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characteristic/s. In recent applications of statistical process control, quality profiles in which the 

used to model the quality. Several techniques have been developed to enhance the speed of detecting 
changes in parameters of polynomial profiles. In this paper, we consider the effect of allocating the 
explanatory variable X in optimizing the performance of one of the well-known methods referred to 
as EWMA4 method. An optimization model is built and solved using the genetic algorithm to find 

effect of location optimization is studied using a simulation study, and the results are compared with 
non-optimized strategies in terms of average run length criterion. 
 

  
 

سازي هاي کیفی مدلهاي یک یا چند متغیره مشخصهبا استفاده از توزیع کیفیت کالا و خدمات عموماَ   چکیده
- اي کیفی براي مدلهاي از پروفایلطور فزایندهبهبا این وجود، در کاربردهاي نوین کنترل فرایند آماري، . میشود

هاي چند متغیره که از در رابطه با پروفایل. شودسازي و پایش رابطه بین متغیرهاي مستقل و وابسته استفاده می
هاي متعددي براي بهبود سرعت کشف تغییرات ارانه شده باشند، روشهاي کیفی میپرکاربردترین پروفایل

در این یک رابطه مدل . باشند، مورد بررسی قرار گرفته استهاي چند متغیره میترین نمودارهاي کنترل پروفایل
شود طراحی و با بهینه سازي براي تعیین مکان بهینه متغیرهاي مستقل که منجر به کمینه شدن طول دنباله می

همچنین با استفاده از شبیه سازي آماري عملکرد روش پیشنهادي با . ه از الگوریتم ژنتیک حل شده استاستفاد
 .موجود مقایسه گردیده است هايسایر روش

 
 

1. INTRODUCTION 

Over the last decade, several charting techniques 
have been developed and examined in terms of 
their effectiveness in detecting changes in process 
parameters when the quality function might be 
explained by a simple linear model. The 
applications of profile monitoring in statistical 
process control (SPC) studies have been extended 
to cover both phases I and II. In phase I, 
practitioners are usually interested in investigating 
the statistical stability of process parameters and 

estimating their nominal values while phase II is 
devoted to detecting any changes in the parameters 
which are assumed to be known. Areas for future 
research on profile monitoring topic can be found 
in Woodall et al. [1]. 

Several studies have relied on practical 
applications in examining their suggested methods 
for detecting anticipated changes in process or 
product quality level. Mestek et al. [2] studied the 
stability of calibration curves in the photometric 
determination of Fe3+ with sulfosalicylic acid. 
Stover and Brill [3] considered the linear 

relationship between a response and explanatory variable/s is captured and monitored are increasingly 

Abstract     The quality is typically modeled as the univariate or multivariate distribution of quality 

the optimal location of X- values that minimizes the average of the run length distribution (ARL). The 
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calibration of the multilevel ion chromatography 
and showed how to determine the instrument 
response stability and the most proper calibration 
frequency. Kang and Albin [4] presented two other 
different examples. One of these is an illustrative 
example where the relationship between the 
amount of dissolved artificial sweetener aspartame 
and the temperature levels is better explained by a 
nonlinear model. In the other one, they used a 
simple linear model to describe the semiconductor 
manufacturing process. An example of polynomial 
profiles is considered by Montgomery [5]. In this 
work, he used a second-order polynomial profile to 
describe the relation between the automobile 
engine speed and the torque produced by an 
engine. Another application of polynomial profile 
is presented in Amiri et al. [6]. 

The majority of the previous researches gave a 
considerable attention to phase II studies while 
literatures considering phase I are not of that 
abundance. Mestek et al. [2] suggested a    
control chart to study the stability of linear 
calibration curves in the photometric determination 
of Fe3+ with sulfosalicylic acid. Two phase I 
strategies for determining instrument response 
stability were presented and examined by Stover 
and Brill [3]. These two monitoring strategies were 
applied to multilevel ion chromatography. 
Mahmoud and Woodall [7] suggested a phase I 
method using global F-test to observe the model 
parameters and a Shewhart control chart to monitor 
changes in process variability. Another phase I 
approach based on the segmented technique for 
testing the constancy of the regression parameters 
in stage I for linear profile data has been 
investigated by Mahmoud et al. [8]. This method is 
referred to as a change point approach. 

Kang and Albin [4] suggested two phase II 
methods for monitoring simple linear profiles. The 
first method is a multivariate Hotelling    chart 
based on successive vectors of the least squares 
estimators of the intercept and slope. The second 
one is an exponentially weighted moving average 
control chart (EWMA) in conjunction with R 
control chart; they referred to this method as 
EWMA/R. Kim et al. [9] suggested the use of three 
separate EWMA control charts (EWMA3); in 
order to remove the correlation between regression 
parameters, the average of the explanatory variable 
is set to zero. Phase II comparative study between 

