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Abstract     This investigation deals with a software reliability model based on Markov process. For 
formulating the model, we define a random variable representing the cumulative number of faults 
successfully corrected upto a specified point of time. This model is based on the assumption that there 
are two types of software failures. Further the concepts of imperfect debugging environment and error 
generation phenomenon are taken into consideration. Transient analysis based on Laplace transform 
and matrix approach has been done to find the solution of the system of differential difference 
equations. Several performance indices for software reliability assessment are derived for this model. 
Numerical results with the help of Runge-Kutta Method show that the proposed framework 
incorporating both concepts of imperfect debugging phenomenon and error generation for two types 
of faults has a fairly accurate prediction capability.

Keywords    Software reliability; Imperfect debugging; Error generation; Markov process;

Software reliability growth.

فرموله  براي. پردازدمی مارکوف فرایند بر اساساین مقاله به بررسی قابلیت یک مدل نرم افزاري      چکیده

 مشخص از زمان یک نقطه در موفقیت کل خطاهایی که با تعداد به نمایندگی از تصادفی یک متغیر، کردن روش

. دارد وجود نرم افزار از شکست نوعدو : باشداین فرض می اساس بر این مدل .تعریف کنیم تصحیح شده است

بر  آنالیز گذرا. است شده گرفته در نظر  و پدیده ایجاد خطا ناقص اشکال زدایی محیط مفاهیم علاوه بر این

دیفرانسیلی انجام شده  معادلات تفاضل سیستم راه حل براي پیدا کردن ماتریس روش و تبدیل لاپلاس اساس

 .مشتق شده است براي این مدل نرم افزار قابلیت اطمینان ارزیابی براي شاخص هاي عملکردي از تعدادي. است

 پدیده مفهوم دو هر ترکیب براي پیشنهادي چارچوب که نشان می دهدکوتا -رانگه روش با کمک عددي نتایج

.است تريدقیق نسبتا پیش بینی قابلیت دارايخطا   نوع دو براي خطا ناقص و تولید اشکال زدایی

1. INTRODUCTION

Software engineers generally need a period of time 
to read, and analyze the collected software failure 
data. Software reliability models based on 
stochastic process have gained wide acceptance in 
the software industry because they are useful 
engineering tools to analyze and to correct the 
faults. Software reliability estimates are generally 
made by building probability models of data 

collected during testing. The extent to which 
software reliability is influenced by factors that can 
be controlled by the software developer is not 
obvious. We seek a more fundamental approach 
that directly relates influence factors to the 
stochastic model’s parameters. Software reliability 
growth models have high validity and usefulness 
for software development or operation phase. 
Markov models have been proved to be very useful 
in many practical applications and there are several 
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related models available in the literature related to 
SRGMs. For the first time Jelinski and Moranda 
[11] introduced such a model. Later in the field of 
software engineering similar models were 
attempted by Musa [17] and Shooman [20] and 
many others. Tokuno and Yamada [22] discussed
the modeling of markovian software availability in 
their exhaustive research article. Non-
Homogeneous markov reward model for a multi-
state system reliability assessment with different 
assumptions was developed by Whittaker et al. 
[27], Lisnianski [13], Lisnianski et al. [15], 
Lisnianski and Frenkel [14]. Hamlet et al. [8]
studied component based software reliability 
theory. Gokhale and Trivedi [5] discussed
analytical models for architecture-based software 
reliability prediction. Dohi et al. [3] developed
software reliability assessment models based on 
cumulative Bernoulli trial processes. Prowell and 
Poore [18]] computed system reliability using 
markov chain usage models. Chung and Ortega [2]
analyzed the error tolerant motion estimation. 
Ravishanker et al. [19] studied NHPP models with 
markov switching for software reliability. Jalote et 
al. [10] discussed post-release reliability growth in 
software products. Huang and Hung [9] analyzed 
software reliability assessment using queueing 
models with multiple change-points. Recently in 
[4] Dulz et al. gave a polyhedron approach to 
calculate probability distributions for markov chain 
usage models.

In the case of software reliability, two major 
issues confound to estimate software reliability, i.e.
imperfect debugging and error generation. This 
concept in a software reliability modeling is a 
controversial issue. No real world software 
company possesses infinite resources to test and 
correct every software fault in the real world. 
However, a Markov model approach in this regard 
may be worthwhile and useful to deal with such a 
situation.

