
IJE Transactions A: Basics Vol. 25, No. 2, April 2012 - 177

MARKOVIAN SOFTWARE RELIABILITY MODEL FOR TWO
TYPES OF FAILURES WITH IMPERFECT DEBUGGING RATE

AND GENERATION OF ERRORS

M. Jain

Department of Mathematics, IIT, Roorkee- 247667 (India)
madhufma@iitr.ernet.in, drmadhujain@yahoo.co.in

S. C. Agrawal, P. Agarwal*

School of Basic and Applied Sciences, Shobhit University, Meerut-250001, (India)
scagrawal7@rediffmail.com, priyanka1354@gmail.com

*Corresponding Author

(Received: November 25, 2010 – Accepted in Revised Form: January 19, 2012)

doi: 10.5829/idosi.ije.2012.25.02a.07

Abstract This investigation deals with a software reliability model based on Markov process. For
formulating the model, we define a random variable representing the cumulative number of faults
successfully corrected upto a specified point of time. This model is based on the assumption that there
are two types of software failures. Further the concepts of imperfect debugging environment and error
generation phenomenon are taken into consideration. Transient analysis based on Laplace transform
and matrix approach has been done to find the solution of the system of differential difference
equations. Several performance indices for software reliability assessment are derived for this model.
Numerical results with the help of Runge-Kutta Method show that the proposed framework
incorporating both concepts of imperfect debugging phenomenon and error generation for two types
of faults has a fairly accurate prediction capability.

Keywords Software reliability; Imperfect debugging; Error generation; Markov process;

Software reliability growth.

فرموله براي. پردازدمی مارکوف فرایند بر اساساین مقاله به بررسی قابلیت یک مدل نرم افزاري چکیده

 مشخص از زمان یک نقطه در موفقیت کل خطاهایی که با تعداد به نمایندگی از تصادفی یک متغیر، کردن روش

. دارد وجود نرم افزار از شکست نوعدو : باشداین فرض می اساس بر این مدل .تعریف کنیم تصحیح شده است

بر آنالیز گذرا. است شده گرفته در نظر و پدیده ایجاد خطا ناقص اشکال زدایی محیط مفاهیم علاوه بر این

دیفرانسیلی انجام شده معادلات تفاضل سیستم راه حل براي پیدا کردن ماتریس روش و تبدیل لاپلاس اساس

 .مشتق شده است براي این مدل نرم افزار قابلیت اطمینان ارزیابی براي شاخص هاي عملکردي از تعدادي. است

 پدیده مفهوم دو هر ترکیب براي پیشنهادي چارچوب که نشان می دهدکوتا -رانگه روش با کمک عددي نتایج

.است تريدقیق نسبتا پیش بینی قابلیت دارايخطا نوع دو براي خطا ناقص و تولید اشکال زدایی

1. INTRODUCTION

Software engineers generally need a period of time
to read, and analyze the collected software failure
data. Software reliability models based on
stochastic process have gained wide acceptance in
the software industry because they are useful
engineering tools to analyze and to correct the
faults. Software reliability estimates are generally
made by building probability models of data

collected during testing. The extent to which
software reliability is influenced by factors that can
be controlled by the software developer is not
obvious. We seek a more fundamental approach
that directly relates influence factors to the
stochastic model’s parameters. Software reliability
growth models have high validity and usefulness
for software development or operation phase.
Markov models have been proved to be very useful
in many practical applications and there are several

178 - Vol. 25, No. 2, April 2012 IJE Transactions A: Basics

related models available in the literature related to
SRGMs. For the first time Jelinski and Moranda
[11] introduced such a model. Later in the field of
software engineering similar models were
attempted by Musa [17] and Shooman [20] and
many others. Tokuno and Yamada [22] discussed
the modeling of markovian software availability in
their exhaustive research article. Non-
Homogeneous markov reward model for a multi-
state system reliability assessment with different
assumptions was developed by Whittaker et al.
[27], Lisnianski [13], Lisnianski et al. [15],
Lisnianski and Frenkel [14]. Hamlet et al. [8]
studied component based software reliability
theory. Gokhale and Trivedi [5] discussed
analytical models for architecture-based software
reliability prediction. Dohi et al. [3] developed
software reliability assessment models based on
cumulative Bernoulli trial processes. Prowell and
Poore [18]] computed system reliability using
markov chain usage models. Chung and Ortega [2]
analyzed the error tolerant motion estimation.
Ravishanker et al. [19] studied NHPP models with
markov switching for software reliability. Jalote et
al. [10] discussed post-release reliability growth in
software products. Huang and Hung [9] analyzed
software reliability assessment using queueing
models with multiple change-points. Recently in
[4] Dulz et al. gave a polyhedron approach to
calculate probability distributions for markov chain
usage models.