the National Institute of Standard and Technology 
(NIST) method proposed by Croarkin and Varner 
[10] and the KMW method- the letters K, M and 
W refer to the initials of the authors, suggested by 
Kim et al. [9] was performed by Gupta et al. [11]. 
In this work, they replaced the three EWMA 
control charts of KMW method by three separate 
Shewhart control charts. Niaki et al. [12] proposed 
a control chart based on the generalized linear test 
(GLT) to monitor coefficients of the linear profiles 
and an R-chart to monitor the error variance, the 
combination of which is called GLT/R chart. Zou 
et al. [13] considered the case when the number of 
available samples is not sufficiently large for 
proper estimation of simple linear function 
parameters; this approach is referred to as a self-
starting approach. An approach using a single chart 
integrating likelihood ratio statistic with the 
EWMA procedure for monitoring linear profiles 
was developed by Zhang et al. [14]. For further 
performance improvement, they added the variable 
sampling interval (VSI) feature to their suggested 
technique. The speed of detecting changes in 
regression parameters of simple linear profiles was 
investigated using a cumulative sum statistic; the 
results of this study were presented by Saghaei et 
al. [15].  Zhu and Lin [16] proposed new approach 
for observing changes in the slope of the simple 
linear functions. 

 Another recent contribution by Noorossana et 
al. [17] explored the performance of three control 
chart schemes when several correlated 
characteristics might be modeled as a set of linear 
functions of one independent variable. They 
referred to this situation as multivariate simple 
linear profiles structure. Li and Wang [18] 
suggested the use of an exponentially weighted 
moving average control chart with variable 
sampling intervals for monitoring linear profiles 
(VSI-EWMA3). They examined the performance 
of this strategy  using a real set of data from an 
optical imaging system.  

Sometimes, more sophisticated models such as 
polynomial, nonlinear, or multiple linear profiles 
rather than the simple linear profiles better 
describe the quality. Three different phase I 
methods for monitoring polynomial profiles were 
examined by Kazemzadeh et al. [19]; they also 
provided and approach based on likelihood ratio 
test to identify the location of the shift. 
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Kazemzadeh et al. [20] considered the second-
order polynomial profiles and introduced a new 
technique based on the idea of transforming the 
polynomial model to the orthogonal form. Then, 
the three regression parameters will be 
independent, and one can use three individual 
EWMA control charts in conjunction with another 
EWMA chart for monitoring the residuals. Ding et 
al. [21] presented a phase I technique for 
monitoring nonlinear profiles. This strategy 
consists of two main components: a data-reduction 
component and a data-separation technique that 
can detect both single and multiple shifts. Williams 
et al. [22] suggested and investigated the use of the    chart to monitor the coefficients of a parametric 
nonlinear regression model. Chicken et al. [23] 
developed and tested a semi-parametric wavelet 
method for monitoring changes in nonlinear 
profiles. Zhang and Albin [24] developed a method 
that deals with the quality profiles as vectors and 
applies a    control chart to determine outliers. 
Zou et al. [25] proposed a novel multivariate 
exponentially weighted moving average control 
chart (MEWMA) for monitoring general linear 
profiles. Mahmoud [26] introduced a phase I 
approach for monitoring multiple linear profiles. 
Jensen et al. [27] considered the correlation 
structure between linear profiles and investigated 
the effectiveness of a new technique accounting 
this issue. 

Some other researchers have shown interest in 
studying the impact of violating some of the basic 
assumptions in modeling the corresponding 
process. For example, Noorossana et al. [28] 
considered the effect of not fulfilling the normality 
assumption. Noorossana et al. [29] studied the case 
when quality profiles are not independent of each 
other. Soleimani et al. [30] presented an analytical 
study to examine how the speed of catching 
changes in the regression parameters of simple 
linear profiles is influenced by autocorrelation. The 
effect of correlation on nonlinear profiles using 
nonlinear mixed models can be found in Jensen 
and Birch [31]. 

This work aims to investigate and examine the 
effect of locating the explanatory variable in 
enhancing the statistical performance of EWMA4 
method , developed by Kazemzadeh et al. [20] , for 
monitoring changes in k-order polynomial quality 
functions. This paper is organized as follows: 

Section 2 discusses the orthogonal polynomial 
method (EWMA4). Section 3 describes the 
procedure used to find the orthogonal polynomials 
when the values of the explanatory variable are 
unequally spaced; an illustrative example is 
presented. In Section 4, we describe the relation 
between the coefficients of the original and the 
orthogonal polynomial forms. Our optimization 
model and a comparative study between a regular 
plan and a set of optimized plans are considered in 
Section 5. Conclusions and recommendation are 
reported in Section 6. 

 
 

2. ORTHOGONAL POLYNOMIALS 
METHOD  

 
This is a phase II method proposed by 
Kazemzadeh et al. [20]. It is based on the use of 
orthogonal polynomial regression to monitor the 
polynomial quality functions. Since this method 
uses  + 2 control charts where k is the order of 
the polynomial function, it is not recommended to 
be used with large  ’ . 

Under the state of the statistical control, the 
relationship between the outgoing quality (Y) and 
the process input (X) is described by Equation (1). 