There are several reasons for using NHPP 
models or hazard rate models in a specific 
situation. Generally, models are developed for the 
analysis of failure data collected during the testing 
stage then we develop our model analytically with 
the help of NHPP models or hazard rate models. 
These group of models provides an analytical 
framework for describing the software failure 
phenomenon during testing phase and with the 
help of these group of models we can estimate the 

future behavior of the software system.
One common assumption of conventional 

software reliability modeling is that the detected 
faults are immediately removed; but this
assumption may not be realistic in actual software 
development. In reality, most latent faults may 
remain uncorrected for a very long time, even after 
they are detected by professional testers, which 
increase their impact. Kapur et al. [12] obtained the 
transient solution of a software reliability model 
with imperfect debugging and error generation. 
Yamada et al. [28] did the software reliability 
measurement in imperfect debugging environment 
and also discussed its application. Gokhale et al. 
[6] developed a non-homogeneous markov 
software reliability model with imperfect repair. 
Sridharan and Jayashree [21] considered a transient 
solution of a software model with imperfect 
debugging and generation of errors by two servers. 
Tokuno and Yamada [23]] studied a markovian 
software reliability model with a decreasing perfect 
debugging rate. Tokuno and Yamada [24]
established the imperfect debugging model with 
two types of hazard rates for software reliability 
measurement and assessment. Tokuno and Yamada 
[25] suggested the markovian software reliability 
measurement with geometrically decreasing 
perfect debugging rate. Tokuno and Yamada [26]
proposed the relationship between software 
availability measurement and the number of 
restorations with imperfect debugging. Gupta and 
Singh [7] estimated software reliability by 
sequential testing with simulated annealing of 
mean field approximation. Mathematical modeling 
of software reliability testing with imperfect 
debugging was discussed by Cai et al. [1]. 
Meedeniya et al. [16] derived reliability 
deployment optimization technique for embedded 
systems.

Most specifically, we develop a broader class of 
SRGMs for two types of faults at each discrete 
time point with imperfect debugging and error 
generation behavior. This paper is organized as 
follows: Section 2 provides the description of 
Markov model along with assumptions and 
notations. In section 2.1 and 2.2, we construct the 
governing equations of the proposed model and 
specifically for an illustration, respectively. 
Solution approach including Laplace transform and 
matrix method is described in section 3. Section 4
is devoted to the performance measures. Numerical 
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results are obtained in section 5 with the help of R-
K and matrix method. To explore the effects of 
different parameter, the sensitivity analysis is also 
carried out. Finally conclusions are drawn in 
section 6.

2. MODEL DESCRIPTION

A stochastic model is sought that represents the 
injection (due to the occurrence of development 
and debugging errors) and removal (due to 
successful repairs) of software. The stochastic 
behavior of the fault correction phenomenon with 
imperfect debugging is described by a Markov 
process. In this investigation, we assume that there 
exist two types of faults in the software such as
(i) Due to originally latent in the system before 

the testing.
(ii) Due to generated during the testing phase and 

the error generation phenomenon never leads
the software to having infinite errors.

We develop a software model by making the 
following assumptions:
 The software has a finite number of two types 

of faults; there are m faults of type I whereas
n faults of type II.

 The probability that two or more software 
failures occur simultaneously is negligible.

 The failure rate is proportional to the number 
of fault remaining in the software.

 The debugging process is performed as soon 
as the software failure occurs.

 When the debugging process is performed, at 
most one fault is corrected and the fault 
correction time is considered negligible.

 The maximum number of faults in the 
software never exceeds a finite limit, i.e.,
m<M, n<N.

 When a failure occurs, an instantaneous 
repair effort starts and the following cases 
arise;

(i). The fault content function is reduced by one 
for type I faults with probability p0.

(ii). The fault content function remains 
unchanged for type I faults with probability 
p1.

(iii). The fault content function is increased by one 
for type I faults with probability p2.

(iv). The fault content function is reduced by one 
for type II faults with probability q0.

(v). The fault content function remains 
unchanged for type II of faults with 
probability q1.

(vi). The fault content function is increased by one 
for type II faults with probability q2.

 The debugging activity is performed without 
distinguishing between both types of faults.

Notations

α : Failure rate per remaining software fault for 
type I faults.

β : Failure rate per remaining software fault for     
type II faults.

m : Initial fault content for I type of faults.
M :  Maximum fault content for I type of faults.
n :  Initial fault content for the II type of faults.
N :  Maximum fault content for II type of faults.
Fij(t):Probability that there are i(j) faults of 
         type I (II) in the software at time t.
         where     0 0i i M and j j N     

   
            

2.1. Governing Equations     The transient 
equations governing the model are constructed by 
considering the transition flow rates. The 
differential difference equations associated with 
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the various states are as follows (for balance  
equations are based on transition diagram in Fig 1):
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2.2. Illustration     In this section, for illustration 
purpose we present a markov model for two types 
of errors where maximum number of faults of each 
type are five (i.e. M=N=5). The differential 
difference equations related to this particular case 
are as follows:
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3. THE SOLUTION APPROACH

We denote the Laplace transform of ( )ijf t by ( )ijf s . 