In the case of software reliability, two major
issues confound to estimate software reliability, i.e.
imperfect debugging and error generation. This
concept in a software reliability modeling is a
controversial issue. No real world software
company possesses infinite resources to test and
correct every software fault in the real world.
However, a Markov model approach in this regard
may be worthwhile and useful to deal with such a
situation.

There are several reasons for using NHPP
models or hazard rate models in a specific
situation. Generally, models are developed for the
analysis of failure data collected during the testing
stage then we develop our model analytically with
the help of NHPP models or hazard rate models.
These group of models provides an analytical
framework for describing the software failure
phenomenon during testing phase and with the
help of these group of models we can estimate the

future behavior of the software system.
One common assumption of conventional

software reliability modeling is that the detected
faults are immediately removed; but this
assumption may not be realistic in actual software
development. In reality, most latent faults may
remain uncorrected for a very long time, even after
they are detected by professional testers, which
increase their impact. Kapur et al. [12] obtained the
transient solution of a software reliability model
with imperfect debugging and error generation.
Yamada et al. [28] did the software reliability
measurement in imperfect debugging environment
and also discussed its application. Gokhale et al.
[6] developed a non-homogeneous markov
software reliability model with imperfect repair.
Sridharan and Jayashree [21] considered a transient
solution of a software model with imperfect
debugging and generation of errors by two servers.
Tokuno and Yamada [23]] studied a markovian
software reliability model with a decreasing perfect
debugging rate. Tokuno and Yamada [24]
established the imperfect debugging model with
two types of hazard rates for software reliability
measurement and assessment. Tokuno and Yamada
[25] suggested the markovian software reliability
measurement with geometrically decreasing
perfect debugging rate. Tokuno and Yamada [26]
proposed the relationship between software
availability measurement and the number of
restorations with imperfect debugging. Gupta and
Singh [7] estimated software reliability by
sequential testing with simulated annealing of
mean field approximation. Mathematical modeling
of software reliability testing with imperfect
debugging was discussed by Cai et al. [1].
Meedeniya et al. [16] derived reliability
deployment optimization technique for embedded
systems.

Most specifically, we develop a broader class of
SRGMs for two types of faults at each discrete
time point with imperfect debugging and error
generation behavior. This paper is organized as
follows: Section 2 provides the description of
Markov model along with assumptions and
notations. In section 2.1 and 2.2, we construct the
governing equations of the proposed model and
specifically for an illustration, respectively.
Solution approach including Laplace transform and
matrix method is described in section 3. Section 4
is devoted to the performance measures. Numerical

IJE Transactions A: Basics Vol. 25, No. 2, April 2012 - 179

results are obtained in section 5 with the help of R-
K and matrix method. To explore the effects of
different parameter, the sensitivity analysis is also
carried out. Finally conclusions are drawn in
section 6.

2. MODEL DESCRIPTION

A stochastic model is sought that represents the
injection (due to the occurrence of development
and debugging errors) and removal (due to
successful repairs) of software. The stochastic
behavior of the fault correction phenomenon with
imperfect debugging is described by a Markov
process. In this investigation, we assume that there
exist two types of faults in the software such as
(i) Due to originally latent in the system before

the testing.
(ii) Due to generated during the testing phase and

the error generation phenomenon never leads
the software to having infinite errors.

We develop a software model by making the
following assumptions:
 The software has a finite number of two types

of faults; there are m faults of type I whereas
n faults of type II.

 The probability that two or more software
failures occur simultaneously is negligible.

 The failure rate is proportional to the number
of fault remaining in the software.

 The debugging process is performed as soon
as the software failure occurs.

 When the debugging process is performed, at
most one fault is corrected and the fault
correction time is considered negligible.

 The maximum number of faults in the
software never exceeds a finite limit, i.e.,
m<M, n<N.

 When a failure occurs, an instantaneous
repair effort starts and the following cases
arise;

(i). The fault content function is reduced by one
for type I faults with probability p0.

(ii). The fault content function remains
unchanged for type I faults with probability
p1.

(iii). The fault content function is increased by one
for type I faults with probability p2.

(iv). The fault content function is reduced by one
for type II faults with probability q0.

(v). The fault content function remains
unchanged for type II of faults with
probability q1.

(vi). The fault content function is increased by one
for type II faults with probability q2.

 The debugging activity is performed without
distinguishing between both types of faults.

Notations

α : Failure rate per remaining software fault for
type I faults.