    =   +     +       +….+     +ε                 = 1,2,3, … ,     = 1,2,3, …          (1) 

 
The nominal values of process parameters are 

represented by   ,  ,  , . ,   and     ~  (0,  ). 
The following is the transformed model: 

    =     (  ) +     (  ) +     (  ) +….+    (  ) + ε        = 1,2,3, … ,      = 1,2,3, …               (2) 
 
The value    represents the coefficient of the lth 

order orthogonal polynomial   (  ). This 
technique uses Equation 3 to calculate the least 
square estimators of   ,  , … ,  .   

Kazemzadeh et al. [20] reported that these 
estimators are normally distributed such that        =    and          =   ∑    (      )⁄ ; 
where   is the sequential number of the profile and   is the order orthogonal polynomial ( =1,2,3, … … ,  ).  
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    = ∑   (  )       ∑    (  )                                    = 1,2,3, …      = 0,1,2, … ,       
(3) 

For monitoring the changes in the coefficients of 
the regression model, three individual EWMA 
control charts are proposed. The EWMA statistic 
and the control limits can be calculated as follows: 

      ( ) =      + (1 −  )     ( − 1) (4) 
 

    =   +        (2 −  ) ∑    (  )         (5) 

     =   −        (2 −  ) ∑    (  )         
  = 1,2,3, …    = 0,1,2, … ,   

(6) 

 
where,      (0) is set equal to    , and the 
smoothing constant (0 <  ≤ 1) and the multiplier 
(  > 0) are selected to give a specific expected 
value of the in-control average run length (ARL). 
The fourth chart of EWMA4 is a one-side EWMA 
control chart used to monitor the variability in the 
process. The       statistic and the control limit 
are as follows:   
      ( ) =           − 1 + (1 −  )     ( − 1), 0  (7) 

     =               (2 −  )             = 1,2,3, … … … (8) 

 
 

3. CONSTRUCTING ORTHOGONAL 
POLYNOMIALS  

 
The orthogonal polynomials for a set of equally 
spaced independent variables are usually provided 
in references that cover the regression topic, e.g. 
Montgomery [5].  

When it comes to the unequally spaced X-values, 
one should use one of several techniques 
developed for this purpose. For example, Kendall 
[32] studied the analysis of equally spaced X-
values as a special case of the general usage of 

orthogonal polynomials. Another method for 
finding these polynomials can be found in Robson 
[33]. In this work, he introduced a simple recursive 
method to find appropriate orthogonal polynomial. 
Grandage [34] presented a recursive procedure that 
requires the solution of a set of linear equations. 
The motivation behind the use of Robson’s 
technique in this paper is the recommendations 
reported in an analytical and comparative research 
in using the polynomial orthogonal curves in 
Dental Healthcare Industry developed by Toby et 
al. [35].  

In this section, we will briefly state the outlines 
of Robson’s method followed by an illustrative 
example. 

 
3.1. Using Robson’s Approach Assume that 
Equations 1 and 2 are the best models describing 
the relationship between the quality response (Y) 
and the unequally spaced explanatory variable (X). 

Using the Robson’s technique, the function   (  )  can be calculated from the relation; see 
[33]: 

   (  ) = 1      −   (  )      (  ) 
   

   
     (9) 

 
where,    represents the normalizing factor 
(constant), and it can be calculated as follows; see 
[33]: 
 

  =       −   (  )      (  ) 
   

   
      

       (10) 

 

the procedures for constructing the orthogonal   is described by a second order polynomial 
function. Let us assume that the original form is: 
    = 3 + 2  +     +ε    (11) 
 
where, the fixed values of the independent variable 
(X) are 1, 2, 4 and 7. Then, 

For  = 0,   0 = √ = √4  and   0(  ) = 1/√ = 1/√4  

hence,  
     (  ) = 1   (12) 

polynomials when the relationship between   and 

3.2. An Illustrative Example This example shows 
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For  = 1,      =  ∑ (  − 3.5)      

and  
   (  ) =   − 3.5 ∑ (  − 3.5)      (13) 
 

then,  
     (  ) =   − 3.5 (14) 
 
For  = 2,  
     (  ) =    − 14     

   − (  − 3.5) ∑    (  − 3.5)    ∑ (  − 3.5)      

Table 1 shows the calculations for finding the 
values of the orthogonal polynomials using 
Robson’s technique when  -values are unequally 
spaced.  

 
TABLE 1. Orthogonal polynomials computation for 

X={1,2,4,7} 
    1 2 3     (  )     (  )     (  ) 

1 1 -10/4 1-70/4+5(342)/84=1296/336 
2 1 -6/4 4-70/4+3(342)/84= - 432/336 
4 1 2/4 16-70/4-1(342)/84= -1872/336 
7 1 14/4 49-70/4-7(342)/84=1008/336 
 
 
The common factors within each column of     (  ) should be removed to get integer values. 

For simplicity, the integer values of column 2 can 
be found by multiplying each element in this 
column (    (  )) by the sample size ( ) and refer 
to it as       (  ) . Column 3 can be converted to 
integer values through two or more steps as 
follows:  

3 (    (  )) by the sum of squares of the ∑   (  )      
Step 2: Round off the results of step 1 to the 

closest integer values. 
Step 3: Divide all resulted elements by the 

absolute value of the minimum value in this 
column. If all values are integers then stop; 
other else go to step 4. 

