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Abstract This paper investigates the reliability characteristics of a complex system having nine 
subsystems arranged in the form of 3x3 matrix in which each row contains three subsystems. The
configuration of the row is of the type 2-out-of-3: F. Each subsystem has n units connected in series.
The system fails if any one row containing three subsystems fails. The considered system analyzed
incorporating different types of power failure which also leads to failure of the system. With the help 
of Supplementary variable technique, Laplace transformations and copula methodology, the transition 
state probabilities, asymptotic behavior, availability, reliability, M.T.T.F., busy period, sensitivity 
analysis and cost effectiveness of the system have been evaluated. Finally, some particular cases and 
numerical examples have been taken to describe the model.

Gumbel-Hougaard copula.

مرتب شده  33 ماتریس شکل درکه  زیرسیستم 9 با یک سیستم پیچیده هايویژگی اعتباراین مقاله     چکیده 

  F: 3از 2 از نوع ردیفپیکربندي  .است زیرسیستم 3 شامل کند در این ماتریس هر سطراست را بررسی می
 3 شامل سطرهايیک از  هر اگر. است مرتبط به هم از نوع سري واحد nداراي  زیرسیستم هر .باشدمی

هاي قطعی انواع مختلفی از ترکیب نظر مورد سیستم. افتدشود، سیستم از کار می مواجه شکست با زیرسیستم

 تبدیل،  متغیر متمم روش کمک با .کندشود را تجزیه و تحلیل میاز کار افتادن سیستم می به منجر که قدرت را 

 دوره، MTTF، در دسترس بودن، قابلیت اطمینان، مجانبی رفتار ،احتمال حالت گذار و روش کوپلا لاپلاس

 خاص و موارد از تعدادي پایاندر . است مورد بررسی قرار گرفته هزینه سیستم حساسیت وتاثیر آنالیز، شلوغی

  .گرفته شده استبه کار  مدل توصیف براي عددي هايمثال

1. INTRODUCTION

In real life we can see many instances in which the 
system stops working due to the power failure.
This is one of the features of some under -
developed and developing countries. Power cut 
may be due to power shortage or natural disasters
which may occur anywhere in the world. So, the
power failure may be one of the causes for the 
system to become non operational. This is a 
situation in which system as such is functional but 
not in operation due to power cut. This may result 
in productivity loss, or affect the cost effectiveness 
of the system. Computer systems and other 
electronic devices containing logic circuitry are 
susceptible to data loss due to the sudden loss of 

power. When the power comes back, the system 
restarts. The time between the system stop and 
restart is said to be reboot delay. These can include 
video projectors, alarm systems as well as 
computers. There are many causes of power 
failures in an electricity network. Examples of 
these causes include: faults at power stations, 
damage to electric transmission lines, substations 
or other parts of the distribution system, a short 
circuit, or overloading of electricity mains etc. A 
very common situation of power loss due to natural 
calamities is that Tree limbs create a short circuit 
in electrical lines during a storm. This will 
typically result in a power outage to the area 
supplied by these lines. Power failures are 
categorized into following three phenomena, 
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relating to the duration and effect of the failure.
Transient fault- A transient fault is a momentary 
loss of power typically caused by temporary fault 
on a power line. Power is automatically restored 
once the fault is cleared.
Brownout-A Brownout or sag is a drop in voltage 
in an electrical power supply. The term brownout 
comes from the dimming experienced by lighting 
when the voltage sags.
Blackout-A Blackout refers to the total loss of 
power to an area, and is the most severe form of 
power failure that can occur. Blackouts which 
result from or result in power stations tripping are 
particularly difficult to recover quickly. Failures 
may last from a few minutes to a few weeks 
depending on the nature of the blackout and the 
configuration of the electrical network. Power 
failures are particularly critical at sites where the 
environment and public safety are at risk. 
Institutions such as hospitals, sewage treatment 
plants, mines etc., will usually have backup power 
sources, such as standby generators, which will 
automatically / manually start up when electrical 
power is lost. Other critical systems, such as 
telecommunications, are also required to have 
emergency power backups. Telephone exchange 
rooms usually have arrays of lead – acid batteries 
for backup, and also a socket for connecting a 
generator during extended periods of power failure. 
Hence, while analyzing the system, power failure 
should also be considered which leads to non-
operational state of the system.

