haynes [2] and the steady flow model of 
Bugliarello and Sevilla [11] at 20% and 40%
hematocrit are displayed graphically in Figures 2
and 3 respectively. To evaluate the results obtained 
for velocity profiles in Haynes [2] and Bugliarello 
and Sevilla [11], the mixture viscosity (or blood 
viscosity) has been taken to be 2.18 cp and 3.10 cp 
for 20% and 40% hematocrit, respectively from 
published literature [6, 11, 43, 45].

Figure 2. Velocity Profiles at 20 %  Hematocrit in the 
blood vessels diameter 40 ml micron  and Hartmann 
number (M) =1.0.

TABLE 1. Experimental results compared with literature 
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Figure 3. Velocity Profiles at 20 % Hematocrit in the 
blood vessels diameter 40 ml micron Hartmann number 
(M) =1.0.

The volumetric flow rate( Q) vs pressure 
gradient (–dp/dz) computed from the proposed 
model (Equation (13)) and the experimentally 
tested models [11, 46, 47] at 20% and 40%
hematocrits have been plotted in Figure 4. It may 
be noted that the magnitudes of the flow rate (Q)
obtained in the proposed theory are in reasonable 
agreement with the corresponding value obtained 
in the literature [11, 48, 49], particularly for low 
pressure gradients. To emphasize further on the 
study presented above, volumetric flow rate Q vs 
pressure gradient –dp/dz for normal and diseased 
blood (Hb SS, plasma cell dycrasias, hypertension 
(controlled), hypertension (uncontrolled) and 
polycythemia) in a 70μm diameter vessel using the 
present theoretical approach and the experimental 
data available from published literature [11, 45, 
50] has been shown in Figure 5 and compared with 
the corresponding values obtained in Bugliarello 
and Sevilla [11]. Various values of the parameters 
used for the purpose are arranged in Table 2.

Figure 4. Pressure flow rate relationship in a 40 mili 
micron diameter blood vessels for various hematocrit 
and Hartmann Number (M) =1.08

Figure 5. Flow rate for normal and diseased blood in 70     
milimicron blood vessel diameter    

TABLE 2. Experimental data for diseased and normal 
blood in 70 m diameter vessels [50] 

Disease Hematocrit
(%)

0
(cp)

s 

Hb SS(Sickle cell) 24.81 1.31 5.15 0.795

Plasma cell dycrasias 28.00 3.08 5.44 0.817

Normal Blood 42.61 1.25 4.04 0.921

Hypertension (Uncontrolled) 43.29 1.53 5.16 0.925

Hypertension (Uncontrolled) 43.31 1.29 4.87 0.929

Polycythemia 63.20 1.51 7.70 0.991

The flow rates obtained from the study deviate 
from those reported by Bugliarello and Sevilla 
[11], with increasing values of the pressure 
gradient and also with increasing hematocrit.

4. CONCLUSION

The present algorithm is economica; and efficient,
having a sharp convergence. The magnetic field 
reduces the stress. A two-layered model 
consisting of a core region of suspension of all the 
erythrocytes in plasma (i.e., particle- fluid mixture) 
and a peripheral layer of plasma (Newtonian fluid) 
has been proposed to describe blood flow in small 
diameter vessels with magnetic effects. It is 
however felt that a considerable amount of further 
research is essential to make the model useful for 
higher parameter values (hematocrit and vessel 
size) and to overcome the discrepancies of some 
other approximations used in the formulation. It is
hoped that our investigation may be helpful for the 
medical practitioners and other persons in the area
of bio fluid dynamics to understand the flow of
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blood in the presence of magnetic effects. The 
results derived may be useful for hypertension 
patients through magnetic therapy. It is clear from 
the above discussion that magnetic field affects 
largely on the  flow velocities of blood and 
viscosity. So,by taking appropriate values of 
magnetic field we may regulate the  velocities and 
volumetric flow rate. The present work studied
magnetic effect of blood flow through small vessel, 
which is of great interest for the purpose of 
medical sciences. Magnetic field applied is 
affecting the flow of blood through small vessel,
which is useful for the problem like blood pressure 
hypertension etc. Applications of magnetic effects 
of blood flow through small vessel is showing the 
variations in temperature of the object which is 
helpful for the purpose of thermal therapy in the 