Step 4: Start searching for common factors within 
the new     (  ) values. 

Step 5: Divide     (  ) values by the common 
factor and rename this column as       (  ) . 

The results of these calculations are shown in 
Table 2. Another example for unequally spaced  -
values case can be found in Robson [33].  

 

  TABLE 2.  Final values of orthogonal polynomials             (  )       (  )       (  ) 
1 1 1 -5 9 
2 2 1 -3 -3 
3 4 1 1 -13 
4 7 1 7 7 

 
The orthogonal polynomials of order 3, the      (  ) values can be determined from      (  ),      (  ),  and     (  ) as follows: 

     (  ) =    −   (   )      (  ) − 
     (  )      (  ) 

   −    (  )    (  ) 
    

 

4. ANALYZING ORTHOGONAL 
POLYNOMIAL MODELS 

Some of the linear regression works such as 
Montgomery [5] considered the orthogonal 
transformation and provided the orthogonal 
polynomials for a set of equally spaced  -values. 
In this section, we present these orthogonal 
polynomials and describe their relation with the 
regression coefficients of the original model. The 
orthogonal polynomials shown in Equation 2 can 
be written as follows; (see Montgomery [5] and 
Kazemzadeh et al. [20]): 
   ( ) = 1                (17) 

   ( ) =    ( −  ̅) (18) 
   ( ) =      −  ̅   −    − 112    (19) 

 
where,    is a constant, and we choose its value to 
have integer polynomials, and   represents the 
distance between the  -values.  We estimate the 
regression parameters in the transformed model as 
follow; see Montgomery [5] and Kazemzadeh et al. 
[20]): 

                        (16)                        

integer values of column 2 ( (   ) ). 

Step 1: Start by multiplying all elements in column 
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  =   +  ̅  +   ̅ +    − 112        (20) 

  =     (  + 2   ̅) (21) 

  =        (22) 

Now, we analyze theses relationships in order 
to see how the parameters of the orthogonal model 
are affected by the shift in the original regression 
coefficients; refer to Kazemzadeh et al. [20]. Table 
3 summarizes these relations. 

 TABLE 3. Changes in orthogonal polynomial models 

Original 
coefficients 

Changes in the orthogonal form                - -     ̅   
  ̅     - 

   ̅   − 112  2    
      

 
Table 3 shows that the amount of change in 

regression coefficients in orthogonal model is 
affected by some of design parameters such as  ̅ , n 
and  . In this paper, we only consider the effect of 
location represented by  ̅ and  . Our approach 
adopts the idea of allocating the  -values in 
positions such that the shift in orthogonal 
parameters is maximized.  

 
 
5. OPTIMIZING THE LOCATION OF X’S 

USING GA APPROACH 
 

The genetic approach (GA) is widely used in 
stochastic optimization technique. Several authors 
have utilized this technique in SPC applications to 
find the optimal design parameters or examine the 
performance of several charting techniques (e.g.    , Hotelling   , and EWMA control charts).  
 
5.1. Setting the Parameters of the Genetic 
Approach In this paper, the MATLAB software is 
used for coding and running the genetic approach. 
Since the quality of the genetic approach output is 
affected by the values of its parameters, two 
Taguchi experiments were conducted to determine 

the optimal setting of the GA: 1- population size 
(PS), 2- crossover probability (CP), and 3- 
mutation rate (MR).  

These inputs along with the amount of shift in 
the first and the second parameters (  ,  ) were 
analyzed in L9 (34) orthogonal arrays. The settings 
of these experiments are shown in Tables 4 and 5.  

 
TABLE 4. L9 design (34) when    shifts to   +     

Run PS CP MR   
1 50 0.1 0.05 0.01 
2 50 0.3 0.10 0.05 
3 50 0.5 0.25 1.00 
4 75 0.1 0.10 1.00 
5 75 0.3 0.25 0.01 
6 75 0.5 0.05 0.05 
7 100 0.1 0.25 0.05 
8 100 0.3 0.05 1.00 
9 100 0.5 0.10 0.01 

 

 
TABLE 5. L9 (34) design when    shifts to    +     

Run PS CP MR   
1 50 0.1 0.05 0.001 
2 50 0.3 0.10 0.005 
3 50 0.5 0.25 0.100 
4 75 0.1 0.10 0.100 
5 75 0.3 0.25 0.001 
6 75 0.5 0.05 0.005 
7 100 0.1 0.25 0.005 
8 100 0.3 0.05 0.100 
9 100 0.5 0.10 0.001 

 
After the experiments, the optimal levels of the 

three parameters of the genetic approach were 
determined and presented in Table 6, which were 
the same for the shift in the second and the third 
parameters of the polynomial model.  