Many researchers have analyzed different types
of systems with different failures. Gupta and 
Agrawal [1] considered a parallel redundant 
complex system with two types of failure under 
preemptive-repeat repair discipline. Jain et al. [2]
provides a research note on finite queue with two 
types of failures and preemptive priority. Jain et al. 
[3] examined maintenance cost analysis for 
replacement model with perfect/minimal repair.
Jain et al. [4] and Kontoleon and Kontoleon [5] 
discussed the reliability analysis of a system 
subject to partial, degraded and catastrophic 
failures. Pandey and Jacob [7] studied the cost 
analysis, availability and MTTF of a three state 
standby complex system under common cause and 
human failures. Ram and Singh [8] analyzed
availability and cost analysis of a parallel 
redundant complex system with two types of 
failure under preemptive-resume repair discipline 
using Gumbel-Hougaard family of copula in repair.

In most of the studies the system is investigated 
with different types of failures such as partial 
failure, catastrophic failure, common cause failure 
and human failure but no thought has been given to 
power failures while analyzing the systems. From 
this discussion, it seems that power failures can be 
included while analyzing the system because it is 
one of the causes which can affect the performance 
of the system. Zuo et al. [12] have taken a real 
industrial application in which a petro-chemical 
company in Canada produces crude oil has been 
described. It uses several methane reformer 
furnaces to produce hydrogen for hydro-treating. 
These furnaces have hundreds of tubes which are 
filled with catalyst. The tubes in a furnace are 
arranged vertically. They have taken many failure 
scenarios for the furnace. For example: (i) if at 
least one row of tubes has at least a given number 
of consecutive tubes that are failed, (ii) whenever 
there is at least one cluster of size r × s of failed 
tubes. By the above description it is clear that in 
industrial area there are some systems in which 
systems configuration can be considered in the 
form of a matrix. The linear connected-(r, s)-out-
of-(m, n): F is such type of system that has m × n
components and consists of n columns and m rows. 
The system fails if and only if a connected-(r, s)-
matrix of components fail. This type of system can 
be used for modeling engineering systems such as 
temperature feeler systems, supervision systems 

Keeping above facts in mind, in the present 
paper we analyze a complex system with three 
types of power failures, namely transient, 
brownout and blackout. We considered a system 
has nine subsystems arranged in the form of 3x3
matrix in which each row is having three 
subsystems. Configuration of each subsystem is 1-
out-of-n: F, i.e. if any one unit out of total n units 
fails then the subsystem fails. It is to be mentioned
here that the more the number of units, the greater 
the chances of failures. The whole system fails if 
any one row containing three subsystems fails. The 
row is 2-out-of-3: F, i.e. if any two subsystems out 
of three fail then the row will fail which lead to 
complete failure of the system. Here, it is also 
assumed that the system can stop working due to 
any of the three types of power failures. Whenever 
system stops due to any of the power failures, a 
backup power source, for example standby 
generator starts automatically and the system starts 
working; but the system stops working if the 

etc. [11].
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backup power source also fails. Furthermore, it is
also assumed that the backup power source is not 
as efficient as main power source, and cannot be 
operable for a very long period of time. For the 
failures, the repairs are done perfectly so after 
repair each subsystem is as good as new. 
Furthermore, in real life problems we can have 
situations in which a system can be repaired in two 
different ways. This feature is also incorporated in 
this study. We have used Gumbel-Hougaard family 
of copula [6, 9 and 10] to find joint distribution of 
repairs whenever power failure and standby power 
supply are being repaired with different repair 
rates. Failure rates are assumed to be constant in 
general, whereas the repairs follow general 
distribution. With the help of Supplementary 
variable technique, Laplace transformation and 
copula methodology, following reliability 
measures of the system have been evaluated:
1. Transition state probabilities of the system.
2. Asymptotic behaviour of the system.
3. Various measures such as availability, 

reliability, M.T.T.F., busy period, sensitivity 
analysis and cost effectiveness of the system.

Some numerical examples are also presented to 
illustrate the model mathematically.

2. ASSUMPTIONS

1. Initially the system is in perfectly good state, i.e. 
all the units are functioning perfectly.

2. At t = 0 all the components are perfect, and t > 0
they start operating.

3. We considered the system having nine 
subsystems arranged in the form of 3x3 matrix 
in which each row contains three subsystems. 
The configuration of each row is 2-out-of-3-F,
i.e. if any two subsystems fails then the row will 
fail. The whole system fails if any one row fails.

4. Each subsystem has n units connected in series 
(1-out-of-n: F).

5. The system is analyzed with three types of 
power failures.

6. When the system stops working due to the 
power failure, a backup power source starts 
automatically and the system restarts,. Here we 
assume the backup power source is not very 
efficient and cannot operate the system for a 
long period.

7. The repair of the failed subsystem is perfect. 
After repair each subsystem is as good as new.

8. The joint probability distribution of repairs when 
both the power failures and the backup power 
source are under repair is computed by Gumbel -
Hougaard family of copula.