β : Failure rate per remaining software fault for
type II faults.

m : Initial fault content for I type of faults.
M : Maximum fault content for I type of faults.
n : Initial fault content for the II type of faults.
N : Maximum fault content for II type of faults.
Fij(t):Probability that there are i(j) faults of
 type I (II) in the software at time t.
 where 0 0i i M and j j N

2.1. Governing Equations The transient
equations governing the model are constructed by
considering the transition flow rates. The
differential difference equations associated with

00 0 10 0 01() () ()F t p F t q F t (1)

0 1 0 2 (1)0

0 (1)0 0 1

() () 1 ()

1 () () , 2 1

i i i

i i

F t i i p F t i p F t

i p F t q F t i M

(2)

0 0 0 2 0 0 (1)0

0 1 1

() 2 ()

() ,

i i i i

i i

F t p F p F p F t

q F t

(3)

 0 0 0 2 1 0() () 1 ()M M MF t M p F t M p F t
 (4)

0 0 0 2 0 0 1,

0 0(1) 1

() () () ()

2 ,

j j j j

j j

F t q F t q F t p F t

q F

(5)

0 1 0 2 0 1

0 1, 0 0(1)

() () 1 ()

() 1 , 2 1

j j j

j j

F t j j q F t j q F t

p F t j q F j N

(6)

0 0 0 2 0(1)() () (1) ()N N NF t N q F t N q F t (7)

1 1 1 1 2 11

2 (1)1 0 2

() () ()

1 () (), 2 2

i i

i i

F t q i i p F t p F t

i p F t i q F t i M

(8)

the various states are as follows (for balance
equations are based on transition diagram in Fig 1):

180 - Vol. 25, No. 2, April 2012 IJE Transactions A: Basics

 1 0 0 2 2 1

2 (1)1 0 2

() ()

2 () 2 (), 1

i i

i i

F t p q p q F t

p F t q F t i

(9)

0 01 1 1 1

2 (2)1

() 1 ()

2 ()

M M

M

F t q M p F t

M p F t

(10)

1 1 1 1

2 1(1) 0 2

0 1(1)

() ()

1 () 2 ()

1 (), 2 j N-2

j j

j j

j

F t p j j q F t

j q F t p F t

j q F t

(11)

0 01 1 1 1

2 1(2)

() 1 ()

2 ()

N N

N

F t p N q F t

N q F t

(12)

1 1

2 (1) 2 (1)

0 (1) 0 1

() ()

1 () 1 ()

1 () 1 , 2

i j i j

i j i j

i j i j

F t i i p j j q F t

i p F j j q F t

i p F t j q F t j

(13)

0 0

2 21 3, 2

1

1 ,

ij ij ij

iji j i M j N

F t i p F t i q F t

i q F t i p F t

(14)

0 0

2 21 2, 3

1

1 ,

ij ij ij

iji j i M j N

F t i p F t i q F t

q F t i p F t

(15)

2.2. Illustration In this section, for illustration
purpose we present a markov model for two types
of errors where maximum number of faults of each
type are five (i.e. M=N=5). The differential
difference equations related to this particular case
are as follows:

00 0 10 0 01() () ()F t p F t q F t (16)

 10 1 10 0 20 0 11() () 2 () ()F t p F t p F t q F t (17)

 20 1 20 2 10

0 30 0 21

() 2 2 () ()

3 () ()

F t p F t p F t

p F t q F t

(18)

 30 1 30 2 20

0 40 0 31

() 3 3 () 2 ()

4 () ()

F t p F t p F t

p F t q F t

(19)

 40 1 40 2 30

0 50 0 41

() 4 4 () 3 ()

5 () ()

F t p F t p F t

p F t q F t

(20)

50 0 50 2 40() 5 () 4 ()F t p F t p F t (21)

01 1 01 0 0 2 0 11 (22)

 11 1 1 11

0 12 0 21

() ()

2 () 2 ()

F t q p F t

q F t p F t

(23)

 21 1 1 21

2 11 0 22 0 31

() 2 2 ()

() 2 () 3 ()

F t q p F t

p F t q F t p F t

(24)

 31 1 1 31

2 21 0 32 0 41

() 3 3 ()

2 () 3 () 4 ()

F t q p F t

p F t q F t p F t

(25)

 41 0 0 41 2 31() 4 () 3 ()F t q p F t p F t (26)

 02 1 0 2 2 01

0 03 0 12

() 2 2 () ()

3 () ()

F t q F t q F t

q F t p F t

(27)

 12 1 1 12

2 11 0 13 0 2 2

() 2 2 ()

() 3 () 2 ()

F t q p F t

q F t q F t p F t

(28)