TABLE 6. Optimal setting of GA approach 
Shift  PS CP MR 

β 100 0.5 0.1 
δ 100 0.5 0.1 

 
In this article, the GA approach is employed to 

specify the optimal location of a set of   
explanatory variables such that the off-target 
average run length (ARL) is minimized. The 
optimization model is as follows: 

 

subject to: 
   ≥      (24) 

          ( , ) (23) 

    +      ̅  
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  ≤    
 

(25)  + 1 ≤  ≤        ∈         
 

(26) 
 
 

where,    is the amount of shift in the orthogonal 
least square estimators (  ,  ,⋯    ),   is the 
order of the orthogonal polynomial ( =0,1, … ),  represents the number of locations of 
the independent variable, and    and    are the 
lower and upper limits of the practical range of X. 
Since ∑    =      , the shift in    is not sensitive 
to the location of  -values. This paper only 
considers the shift in   ,  ⋯    .  
 

5.2 Running the optimization model and 
estimating ARL To studythe effect of location on 
the statistical performance of EWMA4 method 
while not losing generality, the model in Equation 
17 is considered.  

The four control charts of EWMA4 technique 
were designed to have the over all in-control ARL 

of 200. The smoothing factor (θ) of EWMA charts 
is set equal to 0.2. The multipliers of EWMA 
charts of least square estimators (  ) and EWMA 
chart of residuals (  ) are set equal to 3.105 and 
3.595, respectively.  

In order to better display the effect of location, 
a simulation study with 50,000 runs was conducted 
to estimate out-of-control ARL values of 
optimization model output under different shifts in     and   . Table 7 shows the off-target ARL 
values of two types of sampling strategies. The 
first type is designed with regular location of  -
values and the second is sampling plans optimized 
in terms of the location of   . Under the shift in the 
first parameter (  ) from     to    + βσ  and at 
any level of shifts considered, there is a set of 
optimized plans performing much better than the 
regular one. As it is shown in the reduction 
column, optimizing the location of  -values will 
lead to a high significant reduction in sampling 
efforts and costs. 

 

 

TABLE 7. ARL comparisons between regular and optimized plans under shift in second parameter from    to    + βσ 

Shift ARL (sample) Reduction (%) Independent Variable 
Regular Optimized X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

0.01 144.9 118.4 18.27 2.00 3.00 7.00 7.00 7.00 9.00 10.0 10.0 10.0 10.0 

  124.9 13.73 2.00 3.00 6.00 7.00 7.00 7.00 9.00 10.0 10.0 10.0 

  126.9 12.36 1.00 2.00 3.00 7.00 7.00 9.00 10.0 10.0 10.0 10.0 
0.02 69.89 37.26 46.69 4.00 8.00 8.00 9.00 9.00 9.00 10.0 10.0 10.0 10.0 

  39.32 43.74 3.00 5.00 6.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 

  42.80 38.76 3.00 4.00 5.00 9.00 9.00 9.00 9.00  10.0 10.0 10.0 
0.03 36.58 22.21 39.28 1.00 4.00 5.00 6.00 8.00 9.00 9.00 10.0 10.0 10.0 

  26.02 28.87 1.00 3.00 4.00 5.00 6.00 8.00 9.00 9.00 10.0 10.0 

  30.01 17.95 1.00 2.00 3.00 3.00 5.00 8.00 9.00 9.00 10.0 10.0 
0.04 20.75 9.200 55.65 3.00 8.00 8.00 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

  15.41 25.76 2.00 2.00 2.00 6.00 6.00 7.00 9.00 10.0 10.0 10.0 

  18.58 10.49 1.00 2.00 3.00 5.00 5.00 7.00 8.00 9.00 9.00 10.0 
0.05 13.47 6.200 53.96 7.00 8.00 8.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 

  8.150 39.50 1.00 6.00 7.00 7.00 8.00 8.00 9.00 10.0 10.0 10.0 

  10.87 19.34 1.00 1.00 2.00 5.00 7.00 8.00 8.00 10.0 10.0 10.0 
0.06 9.720 6.420 33.96 1.00 4.00 6.00 6.00 8.00 9.00 9.00 10.0 10.0 10.0 

  6.470 33.46 1.00 4.00 6.00 8.00 9.00 9.00 9.00 10.0 10.0 10.0 

  6.100 37.21 1.00 3.00 4.00 5.00 5.00 9.00 9.00 10.0 10.0 10.0 
0.07 7.570 4.160 45.02 7.00 8.00 8.00 8.00 9.00 9.00 9.00 9.00 10.0 10.0 

  
4.270 43.65 5.00 8.00 8.00 8.00 9.00 9.00 9.00 9.00 10.0 10.0 

  
5.550 26.69 1.00 3.00 4.00 6.00 8.00 8.00 9.00 10.0 10.0 10.0 

0.08 6.290 3.540 43.64 1.00 8.00 9.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 

  3.480 44.60 3.00 8.00 9.00 9.00 9.00 9.00 10.0 10.0 10.0 10.0 

  3.750 40.37 2.00 6.00 8.00 8.00 9.00 9.00 10.0 10.0 10.0 10.0 
0.09 5.290 2.790 47.24 7.00 8.00 9.00 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

  
2.860 46.06 7.00 7.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 10.0 

  
3.710 29.99 1.00 2.00 6.00 7.00 7.00 10.0 10.0 10.0 10.0 10.0 

0.10 4.540 2.600 42.74 5.00 8.00 9.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 

  
3.350 26.20 3.00 4.00 5.00 7.00 8.00 8.00 8.00 9.00 10.0 10.0 

  
3.990 12.13 1.00 1.00 2.00 2.00 6.00 7.00 8.00 9.00 10.0 10.0 
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The question someone may ask is - will the 
optimized plan perform better than the regular one 
if the locations are optimized at a shift value 
(   or   ) not reflecting the actual process shift 

( or  )?  
To answer this question, two analytical studies 

are conducted. The results are illustrated in Tables 
8 and 10.  