            

Figure 1. Diagram of investigated system

TABLE 1. State specification

States System State States System State States System state

S0 W S12 FR S24 FR

S1 W S13 W S25 W
S2 FR S14 FR S26 FR

S3 FR S15 FR S27 FR

S4 W S16 W S28 WP

S5 FR S17 FR S29 WN

S6 FR S18 FR S30 WP

S7 W S19 W S31 WN

S8 FR S20 FR S32 WP

S9 FR S21 FR S33 WN

S10 W S22 W
S11 FR S23 FR

W: Working state, WN: System is not working as Power 
failure and standby Power supply under repair, FR: Failed 
under repair, WP: Working due to standby power supply

                                            
Figure 2. Transition diagram



3. NOTATIONS
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where n is the total number of units in each 
subsystems

1P :         Failure rate of blackout.

2P :         Failure rate of transient fault.

3P :        Failure rate of Brownout.

 :        Failure rate of standby power supply.
)(1 xu :   Repair rate of subsystem 1, subsystem 2

and subsystem 3.
)(2 xu : Repair rate of subsystem 4, subsystem 5

and subsystem 6.
)(3 xu :    Repair rate of subsystem 7, subsystem 8

and subsystem 9.
)(1 y :    Repair rate of blackout.

)(2 y :    Repair rate of transient fault.

)(3 y :    Repair rate of brownout.

)(yv :     Repair rate of standby power supply.
x:         Elapsed repair time.
y:       Elapsed repair time for power failure and 

standby power supply failure.
Pi (t):     Probability that the system is in Si state at 

instant t for i = 1 to i = 33.
)(sP i :     Laplace transform of Pi (t).

Pi(x, t):   Probability density function that at time t
the system is in failed state Si and the 
system is under repair, elapsed repair 
time is x.

Pj(y,t): Probability density function that               
at time t the system is not in working 
state Sj (j = 29, 31 and 33) and the main 
power source and standby power source 

failure are under repair, elapsed repair 
time is y.

E p (t):     Expected profit during the interval (0, t].
K1, K2:   Revenue per unit time and service cost per 

unit time respectively.
)( xS :   Laplace transform of 

              )(xS =  
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expression for the joint probability according to 
Gumbel-Hougaard family of copula is given by  
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where θ is the parameter which may take all values 
in the interval [1, ∞).

4. FORMULATION OF MATHEMATICAL 
MODEL

By probability consideration and continuity 
arguments the following difference-differential 
equations governing the behavior of the system 
seems to be good.

























0

310

3219876

54321 ),()()( dxtxPxutP
PPP

dt

d





 
 


0 0

6151

0

21 ),()(),()(),()( dxtxPxudxtxPxudxtxPxu





0

112

0

91

0

81 ),()(),()(),()( dxtxPxudxtxPxudxtxPxu





0

152

0

142

0

122 ),()(),()(),()( dxtxPxudxtxPxudxtxPxu





0

203

0

182

0

172 ),()(),()(),()( dxtxPxudxtxPxudxtxPxu

 
 


0 0

243233

0

213 ),()(),()(),()( dxtxPxudxtxPxudxtxPxu





0

291

0

273

0

263 ),()(),()(),()( dxtxPxdxtxPxudxtxPxu 





0

333

0

312 ),()(),()( dxtxPxdxtxPx                  (1)

118 - Vol. 25, No. 2, April 2012 IJE Transactions A: Basics



IJE Transactions A: Basics                                  Vol. 25, No. 2, April 2012 - 119

)()( 01123 tPtP
dt

d
 



 

                                 
(2)

0),()( 21 



 








txPxu
xt

                                 

(3)

0),()( 31 



 








txPxu
xt                                   

(4)

)()( 02413 tPtP
dt

d
 



 

                               

(5)

0),()( 51 



 








txPxu
xt                                   

(6)

0),()( 61




 








txPxu
xt

                                  (7)

)()( 03721 tPtP
dt

d
 



                                   (8)

0),()( 81 



 








txPxu
xt

                                  (9)

0),()( 91 



 








txPxu
xt

                                (10)

)()( 041065 tPtP
dt

d
 



                                (11)

0),()( 112 



 








txPxu
xt

                               (12)

0),()( 122 



 








txPxu
xt

                              (13)

)()( 051364 tPtP
dt

d
 



                                (14)

0),()( 142 



 








txPxu
xt

                              (15)

0),()( 152 



 








txPxu
xt

                              (16)

)()( 061645 tPtP
dt

d
 



                               (17)