 2 2 1 1 22

2 21 0 23 0 32 2 12

() 2 2 2 2 ()

() 3 () 3 () ()

F t q p F t

q F t q F t p F t p F t

(29)

 32 0 0 32 2 31

2 22

() 3 3 () ()

2 ()

F t q p F t q F t

p F t

(30)

 03 1 03 2 0 2

0 0 4 0 13

() 3 3 () 2 ()

4 () ()

F t q F t q F t

q F t p F t

(31)

 13 1 1 13

2 12 0 14 0 23

() 3 3 ()

2 () 4 () 2 ()

F t q p F t

q F t q F t p F t

(32)

23 0 0 23 2 22

2 13

() 3 2 () 2 ()F t q p F t q F t

p F t

(33)

 0 4 1 0 4 2 03

0 05 0 14

() 4 4 () 3 ()

5 () ()

F t q F t q F t

q F t p F t

(34)

 14 0 0 14 2 13() 4 () 3 ()F t q p F t q F t (35)

05 0 05 2 04() 5 () 4 ()F t q F t q F t (36)

3. THE SOLUTION APPROACH

We denote the Laplace transform of ()ijf t by ()ijf s .

For solving the set of equations governing the

(16)-(36) and solve using matrix method with
initial conditions (0) 1, (0) 0k nf f for n k . F (t) q F (t) 2q F (t) p F (t)

model, we take Laplace transforms of equations

IJE Transactions A: Basics Vol. 25, No. 2, April 2012 - 181

Fig 1. State transition diagram

0,0 1,0 2,0 5,03,0 4,0
αp0

βq0

0,1 1,1 2,1 3,1 4,1

2βq0βq2

0,2 1,2 2,2 3,2

2βq2

0,3 1,3 2,3

3βq2

3βq0

0,4 1,4

0,5

4βq0

5βq0
4βq2

αp0

αp0

αp0

αp0

2αp0 3αp0 4αp0 5αp0

αp2 2αp2 3αp2 4αp2

αp2

αp2

αp2

2αp0

2αp0

2αp0

3αp0

3αp0

4αp0

2αp2 3αp2

2αp2

βq0 βq0 βq0 βq0

2βq0 2βq0 2βq0

3βq0 3βq0

4βq0

3βq2

2βq2

2βq2

βq2 βq2 βq2

182 - Vol. 25, No. 2, April 2012 IJE Transactions A: Basics

0 10 0 01() () 1p F s q F s (37)

0 20 0 11

1 10

2 () ()

() 0

p F s q F s

s p F s

(38)

2 10 0 30 0 21

1 20

() 3 () ()

2 2 () 0

p F s p F s q F s

s p F s

(39)

2 20 0 40 0 31

1 30

2 () 4 () ()

3 3 () 0

p F s p F s q F s

s p F s

(40)

2 30 0 50 0 41

1 40

3 () 5 () ()

4 4 () 0

p F s p F s q F s

s p F s

(41)

 2 40 0 504 () 5 () 0p F s s p F s (42)

 0 0 2 0 11 1 012 () () () 0q F s p F s s q F s
 (43)

0 12 0 21

1 1 11

2 () 2 ()

() 0

q F s p F s

s q p F s

(44)

2 11 0 22 0 31

1 1 21

() 2 () 3 ()

2 2 () 0

p F s q F s p F s

s q p F s

(45)

2 21 0 32 0 41

1 1 31

2 () 3 () 4 ()

3 3 () 0

p F s q F s p F s

s q p F s

(46)

 2 31 0 0 413 () 4 () 0p F s s q p F s
 (47)

2 01 0 03 0 12

1 0 2

() 3 () ()

2 2 () 0

q F s q F s p F s

s q F s

(48)

2 11 0 13 0 22

1 1 12

() 3 () 2 ()

2 2 () 0

q F s q F s p F s

s q p F s

(49)

2 21 0 23 0 32 2

12 1 1 22

() 3 () 3 ()

() 2 2 2 2 () 0

q F s q F s p F s p

F s q p F s

(50)

2 31 2 22

0 0 323 3 ()s q p F s

(51)

2 12 0 14 0 23

1 1 13

2 () 4 () 2 ()

3 3 () 0

q F s q F s p F s

s q p F s

(53)

2 22 2 13

0 0 23

2 () ()

3 2 () 0

q F s p F s

s q p F s

(54)

2 03 0 05 0 14

1 0 4

3 () 5 () ()

4 4 () 0

q F s q F s p F s

s q F s

(55)

 2 13 0 0 143 () 4 () 0q F s s q p F s
 (56)

 2 04 0 054 () 5 () 0q F s s q F s (57)