 
 

 
TABLE 8. ARL comparison between regular and two optimized plans at   =0.01 

 

Strategy Type  -Values β 
0.010 0.015 0.020 0.025 0.030 0.040 0.050 0.15 0.25 

Regular 1 2 3 4 5 6 7 8 9 10 144.89 109.0 69.89 51.50 36.50 21.1 13.5 2.70 1.70 
Optimized-1 2 3 7 7 7 9 10 10 10 10  118.4 76.11 46.85 30.88 20.49 12.14 8.29 2.06 1.14 
Optimized-2 2 3 6 7 7 7  9 10 10 10  124.9 80.03 50.29 33.11 23.51 13.50 9.04 2.17 1.21 

 
 

TABLE 9. ARL comparisons between regular and optimized plans under shift in third parameter from    to    +  σ 

Shift ARL (sample) Reduction (%) Independent Variable 
Regular Optimized X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

0.001 160.3 126.1 21.35 2.00 3.00 7.00 7.00 7.00 9.00 10.0 10.0 10.0 10.0 
  131.4 18.03 1.00 2.00 3.00 7.00 7.00 9.00 10.0 10.0 10.0 10.0 
  137.0 14.52 2.00 3.00 6.00 7.00 7.00 7.00 9.00 10.0 10.0 10.0 

0.002 96.42 43.67 54.71 4.00 8.00 8.00 9.00 9.00 9.00 10.0 10.0 10.0 10.0 
  46.19 52.10 3.00 5.00 6.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 
  51.50 46.59 3.00 4.00 5.00 9.00 9.00 9.00 9.00 10.0 10.0 10.0 

0.003  54.69 29.22 46.56 1.00 4.00 5.00 6.00 8.00 9.00 9.00 10.0 10.0 10.0 
  38.35 29.88 1.00 2.00 3.00 3.00 5.00 8.00 9.00 9.00 10.0 10.0 
  25.30 53.74 1.00 4.00 8.00 8.00 9.00 9.00 9.00 9.00 10.0 10.0 

0.004 34.03 27.09 20.41 1.00 2.00 3.00 5.00 5.00 7.00 8.00 9.00 9.00 10.0 
  10.04 70.49 3.00 8.00 8.00 10.0 10.0 10.0 10.0 10.0 10.0 10.0 
  20.57 39.54 2.00 2.00 2.00 6.00 6.00 7.00 9.00 10.0 10.0 10.0 

0.005 21.77 6.990 67.89 7.00 8.00 8.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 
  10.50 51.77 1.00 6.00 7.00 7.00 8.00 8.00 9.00 10.0 10.0 10.0 
  13.72 36.97 1.00 1.00 2.00 5.00 7.00 8.00 8.00 10.0 10.0 10.0 

0.006 15.52 8.070 48.03 1.00 4.00 6.00 6.00 8.00 9.00 9.00 10.0 10.0 10.0 
  7.370 52.54 1.00 4.00 6.00 8.00 9.00 9.00 9.00 10.0 10.0 10.0 
  9.320 39.96 1.00 3.00 4.00 5.00 5.00 9.00 9.00 10.0 10.0 10.0 

0.008 9.420 3.800 59.71 1.00 8.00 9.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 
  3.880 58.85 3.00 8.00 9.00 9.00 9.00 9.00 10.0 10.0 10.0 10.0 
  4.300 54.38 2.00 6.00 8.00 8.00 9.00 9.00 10.0 10.0 10.0 10.0 

0.010 6.710 2.840 57.66 5.00 8.00 9.00 9.00 9.00 10.0 10.0 10.0 10.0 10.0 
  2.830 57.88 3.00 4.00 5.00 7.00 8.00 8.00 8.00 9.00 10.0 10.0 
  5.380 19.89 1.00 1.00 2.00 2.00 6.00 7.00 8.00 9.00 10.0 10.0 

0.100 1.000 1.000 0.000 1.00 1.00 1.00 2.00 4.00 6.00 7.00 7.00 9.00 10.0 
  1.000 0.000 2.00 2.00 3.00 4.00 6.00 7.00 8.00 8.00 10.0 10.0 
  1.000 0.000 2.00 3.00 3.00 4.00 6.00 7.00 7.00 8.00 10.0 10.0 

 
 

TABLE 10. ARL comparisons between regular and two optimized plans at   ′=0.0002 
 

Strategy Type   -Values 
 δ 

0.001 0.003 0.005 0.01 0.05 
Regular 1 2 3 4 5 6 7 8 9 10 160.00  54.70 21.90 6.65 1.00 
Optimized-1 2 3 7 7 7 9 10 10 10 10  129.86 26.49 10.25 3.73 1.00 
Optimized-2 1 2 3 7 7 9 10 10 10 10  133.91 28.94 11.00 3.99 1.00 
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Table 8 and Figure 1 show the results of 
comparing one regular with two plans optimized at    =0.01. The results show that if the location of X 
of a certain sample of size n is optimized at a shift 
in     equals   , this sample can statistically work 
better than the regular one at all levels of shift 
higher than    . 