0),()( 172 



 








txPxu
xt

                              (18)

0),()( 182 



 








txPxu
xt

                             (19)

)()( 071998 tPtP
dt

d
 



                              (20)

0),()( 203 



 








txPxu
xt

                              (21)

0),()( 213 



 








txPxu
xt

                           (22)

)()( 082297 tPtP
dt

d
 



                                (23)

0),()( 233 



 








txPxu
xt

                              (24)

0),()( 243 



 








txPxu
xt

                              (25)

)()( 092587 tPtP
dt

d
 



                                (26)

0),()( 263 



 








txPxu
xt

                              (27)

0),()( 273 



 








txPxu
xt

                              (28)

)()( 0128 tPPtP
dt

d




                                      (29)

0),()( 291 



 








tyPy
xt

                               (30)

)()( 0230 tPPtP
dt

d




                                         (31)

0),()( 312 



 








tyPy
xt

                               (32)

)()( 0332 tPPtP
dt

d




                                         (33)

0),()( 333 



 








tyPy
xt

                            (34)



Boundary conditions:

)(),0( 122 tPtP                                               (35)

)(),0( 133 tPtP                                             (36)

)(),0( 415 tPtP                                             (37)
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)(),0( 2829 tPtP                                             (53)

)(),0( 3031 tPtP                                          (54)

)(),0( 3233 tPtP                                          (55)     

Initial conditions:

1)0(0 P , and other state probabilities are zero at 
t=0.                                                                   (56)
                                  
                                  

5. SOLUTION OF THE MODEL

Taking Laplace transformation of (1) to (56) and 
on further simplification, one can obtain transition 
state probabilities of the system as:
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Also up and down state probabilities of the 
system are given by
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From equations (92) and (93), we have
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6. ASYMPTOTIC BEHAVIOUR

Using Able’s lemma
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7. PARTICULAR CASES

Distribution In this case the results can be
derived by putting
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in equations (92) and (93), which yield
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7.2. If Blackout (Total Loss of Power) Occurs    
Only  Up and down state probabilities in this case 
can be derived by putting P2 = P3= 0 in Equations 
(92) and (93), which are given by:
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7.3. If Transient Failure (Momentary Loss of 
Power) Occurs Only  Up and down state 
probabilities in this case can be derived by putting
P1=P3=0 in Equations (92) and (93).

7.4. If Brownout (Drop in Voltage in an 
Electrical Power Supply) Occurs Only  Up and 
down state probabilities in this case can be derived
by putting P1=P2=0 in Equations (92) and (93).

8. NUMERICAL COMPUTATION

The Maple software has been used to analyze 
availability, reliability, M.T.T.F, busy period, cost 
effectiveness and sensitivity of the system. 

8.1. Availability Analysis Take λ1 = 0.1, λ2 = 0.1, 
λ3 = 0.1, λ4 = 0.2, λ5 = 0.2, λ6 = 0.2, λ7 = 0.3, λ8 =
0.3, λ9 = 0.3, P1 = 0.4, P2 = 0.5, P3 = 0.6, λ = 0.7, u1

= u2 = u3 = ψ1 = ψ2 = ψ3 = φ1 = φ2 = φ3 = v = 1, θ =
1, x = 1 and y = 1. Also, if the repair follows 
exponential distribution i.e. Equation (94) holds, 
then putting all these values in Equation (92) and 
taking inverse Laplace transformation, we get 

-0.009071706019 )0.6910925727 1.140884736( ) ( t
upP t e 

       (-2.038776412 ) ( 0.9984127284 )0.365780518610t -5 te e 

        ( 0.6366204841 )0.00169749090 0.02276566549te  

      ( 0.4320684754 ) ( 0.2318488763 )0.00662544791t te e 

        ( 2.853201318 )0.8141359426 te                          (95)

Now, varying t from 0 to 10 in Equation (95), 
we obtain Table 2 and correspondingly Figure 3
representing the behavior of availability of the 
system with respect to time.

   TABLE 2. Time vs. Availability

Time Availibility
0 1
1 0.776014607
2 0.689394547
3 0.671724623
4 0.665228159
5 0.65987168
6 0.65439497
7 0.648753542
8 0.643022658
9 0.637260688

10 0.631504915

     
Figure 3. Time vs. Availability
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8.2. Reliability Analysis     Let us fix failure rates 
as λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, λ4 = 0.2, λ5 = 0.2, λ6 =
0.2, λ7 = 0.3, λ8 = 0.3, λ9 = 0.3, P1 = 0.4, P2 = 0.5, P3

= 0.6, λ = 0.7, repair rates u1 = u2 = u3 = ψ1 = ψ2 = 
ψ3 = φ1 = φ2 = φ3 = v = 0, θ = 1, x = 1 and y = 1.
Also, let the repair follows exponential 
distribution. Now, by putting all these values in 
Equation (92), using Equation (94) and setting t = 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, one can obtain Table 3
and Figure 4 which represent how reliability varies 
as the time increases.