For brevity, we denote the probabilities ,i jF and

Laplace transform of probabilities ,i jF s with

single suffix i.e. by Fi as defined and iF s ,

respectively below:

 ,0 1 ,0 1, , 0 5i i i iF F F s F s i ;

 ,1 6 1 ,1 6 1, , 0 4i i i iF F F s F s i ;

 ,2 11 1 ,2 11 1, , 0 3i i i iF F F s F s i ;

 ,3 15 1 ,3 15 1, , 0 2i i i iF F F s F s i ;

 ,4 18 1 ,4 18 1, , 0 1i i i iF F F s F s i ;

 ,5 21 ,5 21,i iF F F s F s

 Q(). () 0s F s F (58)

where, F s and 0F are the column vector i.e.,

 1 2 21, ,... TF s F s F s F s
 and 0 1,0,0,..., 0 TF

Also Q(s) is matrix given by

1 2

3 4 5

6 7 21 21

0

Q()

0

A A

s A A A

A A

i
2q F (s) 4q F (s) p F (s)2 02 0 04 0 13

s 3 3 q F (s) 0

Here submatrices A (i=1,2,……9) are constructed
for particular case as follows:

(52)

 1 03

q F (s) 2 p F (s)

 0

The system of Eqs (37)-(57) reduces to matrix
form as

IJE Transactions A: Basics Vol. 25, No. 2, April 2012 - 183

0 0

1 0

2 1 0

2 1 0

2 1 0

2 0

1

1

0 0 0 0

0 2 0 0 0 0

0 2 2 3 0 0 0

0 0 2 3 3 4 0 0

0 0 0 3 4 4 5 0

0 0 0 0 4 5 0

0 0 0 0 0 0

s p q

s p p

p s p p

p s p pA

p s p p

p s p

s q

1 0 0

2 2 0 0

2 3 0

2 0 0

1 0

2 4 0

2 2 5

4

2 0 0 0 2 0

3 0 0 0 2

0 2 4 0 0 0

0 0 3 4 0 0 0

0 0 0 0 2 2 0

0 0 0 0 2

0 0 0 0

s p q

p s p q

p s p

A p s q p

s q p

q s p

q p s

0 0

1 0 0

6 0 0

2 0 0

2 1 0 0

2 0 0

2 0

7

3 3 0 0 0 0 0 0

0 3 3 0 4 0 0

0 0 2 0 4 0

0 0 3 2 0 0 0

0 3 0 0 4 4 5

0 0 3 0 0 4 0

0 0 0 0 4 0 5

s q p

s q p q

s p q

A p s q p

q s q p q

q s q p

q s q

0

0

2 0

0

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 2 0 0

q

q

A q

q

p q

3

2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

A

q

0

5

0

0

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3 0 0 0 0 0 0

0 0 0 0 0 0 0

0 3 0 0 0 0 0

0 0 3 0 0 0 0

0 0 0 3 0 0 0

q

A

q

q

q

2 2

2

2

26

0 0 0 0 0 2

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

q p

q

q

A q

184 - Vol. 25, No. 2, April 2012 IJE Transactions A: Basics

For brebiely of notations, in sub matrices, we have
used

 1 11i q i p , i=1, 2, 3

 1 11 1i i q p , i=4, 5, 6

Using Cramer’s rule, the probabilities kF s , can

be obtained as

 1 ()
, 0

()
k

k

Q s
F s k L

Q s
 (59)

For calculating the characteristic roots of the
matrix Q(s), we note that
s = 0 is one of the roots. Let s = -d, so that we get

 Q d Q dI (60)

 . () () 0Q d F s Q dI F s F (61)

It may be observed that the eigen values of Q
are real and distinct and Q is positive definite. So,
all eigen values of Q are positive. Let 1k k L

denotes the eigen values of Q, then we get

1

()
L

k
k

Q s s s

 (62)

so that

1
k

1

()
() , 1 k

()

l

L

k
k

Q s
F s L

s s

 (63)

We may expand k ()F s by partial fractions, i.e., in
the form

 0 0
1

1

L
k

k k

a a
F s

s s

 (64)

k
k

1

()
L

j

j j

a
F s

s

 , L.....,3,2,k (65)

where 0a and na (n=1,2,…..L) are real numbers
calculated as

1
0

1

(0)
L

j
j

Q
a

 (66)

and

1

1

()
, 1 , 2l k

lk L

k j k
j
k

Q
a l L k L

 (67)

and (60), we get

1 1

1
1

1 1

(0) () exp()
()

L
k k

L L
k

k k j k
k j

k

Q Q t
F t

 (68)

1

1

1

() exp()
() , 2

L
l k k

l L
k

k j k
j
k

Q t
F t where l L

 (69)

4. PERFORMANCE INDICES

Now we give some performance measures for the
quantification of software reliability indices as
follows:

The probability of a perfect program at time t
is given by F1(t).