 
Figure 1. ARLs comparison to study the effect of 
optimizing the  -values at shift value equal to    

 
We also considered optimizing the location of 

the independent variable when the shift occurs in 
the third parameter   . Table 9 illustrates the 
simulation results when    shifts from    to   +  . Compared to regular plans, optimized plans 
perform perfectly at all shift levels in    . 

Again, to examine the performance of the 
proposed approach when the locations are 
optimized at a shift level equal to (   ), two 
optimized strategies (   = 0.0002) are compared 
versus a regular plan with  = 10. The results are 
shown in Table 10 and graphically presented in 
Figure 2. 

 
Figure 2. Comparison of ARLs to study the effect of 
optimizing the  -values at shift value equal to    

As one may have noted, Table 10 and Figure 2 
reveal that the optimized plans have a distinctive 
performance compared with the regular plan at all 
levels ( ≥   ). 

 
 

6. CONCLUSION 
 

In this paper, we provided a systematic approach 
for the purpose of enhancing the statistical 
performance of one of well-known phase II 
polynomial profiling techniques referred to as 
EWMA4. The suggested approach considers the 
effect of allocating the explanatory variable X in 
minimizing the average of the run length 
distribution (ARL). Finding the optimal location of 
the independent variable is formulated as an 
optimization problem solved by using the genetic 
algorithm (GA). The effect of location 
optimization is examined using a simulation study, 
and the results are compared with non-optimized 
strategies in terms of average run length criterion. 
The results reveal the potentials of optimizing the 
location of X-values in improving the performance 
of EWMA4 method.  

Such methodology can be utilized to reduce the 
cost and effort of sampling and minimize the time 
that a process stays off-target. 

 
 

7. REFERENCES 
 

1. Woodall, W., Spitzner, D., Montgomery, D., and Gupta, 
S., “Using control charts to monitor process and product 
quality profiles”, Journal of Quality Technology, Vol. 
36, (2004), 309–320. 

2. Mestek, O., Pavlik, J. and Suchánek, M., “Multivariate 
control charts: control charts for calibration curves“, 
Fresenius’ Journal of Analytical Chemistry, Vol. 350, 
No. 6, (1994), 344-351.  

3. Stover, F. and Brill, R., “Statistical quality control 
applied to ion chromatography calibrations”, Journal of 
Chromatography A, Vol. 804(1-2), (1998), 37-43. 

4. Kang, L. and Albin, S., “On-line monitoring when the 
process yields a linear profile”, Journal of Quality 
Technology, Vol. 32, No. 4, (2000), 418-426. 

5. Montgomery, D., “Introduction to statistical quality 
control”, John Wiley & Sons, New Jersey, (2005). 

6. Amiri, A., Jensen, W. and Kazemzadeh, R., “A case 
study on monitoring polynomial profiles in the 
automotive industry”, Quality and Reliability 
EngineeringInternational, (2009), DOI: 
10.1002/qre.1071.  

7. Mahmoud, M. and Woodall, W., “Phase I analysis of 

0

50

100

150

200

0 0.01 0.015 0.02 0.025 0.03 0.04 0.05 0.15 0.25

A
R

L

β

0

50

100

150

200

A
R

L

δ



140 - Vol. 25, No. 2, April 2012  IJE Transactions A: Basics 

linear profiles with calibration applications”, 
Technometrics, Vol. 46, No. 4, (2004), 380-391. 

8. Mahmoud, M., Parker, P., Woodall, W. and Hawkin, D., 
“A change point method for linear profile data”. Quality 
and Reliability Engineering International , Vol. 23, 
No. 2, (2007), 247-268. 

9. Kim, K., Mahmoud, M. and Woodall, W., “On the 
monitoring of linear profiles” Journal of Quality 
Technology, Vol. 35, No. 3, (2003), 317-328. 

10. Croarkin, C. and Varner, R., “Measurement assurance 
for dimensional measurements on integrated-circuit 
photo-masks”, US Department of Commerce, 
Washington, D.C. NBS Technical Note 1164, (1982). 

11. Gupta, S., Montgomery, D. and Woodall, W., 
“Performance evaluation of two methods for online 
monitoring of linear calibration profiles”, International 
Journal of Production Research, Vol. 44, No. 10, 
(2006), 1927-1942. 

12. Niaki, STA, Abbasi, B. and Arkat, J., “A generalized 
linear statistical model approach to monitor profiles”, 
International Journal of Engineering, Vol. 20, No. 3, 
(2007). 