8.3. M.T.T.F. Analysis     Let us suppose that 
repair follows exponential distribution then using 
equation (94) and from

                 M.T.T.F. = )(lim up
0

sP
s

we have the following four cases:
1. Fixing λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, λ4 = 0.2, λ5 =

0.2, λ6 = 0.2, λ7 = 0.3, λ8 = 0.3, λ9 = 0.3, P2 =
0.5, P3 = 0.6, λ = 0.7, u1 = u2 = u3 = ψ1 = ψ2 = 
ψ3 = φ1 = φ2 = φ3 = v = 0, θ = 1, x = 1 and y =
1 and varying the value of P1 as 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, one can obtain 
variation of M.T.T.F. with respect to P1.

2. Let us set λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, λ4 = 0.2, 

λ5 = 0.2, λ6 = 0.2, λ7 = 0.3, λ8 = 0.3, λ9 = 0.3, P1

= 0.4, P3 = 0.6, λ = 0.7, u1 = u2 = u3 = ψ1 = ψ2 = 
ψ3 = φ1 = φ2 = φ3 = v = 0, θ = 1, x = 1 and y =
1 and varying P2 as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1.0, one can obtain change of 
M.T.T.F. with respect to P2.

3. By taking λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, λ4 = 0.2, 
λ5 = 0.2, λ6 = 0.2, λ7 = 0.3, λ8 = 0.3, λ9 = 0.3, P1

= 0.4, P2 = 0.5, λ = 0.7, u1 = u2 = u3 = ψ1 = ψ2 = 
ψ3 = φ1 = φ2 = φ3 = v = 0, θ = 1, x = 1 and y =
1 and varying P3 as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1.0, one can obtain variation of 
M.T.T.F. with respect to P3.

All the three cases described above are depicted 
by Table 4 and Figure 5.

4. Assume λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, λ4 = 0.2, λ5

= 0.2, λ6 = 0.2, λ7 = 0.3, λ8 = 0.3, λ9 = 0.3, P1 =
0.4, P2 = 0.5, P3 = 0.6, repairs rates be u1 = u2

= u3 = ψ1 = ψ2 = ψ3  = φ1 = φ2 = φ3 = v = 0, θ =
1, x = 1 and y = 1 and increase the value of λ 
from 0.1 to 1.0, we obtain Table 5 and Figure
6 which represents the manner in which 
M.T.T.F. varies with respect to λ.

TABLE 4. Power supply failure (Pi) vs. M.T.T.F. 
where i = 1 (Blackout), i = 2 (Transient) and i = 3
(Brownout)
                

P1 M.T.T.F. P2 M.T.T.F. P2 M.T.T.F.

0.1 2.404761905 0.1 2.438423645 0.1 2.474489796
0.2 2.373271889 0.2 2.404761904 0.2 2.438423645
0.3 2.34375 0.3 2.373271889 0.3 2.404761904
0.4 2.316017316 0.4 2.34375 0.4 2.373271889
0.5 2.289915966 0.5 2.316017316 0.5 2.34375
0.6 2.265306122 0.6 2.289915966 0.6 2.316017316
0.7 2.242063492 0.7 2.265306122 0.7 2.289915966
0.8 2.22007722 0.8 2.242063492 0.8 2.265306122
0.9 2.19924812 0.9 2.2007722 0.9 2.242063492
1 2.179487179 1 2.19924812 1 2.2007722

   

     Figure
5. Power supply failure (Pi) vs. M.T.T.F.    where i = 1
(Blackout), i = 2 (Transient)  and i = 3  (Brownout )

TABLE 3. Time vs. Reliability
      

Time Reliability
0 1
1 0.679457337
2 0.400208826
3 0.241163682
4 0.150576792
5 0.097618882
6 0.06567626
7 0.045740246
8 0.032848564
9 0.024214784

10 0.018238742

Figure 4. Time vs. Reliability



8.4. Busy Period Analysis Let the equation (94) 
holds then Mean time to repair (M.T.T.R.) of the 
system is given by 

                         
)(lim....