5. ACKNOWLEDGEMENTS

Author is grateful to Greater Noida Institute of 
Technology, Greater Noida affiliated to Mahamaya 
Technical University, Noida (Uttar Pradesh), India 
for providing facilities and encouragement to 
complete this work. Also, the corresponding 
authors are thankful to the learned referees for their 
fruitful suggestions for improving the presentation 
of this work. The author would like to thanks Smt.  
Namita Varshney, Ridansh and Siddika for 
providing emotional happiness during this research 
work.

6. REFERENCES

1. Cokelet, G.R., “The rheology of human blood: In 
Biomechanics (Ed. Y.C. Fung et al.)”, Prentice Hall, 
Englewood Cliffs, New Jersey, (1972), 145-150.

2. Haynes, R.H., “Physical basis of the dependence of 
blood viscosity on tube radius”, American Journal of 
Physiology, Vol. 198, (1960), 1193–1205.

3. Skalak, R., “Mehanics of microcirculation: In 
Biomechanics, Its foundation and Objectives” (Ed. Y.C. 
Fun), Prentice- Hall Publ. Co., Englewood cliffs, 
(1972), 63–103.

4. Casson, N.A., “Flow equation of pigment oil suspension 
of printing ink type: In Rheology of Disperse Systems 
(Ed. C. C. Mill)”, Pergamon Press, London, (1959), 84–

120.
5. Srivastava, L.M., and Srivastava., V.P., “On two-phase 

model pf pulsatile blood flow with entrance effects”, 
Biorheology, Vol. 20, (1983), 761–777.

6. Srivastava, L.M., Edemeka, U.E. and Srivastava., V.P., 
“Particulate suspension blood flow under external body 
acceleration”, International Journal of Biomedical 
Computing, Vol. 37, (1994), 113–129.

7. Srivastava, V.P., “Particle – fluid suspension model of 
blood flow through stenotic vessels”, International 
Journal of Biomedical Computing, 38, (1995), 141–
154. 

8. Srivastava, V.P., “Particulate suspension blood flow 
through stenotic arteries: effect of hematocrit and 
stenosis shape”, Indian Journal of Pure and Applied 
Mathematics, Vol. 33, (2002), 1353-1360.

9. Jung, J., Hassanein, A. and Lyczkowshi, R.W., 
“Hemodynamic computation using multiphase flow 
dynamics in right coronary artery”, Annals of 
Biomedical Engineering, Vol. 34, (2006a), 393-402. 

10. Jung, J., Lyczkowshi, R.W. Panchal, C.B. and 
Hassanein, A., “Hemodynamic simulation of pulsatile 
flow in a coronary artery”, Journal of Biomechanics, 
Vol.  39, (2006b), 2064-2073. 

11. Bugliarello, G., and Sevilla, J., “Velocity distribution 
and other characteristics of steady and pulsatile blood 
flow in fine glass tubes”, Biorheology, Vol. 7, (1970), 
85–107.

12. Chaturani, P., and Upadhya V.S., “On miropolar fluid 
model for blood flow through narrow tubes”, 
Biorheology, Vol. 16, (1979), 419-428. 

13. Chaturani, P., and Upadhya V.S., “A two-fluid model 
for blood flow through small diameter tubes with non-
zero couple stress boundary condition at the interface”, 
Biorheology, Vol. 18, (1981), 245-253.

14. Pralhad, R.N., and Schultz, T.J., “Two-layered blood 
flow in stenosed tubes for different diseases”,
Biorheology, Vol.  (1988), 25, 715-726.

15. Srivastava, V. P., “Blood flow through stenosed vessels 
with a peripheral plasma layer and applications”, 
Automedica, Vol.18, (2000), 271-300. 