For solving the set of equations governing the 

(16)-(36) and solve using matrix method with 
initial conditions (0) 1, (0) 0k nf f for n k   .    F (t)  q F (t) 2q F (t)  p F (t) 

model, we take Laplace transforms of equations 
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Fig 1. State transition diagram
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For brevity, we denote the probabilities ,i jF and 

Laplace transform of probabilities  ,i jF s with 

single suffix i.e. by Fi as defined and  iF s , 

respectively below:

   ,0 1 ,0 1, , 0 5i i i iF F F s F s i      ;   

   ,1 6 1 ,1 6 1, , 0 4i i i iF F F s F s i        ;  
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 Q( ). ( ) 0s F s F                                                (58)

where,  F s and  0F are the column vector i.e.,

       1 2 21, ,... TF s F s F s F s   
    and    0 1,0,0,..., 0 TF 

Also Q(s) is matrix given by
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Here submatrices A (i=1,2,……9) are constructed 
for particular case as follows:

(52)

      1 03 

q F (s)  2 p F (s)

     0

The system of Eqs (37)-(57) reduces to matrix 
form as
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For brebiely of notations, in sub matrices, we have 
used

   1 11i q i p         , i=1, 2, 3   

   1 11 1i i q p        , i=4, 5, 6
            

Using Cramer’s rule, the probabilities  kF s , can 

be obtained as 

  1 ( )
, 0

( )
k

k

Q s
F s k L

Q s
                         (59)

For calculating the characteristic roots of the 
matrix Q(s), we note that 
s = 0 is one of the roots. Let s = -d, so that we get

   Q d Q dI                                       (60)  
                                         

     . ( ) ( ) 0Q d F s Q dI F s F                          (61)

It may be observed that the eigen values of Q 
are real and distinct and Q is positive definite. So, 
all eigen values of Q are positive. Let  1k k L  

denotes the eigen values of Q, then we get
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so that                            
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We may expand k ( )F s by partial fractions, i.e., in 
the form
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where 0a and na (n=1,2,…..L) are real numbers 
calculated as
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and (60), we get

 
1 1

1
1

1 1

(0) ( ) exp( )
( )

L
k k

L L
k

k k j k
k j

k

Q Q t
F t

 

   

 


 
 




 
                 (68)

                        

 
1

1

1

( ) exp( )
( ) , 2

L
l k k

l L
k

k j k
j
k

Q t
F t where l L

 

  








 
   





        (69)

4. PERFORMANCE INDICES

Now we give some performance measures for the 
quantification of software reliability indices as 
follows:

The probability of a perfect program at time t 
is given by F1(t).

The mean number of faults remaining in the 
software at time t is given as

    
1

L

i
i

E D t iF t


                                            (70)

The software reliability is defined as
                                 

       
1

exp
L i

i
i

R x t F t x 


                     (71)

5. SENSITIVITY ANALYSIS

Since no live data is available so instead of 
estimating the parameters we have used the 
secondary data for validity and practical utility of 
our model (Ref. Kapur et al. 1992).

In this section, we perform computational 
experiment for the transient analysis by employing 
Runge-Kutta technique (RKT) of fourth order and 
matrix method to solve the system of differential 
equations. R-K method is implemented by 
exploiting MATLAB’s ‘ode45’ function. A time 
span is considered with equal intervals. Eigen 

On taking inverse Laplace transform of Eqs (59) 

On inverting Eq (63), we have 

Now Eq (58) becomes 
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values are evaluated by the using MATLAB’6.5
software. For illustration purpose, we choose 
default parameters as  0.49,   0.02, p0=0.6, 
p1=0.3, p2=0.1, q0=0.5, q1=0.3, and q2=0.2.

From Tables 1 and 2, we notice the patterns of 
various performance indices namely R(t) and 
E{D(t)}  by varying the probabilities p0, p1, p2 and 
q0, q1, q2, respectively. It is observed that there is 
an increasing trend in the values of R(t) and 
decreasing trend in E{D(t)}  with the increasing 
values of p0 and q0.

Table 1. Software reliability and E{D(t)} for different 
values of p0, p1and p2.

p0 p1 p2 t R(t) E{D(t)}

0.6 0.25 0.15

0 0.787 12.000
1 0.852 8.122
2 0.897 5.591
3 0.926 3.950
4 0.946 2.893
5 0.958 2.213

0.7 0.2 0.1

0 0.787 12.000
1 0.852 8.122
2 0.897 5.591
3 0.926 3.950
4 0.946 2.893
5 0.958 2.213

0.8 0.13 0.07

0 0.787 12.000
1 0.852 8.122
2 0.897 5.591
3 0.926 3.950
4 0.946 2.893
5 0.958 2.213

Table 2. Software reliability and E{D(t)} for different 
values of q0, q1and q2.