The mean number of faults remaining in the
software at time t is given as

1

L

i
i

E D t iF t

 (70)

The software reliability is defined as

1

exp
L i

i
i

R x t F t x

 (71)

5. SENSITIVITY ANALYSIS

Since no live data is available so instead of
estimating the parameters we have used the
secondary data for validity and practical utility of
our model (Ref. Kapur et al. 1992).

In this section, we perform computational
experiment for the transient analysis by employing
Runge-Kutta technique (RKT) of fourth order and
matrix method to solve the system of differential
equations. R-K method is implemented by
exploiting MATLAB’s ‘ode45’ function. A time
span is considered with equal intervals. Eigen

On taking inverse Laplace transform of Eqs (59)

On inverting Eq (63), we have

Now Eq (58) becomes

IJE Transactions A: Basics Vol. 25, No. 2, April 2012 - 185

values are evaluated by the using MATLAB’6.5
software. For illustration purpose, we choose
default parameters as 0.49, 0.02, p0=0.6,
p1=0.3, p2=0.1, q0=0.5, q1=0.3, and q2=0.2.

From Tables 1 and 2, we notice the patterns of
various performance indices namely R(t) and
E{D(t)} by varying the probabilities p0, p1, p2 and
q0, q1, q2, respectively. It is observed that there is
an increasing trend in the values of R(t) and
decreasing trend in E{D(t)} with the increasing
values of p0 and q0.

Table 1. Software reliability and E{D(t)} for different
values of p0, p1and p2.

p0 p1 p2 t R(t) E{D(t)}

0.6 0.25 0.15

0 0.787 12.000
1 0.852 8.122
2 0.897 5.591
3 0.926 3.950
4 0.946 2.893
5 0.958 2.213

0.7 0.2 0.1

0 0.787 12.000
1 0.852 8.122
2 0.897 5.591
3 0.926 3.950
4 0.946 2.893
5 0.958 2.213

0.8 0.13 0.07

0 0.787 12.000
1 0.852 8.122
2 0.897 5.591
3 0.926 3.950
4 0.946 2.893
5 0.958 2.213

Table 2. Software reliability and E{D(t)} for different
values of q0, q1and q2.

q0 q1 q2 t R(t) E{D(t)}

0.6 0.3 0.1

0 0.787 12.000
1 0.858 7.848
2 0.904 5.227
3 0.933 3.596
4 0.951 2.589
5 0.963 1.971

0.7 0.2 0.1

0 0.787 12.000
1 0.868 7.238
2 0.917 4.494
3 0.945 2.944
4 0.961 2.078
5 0.969 1.596

0.8 0.13 0.07

0 0.787 12.000
1 0.880 6.542
2 0.930 5.591
3 0.956 3.950
4 0.968 2.893
5 0.974 2.213

The effects of failure rates α and β on I and II type
faults, are shown in Tables 3 and 4. As expected,
reliability R (t) increases with testing time whereas
decreases with the increase in the failure rate α.
Mean number of remaining faults decreases as
testing time increases but remains same for the
increasing values of failure rate α.

Table 3. Performance indices for different values of α.

α=0.01 α =0.03 α =0.05

t R(t) E{D(t)} R(t) E{D(t)} R(t) E{D(t)}

0 0.698 12.000 0.549 12.000 0.432 12.000

1 0.796 7.848 0.691 7.848 0.603 7.848

2 0.862 5.227 0.787 5.227 0.724 5.227

3 0.903 3.596 0.850 3.596 0.803 3.596

4 0.929 2.589 0.889 2.589 0.852 2.589

5 0.945 1.971 0.913 1.971 0.883 1.971

6 0.955 1.593 0.928 1.593 0.902 1.593

7 0.961 1.362 0.937 1.362 0.914 1.362

Table 4. Performance indices for different values of β.

β=0.5 β =0.6 β =0.7

t R(t) E{D(t)} R(t) E{D(t)} R(t) E{D(t)}

0 0.000 12.000 0.000 12.000 0.000 12.000

1 0.071 7.848 0.073 7.524 0.074 7.215

2 0.167 5.227 0.166 4.832 0.164 4.473

3 0.240 3.596 0.233 3.238 0.223 2.929

4 0.289 2.589 0.275 2.303 0.258 2.067

5 0.321 1.971 0.300 1.757 0.279 1.590

6 0.340 1.593 0.315 1.439 0.290 1.326

7 0.352 1.362 0.324 1.255 0.296 1.180

Figs 2a and 2b depict the trend of probability of
perfect program for different parameters α and β. It
is noticed that the accuracy of the software
increases as testing time increases. We also notice
that there is no significant change with the
increasing values of α but as β increases, the
probability of perfect program increases for some
time, and finally becomes constant.