16. Srivastava, V.P., “Flow of a couple stress fluids 
representing blood flow through stenotic vessels with a 
peripheral layer”, Indian Journal of Pure and Applied 
Mathematics, Vol. 34, (2003), 1727-1740.

17. Sharma, G.C.  Jain, M. and Kumar, A., “Finite element 
Galerkin’s approach for a computational study of 
arterial flow”, International Journal Applied 
Mathematics and Mechanics, Vol.22 No. 9, (2001), 
1012-1018.

18. Sharma, G. C., Jain, M., and Kumar, A., “MHD flow in 
stenosed artery”, Proceedings in Int. Conf. on 
Mathematical modelling Jan. 29-31 Rookee, (2001), 
683-687.

19. Sharan, M., and Popel, A.S., “A two-phase model for 
flow of blood in narrow tubes with increased effective 
viscosity near the wall”, Biorheology, Vol. 38, (2001), 
415-428.

20. Wang, C.Y., and Bassingthwaighte, J. B., “Blood flow 
in small curved tubes”, Journal of Biomechanical 
Engineering, Vol. 125, (2003), 910-913.

21. Kumar, A., Varshney, C.L. and Singh, V.P., “Analytical 

control the narrowing of small blood vessels that 
could lead to a heart attack.

small vessel disease involves medications to 
treatment of tumor, glands etc. The treatment for 



196 - Vol. 25, No. 2, April 2012 IJE Transactions A: Basics

study of blood flow with periodic body acceleration in 
the presence of magnetic field”, Society for 
Mathematical Biology Conference July 30 - August 2, 
2008, Centre for Mathematical Medicine, Fields 
Institute Toronto, Canada, (2008).

22. Kenjeres, S., “Numerical analysis of blood flow in 
realistic arteries subjected to strong non-uniform 
magnetic fields”, International  Journal of heat and 
fluid flow, Vol. 29, No. 3, (2008),752-764.

23. Kumar A., and Saket R.K., “Reliability of Convective 
Diffusion Process in Stenosis Blood Vessels”, Chemical 
product and process modeling, Vol. 3 No. 1, (2008), 1-
17.

24. Gupta A.K., “Finite Element Galerkin’s scheme for 
flow in blood vessels with magnetic effects, 
International Journal of Applied Systemic Studies”, 
Inderscience publishing, Vol. 2, No. 3, (2009), 284-
293.

25. Rathod, V.P., and Tanveer, S., “Pulsatile of couple 
stress fluid through a porous medium with a periodic 
body acceleration and magnetic field”, Bull. Malay. 
Math. Sci. Soc., Vol. 32, No. 2, (2009), 245-259.

26. Kumar, A., “Computational model of blood flow in the 
presence of atherosclerosis”, International Federation 
for Medical and Biological Engineering (IFMBE)
Conference, 6th World Congress on Biomechanics 
(WCB 2010) Edited C.T. Lim and J.C.H. Goh (Eds.): 
WCB 2010, IFMBE Proceedings, Vol. 31, (2010) 
1591–1594.

27. Gupta A.K., “Performance and analysis of blood flow 
through carotid artery”, International Journal of 
Engineering and Business Management, Vol. 3, No. 4, 
(2011), 1-6.   

28. Kumar A., “Performance modeling and Analysis of 
blood flow and cross-sectional area of an artery with 
magnetic effects”, 3rd International conference on 
Chemical engineering and Advanced Materials CEAM 
2011 –VF, November, (2011), 14-28, accepted.  .

29. Gupta, S., Gupta, M. and Singh, S.P., “Effect of radial 
viscosity variation on non-Newtonian flow of blood in a 
stenosed artery”, International Journal of Applied 
Mathematics and Mechancs, Vol. 8, No. 2, (2012), 51-
61. 

30. Akbar, N.S., and Nadeem, S., “Simulation of variable 
viscosity and Jeffrey fuid model for blood flow through 
a tapered artery with a stenosis”, Communications in 
Theoretical Physics, Vol. 57, (2012), 133–140.

31. Fung, Y.C., “Biomechanics, its scope, history and some 
problems of continuum mechanics in physiology”, 
Applied Mechanics Review, Vol. (1964), 21, 1-20.