0
sPRTTM down

s


1. Letting λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, λ4 = 0.2, λ5 =
0.2, λ6 = 0.2, λ7 = 0.3, λ8 = 0.3, λ9 = 0.3, P2 = 0.5, 
P3 = 0.6, λ = 0.7, u1 = u2 = u3 = ψ1 = ψ2 = ψ3 = φ1

= φ2 = φ3 = v = 1, θ = 1, x = 1 and y = 1 and 
varying P1 as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9, 0.1, we obtain the changes of busy 
period with respect to P1.

2. Taking the values λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, λ4

= 0.2, λ5 = 0.2, λ6 = 0.2, λ7 = 0.3, λ8 = 0.3, λ9 =
0.3, P1 = 0.4, P3 = 0.6, λ = 0.7, u1 = u2 = u3 = ψ1

= ψ2 = ψ3 = φ1 = φ2 = φ3 = v = 1, θ = 1, x = 1, y =
1 and varying P2 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1.0, one can observe how the busy 
period changes with respect to P2.

3. Varying P3 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 
0.9, 1.0, and keeping other parameter fixed at λ1

= 0.1, λ2 = 0.1, λ3 = 0.1, λ4 = 0.2, λ5 = 0.2, λ6 =
0.2, λ7 = 0.3, λ8 = 0.3, λ9 = 0.3, P1 = 0.4, P2 =
0.5, λ = 0.7, u1 = u2 = u3 = ψ1 = ψ2 = ψ3 = φ1 = φ2

= φ3 = v = 1, θ = 1, x = 1, y = 1, one can get the 
variation of busy period with respect to P3.
Variations of busy period with respect to P1, P2

and P3 in the cases (1), (2) and (3) have been 
shown by Table 6 and Figure 7.

8.5. Sensitivity Analysis Assuming that Equation 
(94) holds, we first perform a sensitivity analysis 
for changes in R(t) resulting from changes in 
system parameters P1, P2, P3 and λ. 
Putting λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, λ4 = 0.2, λ5 = 0.2, 
λ6 = 0.2, λ7 = 0.3, λ8 = 0.3, λ9 = 0.3, P2 = 0.5, P3 =
0.6, λ = 0.7, u1 = u2 = u3 = ψ1 = ψ2 = ψ3 = φ1 = φ2 = 
φ3 = v = 0, θ = 1, x = 1 and y = 1 in Equation (92),
and then differentiating with respect to P1, we get:
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TABLE 6. Power failure (Pi) vs. Busy Period where 
i = 1(Blackout), i = 2 (Transient) and i = 3
(Brownout)

Busy Period w.r.t.

Blackout Transient Brownout

0.1 29.1 28.1 27.1
0.2 29.2 28.2 27.2
0.3 29.3 28.3 27.3
0.4 29.4 28.4 27.4
0.5 29.5 28.5 27.5
0.6 29.6 28.6 27.6
0.7 29.7 28.7 27.7
0.8 29.8 28.8 27.8
0.9 29.9 28.9 27.9
1 30 29 28

    
Figure 7. Power failure (Pi) vs. Busy Period where
i = 1(Blackout), i = 2 (Transient) and i = 3 (Brownout)                

TABLE 5. Standby power supply 
  failure (λ) vs. M.T.T.F.   

λ M.T.T.F
0.1 6.212121212
0.2 3.93939393939
0.3 3.181818182
0.4 2.803030303
0.5 2.575757576
0.6 2.424242424
0.7 2.316017316
0.8 2.234848485
0.9 2.171717171
1 2.121212121

Figure 6. Standby power supply failure (λ) vs. MTTF       

i 1 2 3(PP ) (P ) (P )
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Taking inverse Laplace transformation gives:
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Using the same procedure described above, we 

can get .
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Now, we perform a sensitivity analysis of 
changes in M.T.T.F. with respect to P1, P2, P3 and 
λ. Setting λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, λ4 = 0.2, λ5 =
0.2, λ6 = 0.2, λ7 = 0.3, λ8 = 0.3, λ9 = 0.3, P2 = 0.5, P3

= 0.6, λ = 0.7, u1 = u2 = u3 = ψ1 = ψ2 = ψ3 = φ1 = φ2 = 
φ3 = v = 0, θ = 1, x = 1 and y = 1 in Equation (92) 
then using Equation (94), we get:
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Differentiating it with respect to P1, we have:
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Using the same procedure
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can be obtained. 

Numerical results of the sensitivity analysis for the 
system reliability and the M.T.T.F. are presented in 
Figures 8 - 11 and Tables 7-10.