186 - Vol. 25, No. 2, April 2012 IJE Transactions A: Basics

Fig 2a. Probability of perfect program at time t by

varying α.

Fig 2b. Probability of perfect program at time t by

varying β.

Figs 3a and 3b are plotted for the reliability by
varying α and β for I and II type of faults,
respectively. From Fig 3a, we notice that the
reliability decreases as α increases. But in Fig 3b,
initially reliability increases with the testing time
and remains almost same with the increasing the
value of β.

 Fig 3a. Software reliability by varying α

Fig 3b. Software reliability by varying β

From Figs 4a and 4b, mean number of
remaining faults E{D(t)} has been examined by
varying the parameters α and β. It is seen that
E{D(t)} decreases as time increases but remains
same for all values of α and β.

Fig. 4a. Mean number of faults remaining by varying α.

Fig. 4b. Mean number of faults remaining by varying β.

Overall, with the help of numerical results we
observe that the optimal release time of the
software can be determined successfully. For

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Testing Time

F1
(t)

β=.150

β=.165

β=.180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Testing Time

F
1(

t)

α=.3
α=.5
α=.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9
Testing Time

R
el

ia
b

il
it

y

β=0.5

β=0.6

β=0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9

Testing Time

R
el

ia
b

il
it

y

α=.01
α=.03
α=.05

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

Testing Time

E
{D

(t
)}

α=.01

α=.02

α=.03

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9
Testing Time

E
{D

(t
)}

β=.95

β=.97

β=.99

IJE Transactions A: Basics Vol. 25, No. 2, April 2012 - 187

example, if the initial error content function is
assumed to be 12, we can notice from the Figs 4a
and 4b that E{D(t)} ≤ 12. This means that the
software developer can decide the time to a
specific software quality level with the condition
that the reliability may reach at a maximum level.
Similar conclusions for other performance
measures are also evident from the other figures
and tables.

Based on the sensitivity analysis which has
been given in this paper, one can estimate the idea
about the release time of the software. For
example, from Tables 9.3 and 9.2, we see that as
remaining faults in the software are becoming less
then reliability of the software is increasing and
finally it became constant that shows the real
situation of testing the software. In that sense, the
markovian software reliability model with
imperfect debugging and generation of errors
proposed in this paper are intuitively
understandable and can provide to a software
developer a more tractable framework for
developing a real time situation assessment tools in
spite of their simple structure.

6. CONCLUSION

In this paper, we have developed the markovian
software reliability model by including the concept
of imperfect debugging and error generation
phenomenon. The suggested approach is suitable
for practical application in reliability engineering.
Our stochastic model provides a theoretical
framework during the software development for
understanding the factors that affect the software
reliability. The suggested model may be helpful in
measuring and assessing the software reliability,
during operational phase.

7. REFERENCES

1. Cai, K.-Y., Cao, P., Dong, Z. and Liu, K. (2010):
Mathematical modeling of software reliability testing
with imperfect debugging, Computers & Mathematics
with Applications, Vol. 59, No. 10, 3245-3285.

2. Chung, H. and Ortega, A. (2005): Analysis and testing
for error tolerant motion estimation, In Proceeding of
International Symposium on Defect and Fault
Tolerance in VLSI Systems, 514-522.

3. Dohi, T., Yasui, K. and Osaki, S. (2003): Software
reliability assessment models based on cumulative
Bernoulli trial processes, Mathematical and Computer
Modelling, Vol. 38, 1177-1184.

4. Dulz, W., Holpp, S. and German, R. (2010): A
Polyhedron Approach to Calculate Probability
Distributions for Markov Chain Usage Models,
Electronic Notes in Theoretical Computer Science,
Vol. 264, No. 3, 19-35.

5. Gokhale, S. S. and Trivedi, K. S. (2006): Analytical
models for architecture-based software reliability
prediction: a unification framework, IEEE
Transactions on Reliability, Vol. 55, No. 4, 578-590.

6. Gokhale, S. S., Philip, T. and Marinos, P. N. (1996): A
non-homogeneous markov software reliability model
with imperfect repair, In Proceeding of International
Performance and Dependability Symposium.

7. Gupta, N. and Singh, M. P. (2006): Estimation of
software reliability by sequential testing with simulated
annealing of mean field approximation, International
Journal of Engineering, Transactions B: Applications,
Iran, Vol. 19, No. 1, 35-44.