32. Gupta, B.B., Enigma, K.M. and Jaffrey, M.Y., “A three 
layer semi – empirical model for blood flow and 
particulate suspension through narrow tubes”, ASME 
Journal of Biomechanical Engineering, Vol. 104, 
(1982) 129–135.

33. Drew, D.A., “Low concentration of two-phase flow near 
a stagnant point”, Physics Fluids, Vol. 17, (1974), 
1688-1691.

34. Lew, H.S., and Fung, Y.C., “Entry flow into blood 
vessels at arbitrary Reynolds number”, Journal of 

Biomechanics, Vol. 3, (1970), 23–30.
35. Misra, J.C., and Pandey, S.K., “Peristaltic flow of a 

multilayered power-law fluid through a cylindrical 
tube”, International Journal of Engineering Science,
Vol. 39, (2001), 387-402.

36. Muller, V.A., “Die mehrschichtige der 
fortpflonzungesges chwindigkeit and der damfung der 
druckwellen in dehnba ren rohren von deren 
wellenlange”, Helv. Physiology Pharmacology Acta, 
Vol. 9, (1951), 162-176.

37. Muller, V.A., “Die mehrschichtige rohrwand als model 
fur die aorta”, Helv. Physiology Pharmacology Acta, 
Vol. 17, (1959), 131–145.

38. Merril, E.W., Cokelet, G.R. Britten, A. and Wells, R.E., 
“Non-Newtonian rheology of human blood – effect of 
fibrinogen deduced by subtraction”, Circulation 
Research, Vol. 13, (1963), 48–56.

39. Womersley, J.R., “Oscillatory flow in arteries. I. The 
constrained elastic tube as a model of arterial flow and 
pulse transmission. II. The reflexion of pulse wave at 
junctions and rigid inserts in the arterial system”, 
Journal of Medicine and Biology, Vol. 2, (1958),178–
187, 

40. Haynes, R.H., and Burton, A.C., “Role of non-
Newtonian behavior of blood in homodynamic”, 
American Journal of Physiology, Vol. 197, (1959), 
943–952.

41. Hershey, D., Byrnes, R.E. Deadens, R.L. and Roam 
A.M., “Blood theology: temperature dependent of the 
power law model” Presented at the A.I.CH.E. Meeting, 
Boston, (1964).

42. Hershey, D. and Chow S.J., “Blood flow in rigid tubes: 
thickness and slip velocity of plasma film at the wall”, 
Journal of Applied Physiology, Vol. 21, (1966), 27–36.

43. Sud, V.K. and Sekhon, G.S., “Arterial flow under 
periodic body acceleration”, Bulletin of Mathematical 
Biology, Vol. 47, (1985), 35– 52.

44. Charm, S.E., and Kurland G.S., “Blood Flow and 
Microcirculation”, Wiley, New York, (1974).

45. Womersley, J.R., “Method for the calculation of 
velocity, rate of flow and viscous drag in arteries when 
the pressure gradient is known”, Journal of  
Physiology, Vol.127, (1954), 38–51.

46. Merrill, E.W., Cokelet, G.R., Britten, A. and Wells, 
R.E., “Rheology of human blood and red cells plasma 
membrane”,  Biophysiology Anat, Vol. 4, (1964), 51–
63.

47. Huckaback, C.E., and Hahn A.W., “A generalized 
approach to the modeling of arterial blood flow”, 
Journal of Applied Physiology, Vol. 27, (1968), 27–34.

48. Womersley, J.R., “Oscillatory motion of a viscous 
liquid in a thin walled elastic tube, I. The linear 
approximation for long waves”, Philosophical 
Magzine, Vol. 46, (1955), 199– 221.

49. Womersley, J.R., “An elastic theory of pulse 
transmission and oscillatory flow in mammalian 
arteries”. WADC Report TR – 56-614, (1957).

50. Shu, C., “Hemorheology in clinical medicine”, Clinical 
Hemo-rheology, Vol.  2, (1982), 137–142. 