TABLE 7. Sensitivity of system reliability w. r. t. 
Pi where i=1 (Blackout), i=2 (Transient) and i=3

(Brownout)

1

( )R t

P


 2

( )R t

P


 3

( )R t

P


Time

0 0 0 0
1 -0.036564414 -0.035039093 -0.028560154
2 -0.033135699 -0.0314714 -0.024744067
3 -0.025842503 -0.024514741 -0.019190421
4 -0.019602452 -0.018589659 -0.014535014
5 -0.01473436 -0.013971798 -0.010920474
6 -0.011069977 -0.010497208 -0.008205377
7 -0.008353782 -0.007922136 -0.006194561
8 -0.006348868 -0.006021452 -0.004710522
9 -0.004865326 -0.004614962 -0.003612083

10 -0.003760494 -0.003567407 -0.0027936

         
Figure 8. Sensitivity of system reliability w. r. t. Pi 

where i = 1 (Blackout), i = 2 (Transient) and i = 3
(Brownout)

         

TABLE 8. Sensitivity of system reliability w.r.t. 
standby power supply failure (λ)       

( )R t





Time λ=0.2 λ=0.5
0 0 0
1 -0.274123478 -0.215938461
2 -0.544280636 -0.324031722
3 -0.711007298 -0.315920924
4 -0.799534658 -0.26411302
5 -0.832609568 -0.204165507
6 -0.827422185 -0.150504276
7 -0.7967571 -0.107462627
8 -0.750021404 -0.074991328
9 -0.694048922 -0.051435788

10 -0.633724011 -0.034806997

                  
Figure 9. Sensitivity of system  reliability w.r.t.

standby power supply failure (λ)



8.6. Cost Analysis Let us assume that λ1 = 0.1, λ2 =
0.1, λ3 = 0.1, λ4 = 0.2, λ5 = 0.2, λ6 = 0.2, λ7 = 0.3, λ8

= 0.3, λ9 = 0.3, P1 = 0.4, P2 = 0.5, P3 = 0.6, λ = 0.7, 
repairs rates be u1 = u2 = u3 = ψ1 = ψ2 = ψ3 = φ1 = φ2

= φ3 = v = 1, θ = 1, x = 1 and y = 1. Moreover, if 
the repair follows exponential distribution then 
using Equation (94), we can obtain Equation (95). 
If the service facility is always available, then 
expected profit during the interval (0, t] is given 
by:

                  
t

tKdttupPKtEP

0
)()( 21

where K1 and K2 are the revenue per unit time and 
service cost per unit time respectively, then:

5595928662.018110323.76()( )190090717060.0(
1   t

p eKtE

           5)038776412.2( 103663620347.0  te

         )6366204841.0)9984127284.0( 890026664094.0 tt ee  

          028576579.070526899479.0 )4320684754.0   te

          )853201318.2)2318488763.0 2853412192.087 tt ee  
         2)42857144.76 Kt                           (96)

Keeping K1 = 1 and varying K2 at 0.1, 0.2, 0.3, 
0.4, 0.5 in equation (96), one can obtain Table 11
which is depicted by Figure 12.

TABLE 9. Sensitivity of M.T.T.F. w. r. t. Pi where
i=1 (Blackout), i=2 (Transient) and i=3 (Brownout)

                                                      

iP
i=1, 2, 3 1

. . . .M T T F

P


 2

. . . .M T T F

P


 3

. . . .M T T F

P




0.1 -0.325396825 -0.348224903 -0.373542274
0.2 -0.304742084 -0.325396826 -0.348224902
0.3 -0.285993303 -0.304742084 -0.325396825
0.4 -0.268922996 -0.285993304 -0.304742084
0.5 -0.253336629 -0.268922996 -0.285993304
0.6 -0.239067055 -0.253336629 -0.268922996
0.7 -0.225970017 -0.239067056 -0.253336629
0.8 -0.213920484 -0.225970018 -0.239067056
0.9 -0.202809656 -0.213920485 -0.225970018
1 -0.1925425 -0.202809656 -0.213920485

   

TABLE 11. Time vs. Expected Profit

Time ( )pE t

K2=0.1 K2=0.2 K2=0.3 K2=0.4 K2=0.5

0 0 0 0 0 0
1 0.79198937 0.69198937 0.59198937 0.49198937 0.39198937
2 1.41363213 1.21363213 1.01363213 0.81363213 0.61363213
3 1.99216313 1.69216313 1.39216313 1.09216313 0.79216313
4 2.56038882 2.16038882 1.76038882 1.36038882 0.96038882
5 3.12293435 2.62293435 2.12293435 1.62293435 1.12293435
6 3.68008367 3.08008367 2.48008367 1.88008367 1.28008367
7 4.23166831 3.53166831 2.83166831 2.13166831 1.43166831
8 4.77756107 3.97756107 3.17756107 2.37756107 1.57756107
9 5.31770351 4.41770351 3.51770351 2.61770351 1.71770351