8. Hamlet, D., Woit, D. and Mason, D. (2001): Theory of
software reliability based components, In Proceeding of
International Conference on Software Engineering,
361-370.

9. Huang C.-Y. and Hung, T.-Y. (2010): Software
reliability analysis and assessment using queueing
models with multiple change-points, Computers &
Mathematics with Applications, Vol. 60, No. 7, 2015-
2030.

10. Jalote, P., Murphy, B. and Sharma, V. S. (2008): Post-
release reliability growth in software products, ACM
Transactions on Software Engineering and
Methodology, Vol. 17, No. 4, 17.1-17.20.

11. Jelinski, Z. and Moranda, P. B. (1972): Software
reliability research, Statistical Computer Performance
Evaluation, New York, 468-484.

12. Kapur, P. K., Sharma, K. D. and Garg, R. B. (1992):
Transient solution of a software reliability model with
imperfect debugging and error generation,
Microelectronics and Reliability, Vol. 38, No. 4, 475-
478.

13. Lisnianski, A. (2007): The markov reward model for a
multi-state system reliability assessment with variable
demand, Quality Technology & Quantitative
Management, Vol. 4, No. 2, 265-278.

14. Lisnianski, A. and Frenkel, I. (2009): Non-
Homogeneous markov reward model for aging multi
state system under minimal repair, International
Journal of Performability Engineering, Vol. 5, No. 4,
303-312.

15. Lisnianski, A. and Frenkel, I., Khvatskin, L. and Ding,
Y. (2007): Markov reward model for multi state system
reliability assessment, Statistical models and Methods
for Biomedical and Technical Systems, 153-168.

16. Meedeniya, I., Buhnova, B., Aleti, A. and Grunske, L.
(2011): Reliability-driven deployment optimization for
embedded systems, Journal of Systems and Software,
Vol. 84, No. 5, 835-846.

17. Musa, J. D. (1975): Theory of Software reliability and
its application, IEEE Transactions on Software

188 - Vol. 25, No. 2, April 2012 IJE Transactions A: Basics

Engineering, SE-1, 312-327.
18. Prowell, S. J. and Poore, J. H. (2004): Computing

system reliability using markov chain usage models,
The journal of Systems and Software, Vol. 73, 219-
225.

19. Ravishanker, N., Liu, Z. and Ray, B. K. (2008): NHPP
models with markov switching for software reliability,
Computational Statistics and Data Analysis, Vol. 52,
3988-3999.

20. Shooman, M. L. (1977): Software reliability: analysis
and prediction, Report AGARD AG224, Integrity in
Electronic Flight Control Systems, 1-17.

21. Sridharan, V. and Jayashree, P. R. (1998): Transient
solution of a software model with imperfect debugging
and generation of errors by two servers, Mathematical
and Computing Modelling, Vol. 27, No. 3, 103-108.

22. Tokuno, K. and Yamada, S. (1999a): A summary of
markovian software availability modeling, In
Proceeding of Fifth ISSAT International Conference
Of Reliability and Quality in Design, (Edited by Pham,
H. and Lu, M.-W.), 218-222.

23. Tokuno, K. and Yamada, S. (1999b): A markovian
software reliability model with a decreasing perfect
debugging rate, In proceeding First Western Pacific
and Third Australia-Japan Workshop on Stochastic

Models in Engineering, Technology and
Management, (Edited by Wilson, R. J., Osaki, S. and
Faddy, M. J.), 528-536.

24. Tokuno, K. and Yamada, S. (2000): An imperfect
debugging model with two types of hazard rates for
software reliability measurement and assessment,
Mathematical and Computing Modelling, Vol. 31,
343-352.

25. Tokuno, K. and Yamada, S. (2003a): Markovian
software reliability measurement with a geometrically
decreasing perfect debugging rate, Mathematical and
Computing Modelling, Vol. 38, 1443-1451.

26. Tokuno, K. and Yamada, S. (2003b): Relationship
between software availability measurement and the
number of restorations with imperfect debugging,
Computers and Mathematics with Applications, Vol.
46, 1155-1163.

27. Whittaker, J. A., Rekab, K. and Thomson, M. G. (2000):
A markov chain model for predicting the reliability of
multi-build software, Information and Software
Technology, Vol. 42, 889-894.

28. Yamada, S., Tokuno, K. and Osaki, S. (1993): Software
reliability measurement in imperfect debugging
environment and its application, Reliability
Engineering and System Safety, Vol. 40, 139-147.

	25-2-A-7.pdf