q0 q1 q2 t R(t) E{D(t)}

0.6 0.3 0.1

0 0.787 12.000
1 0.858 7.848
2 0.904 5.227
3 0.933 3.596
4 0.951 2.589
5 0.963 1.971

0.7 0.2 0.1

0 0.787 12.000
1 0.868 7.238
2 0.917 4.494
3 0.945 2.944
4 0.961 2.078
5 0.969 1.596

0.8 0.13 0.07

0 0.787 12.000
1 0.880 6.542
2 0.930 5.591
3 0.956 3.950
4 0.968 2.893
5 0.974 2.213

The effects of failure rates α and β on I and II type 
faults, are shown in Tables 3 and 4. As expected, 
reliability R (t) increases with testing time whereas 
decreases with the increase in the failure rate α. 
Mean number of remaining faults decreases as 
testing time increases but remains same for the 
increasing values of failure rate α.

Table 3. Performance indices for different values of α.

α=0.01 α =0.03 α =0.05

t R(t) E{D(t)} R(t) E{D(t)} R(t) E{D(t)}

0 0.698 12.000 0.549 12.000 0.432 12.000

1 0.796 7.848 0.691 7.848 0.603 7.848

2 0.862 5.227 0.787 5.227 0.724 5.227

3 0.903 3.596 0.850 3.596 0.803 3.596

4 0.929 2.589 0.889 2.589 0.852 2.589

5 0.945 1.971 0.913 1.971 0.883 1.971

6 0.955 1.593 0.928 1.593 0.902 1.593

7 0.961 1.362 0.937 1.362 0.914 1.362

Table 4. Performance indices for different values of β.

β=0.5 β =0.6 β =0.7

t R(t) E{D(t)} R(t) E{D(t)} R(t) E{D(t)}

0 0.000 12.000 0.000 12.000 0.000 12.000

1 0.071 7.848 0.073 7.524 0.074 7.215

2 0.167 5.227 0.166 4.832 0.164 4.473

3 0.240 3.596 0.233 3.238 0.223 2.929

4 0.289 2.589 0.275 2.303 0.258 2.067

5 0.321 1.971 0.300 1.757 0.279 1.590

6 0.340 1.593 0.315 1.439 0.290 1.326

7 0.352 1.362 0.324 1.255 0.296 1.180

Figs 2a and 2b depict the trend of probability of 
perfect program for different parameters α and β. It 
is noticed that the accuracy of the software 
increases as testing time increases. We also notice 
that there is no significant change with the 
increasing values of α but as β increases, the 
probability of perfect program increases for some 
time, and finally becomes constant.
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Fig 2a. Probability of perfect program at time t by 

varying α.

  
Fig 2b. Probability of perfect program at time t by 

varying β.         

Figs 3a and 3b are plotted for the reliability by 
varying α and β for I and II type of faults, 
respectively. From Fig 3a, we notice that the 
reliability decreases as α increases. But in Fig 3b, 
initially reliability increases with the testing time 
and remains almost same with the increasing the 
value of β.

        
            
           Fig 3a. Software reliability by varying α

       
Fig 3b. Software reliability by varying β

From Figs 4a and 4b, mean number of 
remaining faults E{D(t)} has been examined by 
varying the parameters α and β. It is seen that 
E{D(t)} decreases as time increases but remains 
same for all values of α and β.

Fig. 4a. Mean number of faults remaining by varying α.

Fig. 4b. Mean number of faults remaining by varying β.

Overall, with the help of numerical results we 
observe that the optimal release time of the 
software can be determined successfully. For 
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example, if the initial error content function is 
assumed to be 12, we can notice from the Figs 4a 
and 4b that E{D(t)} ≤ 12. This means that the 
software developer can decide the time to a 
specific software quality level with the condition 
that the reliability may reach at a maximum level. 
Similar conclusions for other performance 
measures are also evident from the other figures
and tables.

Based on the sensitivity analysis which has 
been given in this paper, one can estimate the idea 
about the release time of the software. For 
example, from Tables 9.3 and 9.2, we see that as 
remaining faults in the software are becoming less 
then reliability of the software is increasing and 
finally it became constant that shows the real 
situation of testing the software. In that sense, the 
markovian software reliability model with 
imperfect debugging and generation of errors 
proposed in this paper are intuitively 
understandable and can provide to a software 
developer a more tractable framework for 
developing a real time situation assessment tools in 
spite of their simple structure. 

6. CONCLUSION

In this paper, we have developed the markovian 
software reliability model by including the concept 
of imperfect debugging and error generation 
phenomenon. The suggested approach is suitable 
for practical application in reliability engineering. 
Our stochastic model provides a theoretical 
framework during the software development for 
understanding the factors that affect the software 
reliability. The suggested model may be helpful in 
measuring and assessing the software reliability, 
during operational phase.
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