10 5.85208468 4.85208468 3.85208468 2.85208468 1.85208468

   Figure 12. Time vs. Expected Profit

Figure 10. Sensitivity of MTTF w. r. t. Pi where
i =1 (Blackout), i = 2 (Transient) and i = 3 (Brownout)

TABLE 10. Sensitivity of M.T.T.F. w. r. t. 
standby power supply failure (λ)

λ . . . .M T T F





0.1 -45.45454546
0.2 -11.36363637
0.3 -5.050505047
0.4 -2.840909092
0.5 -1.818181819
0.6 -1.262626264
0.7 -0.927643784
0.8 -0.710227274
0.9 -0.561167229
1 -0.454545455

Figure11. Sensitivity of M.T.T.F. w. r. t. 
standby power supply failure (λ)
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9. CONCLUSIONS

In this paper, we analyzed the availability, 
reliability, MTTF, busy period, sensitivity and cost 
effectiveness of the complex system incorporating 
power failures. To numerically examine the 
behaviour of availability, reliability, M.T.T.F. and 
cost effectiveness of the system, the various 
parameters are fixed as λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, 
λ4 = 0.2, λ5 = 0 .2, λ6 = 0 .2, λ7 = 0.3, λ8 = 0.3, λ9 = 0
.3, P1 = 0 .4, P2 = 0.5, P3 = 0.6. One can easily 
conclude from Figure 3 that the availability of the 
system decreases with the increment in time and 
later on it stabilizes at value 0.6. Figure 4
represents the variation of reliability of the system. 
It shows that the reliability of the system decreases 
rapidly as the time increases and it attains a value 
of 0.01 after a long period of time.

By critically examining the Figures 5 and 6 one 
can conclude that M.T.T.F. of the system decreases 
from 2.4047 to 2.1794, from 2.4384 to 2.1992 and 
from 2.4744 to 2.2200 with respect to P1, P2 and P3

respectively in a same manner for the considered 
values but the M.T.T.F. of the system with respect 
to λ varies from 6.2121 to 2.1212. M.T.T.F. of the 
system has been obtained in the order: M.T.T.F. 
w. r. t. λ > M.T.T.F. w. r. t. P3 > M.T.T.F. w. r. t. 
P2 > M.T.T.F. w. r. t. P1. So M.T.T.F. of the 
system is highest with respect to λ and lowest with 
respect to P1.

Figure 7 is the graph of power failures, namely 
blackout (P1), transient (P2) and brownout (P3) vs. 
busy period and its values have given in Table 6. 
Observation of Figure 7 reveals that Busy period 
increases as the value of P1, P2 and P3 increases.
The curve indicate that Busy period with respect to 
P1 > Busy period with respect to P2 > Busy period 
with respect to P3. So, the busy period is highest in 
case of P1 and lowest in case of P3.

The sensitivities of the system reliability with 
respect to P1, P2, P3 and λ are shown in Figures 8
and 9. Figure 8 shows the sensitivity of system 
reliability with respect to P1 at 1.1, P2 at 0.1 and P3

at 1.9. It reveals that the sensitivity initially 
decreases and then tends to increase as time passes 
and attain a value -0.0037, -0.0035 and -0.0027 at t 
= 10 with respect to P1, P2 and P3 respectively. It is 
clear from the graph that system reliability is more 
sensitive w. r. t. P3. The sensitivity of λ on the 
system reliability is shown in Figure 9. It is clear
from this figure that the sensitivity of the system 

reliability initially decreases and then increases 
with respect to λ at 0.2 and 0.5. It is interesting to 
note that the system becomes more sensitive with 
the increase in failure rate. So, we can conclude 
that the system can be made less sensitive by 
controlling its failure rates. Moreover, Figures 10
and 11 show the sensitivity of M.T.T.F. with 
respect to P1, P2, P3 and λ which show that it 
increases from -0.325396825 to -0.1925425, -
0.348224903 to -0.202809656, -0.373542274 to -
0.213920484 and -45.45454546 to -0.454545455
as P1, P2, P3 and λ increase from 0.1 to 1. Critical 
observation of these graphs points out that 
M.T.T.F. of the system is more sensitive with 
respect to P1.

Keeping revenue cost per unit time at 1 and 
varying service cost from 0.1 to 0.5, one can obtain 
Figure 12. It is very clear that the profit decreases 
as the service cost increases. The highest and 
lowest values of expected profit are obtained to be 
5.85 and 0.39 respectively for the considered 
values.
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