13. Zou, C., Wang, Z. and Tsung, F.,  “A self-starting 
control chart for linear profiles”, Journal of Quality 
Technology, Vol. 39, No. 4, (2007), 364-375.  

14. Zhang, J., Li, Z. and Wang, Z., “Control chart based on 
likelihood ratio for monitoring linear profiles”, 
Computational Statistics and Data Analysis, Vol. 53, 
(2009), 1440-1448. 

15. Saghaei, A., Mehrjoo, M. and Amiri, A.,  “A CUSUM-
based method for monitoring simple linear profiles”, 
The International Journal of Advanced 
Manufacturing Technology, Vol. 45, No 11-12, (2009). 
DOI: 10.1007/s00170-009-2063-2.   

16. Zhu, J. and Lin, D., “Monitoring the slopes of linear 
profiles”, Quality Engineering, Vol. 22, (2010), 1-12. 

17. Noorossana, R., Vaghefi, A. and Eyvazian, M., “Phase 
II monitoring of multivariate simple linear profiles” 
Computers & Industrial Engineering, Vol. 58, (2010), 
563-570. 

18. Li, Z. and Wang, Z., “An exponentially weighted 
moving average scheme with variable sampling 
intervals for monitoring linear profiles” Computers and 
Industrial Engineering, Vol. 59, No. 4, (2010), 630-
637. 

19.   Kazemzadeh, R., Noorossana, R. and Amiri, A., “Phase 
I Monitoring of Polynomial Profiles”, Communications 
in Statistics-Theory and Methods, Vol. 37, No. 10, 
(2008), 1671-1686. 

20.   Kazemzadeh, R., Noorossana, R. and Amiri, A., 
“Monitoring Polynomial Profiles in Quality Control 
Applications”, The International Journal of Advanced 
Manufacturing Technology, (2009), DOI 
10.1007/s00170-008-1633-z. 

21. Ding, Y., Zeng, L. and Zhou, S., “Phase I analysis for 
monitoring nonlinear profiles in manufacturing 

processes”, Journal of Quality Technology, Vol. 38, 
(2006), 199- 216. 

22. Williams, J., Woodall, W. and Birch, J., “Statistical 
monitoring of nonlinear product and process quality 
profiles”, Quality & Reliability Engineering 
International, Vol. 23, (2007), 925-941. 

23. Chicken, E., Pignatiello, J. and Simpson, J., “Statistical 
process monitoring of nonlinear profiles using 
wavelets”, Journal of Quality Technology, Vol. 41, 
(2009), 198-212.  

24. Zhang, H. and Albin, S., “Detecting outliers in complex 
profiles using    control chart method”, IIE 
transaction, Vol. 41, (2009), 335-345. 

25. Zou, C., Tsung, F. and Wang, Z., “Monitoring general 
linear profiles using multivariate exponentially 
weighted moving average schemes”, Technometrics, 
Vol. 49, (2007), 395–408, DOI:10.1198/0040170 
07000000164 

26.   Mahmoud, M., “Phase I Analysis of Multiple Linear 
Regression Profiles”, Communications in Statistics, 
Simulation and Computation, Vol. 37, No. 10, (2008), 
2106-2130.  

27. Jensen, W., Birch, J. and Woodall, W., “Monitoring 
correlation within linear profiles using mixed models” 
Journal of Quality Technology, Vol. 40, (2008), 167-
183. 

28. Noorossana, R., Vaghefi, S. and Amiri, A., “The effect 
of non-normality on monitoring linear profiles”, The 
2nd International Industrial Engineering Conference, 
Riyadh, Saudi Arabia, 2004. 

29. Noorossana, R., Amiri, A. and Soleimani, P., “On the 
monitoring of auto-correlated linear profiles”, 
Communication in Statistic Application-Theory, Vol. 
37, (2008), 425–442.  

30. Soleimani, P., Noorossana, R. and Amiri, A., “Simple 
linear profiles monitoring in the presence of within 
profile autocorrelation”, Computers & Industrial 
Engineering, Vo. 57, No. 3, (2009), 1015-1021. 

31. Jensen, W.  and Birch, J., “Monitoring Correlation 
within Nonlinear Profiles Using Mixed Models”, 
Journal of Quality Technology, Vol. 40, No. 2, (2008), 
167-183 

32. Kendall, M., “The advanced theory of statistics”, Vol. 2, 
3rd ed., New York, (1959). 

33. Robson, D., “A simple method for constructing 
orthogonal polynomials when the independent variable 
is unequally spaced”, Biometrics, Vol. 15, No. 2, 
(1959), 187-191. 

34. Grandage, A., “Orthogonal Coefficients for Unequal 
Intervals”, Biometrics, Vol. 14, No. 2, (1958), 287-289. 

35. Toby, H., Lindsay, R. and Grant, T., “Symmetry and 
Asymmetry of the Dental Arch: Orthogonal Analysis 
Revisited”, A Publication of the Dental Anthropology 
Association, (2002). 

 

 


