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A CLOSED FORM SOLUTION FOR FREE VIBRATION 
ANALYSIS OF TUBE-IN-TUBE SYSTEMS IN TALL BUILDINGS
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Abstract   In this paper the dynamic response of tube-in-tube systems for tall building structures is 
investigated. Inner and outer tubes are modeled using equivalent continuous orthotropic membranes; in 
which, each tube is individually modeled by a cantilever box beam. By applying the compatibility 
conditions on deformation of the two tubes, the governing dynamic equations of the tube-in-tube 
structure and their associated boundary conditions are derived using the variational principle of virtual 
work. Appling differential calculus with some simplifications, and deriving non-trivial solution of these 
equations, a closed form solution is presented to obtain natural frequency and mode shape of tube-in-
tube structures. A quick estimate of these quantities is of particular importance at the early stages of 
tube-in-tube systems design prior to a full dynamic analysis. In order to illustrate the efficiency of the 
proposed model a symmetrical building is analyzed and comparisons are made with more accurate 
results obtained by three dimensional computer dynamic analysis and previous published methods.

Keywords   Tall buildings; Tube-in-tube; Free vibration; Variational principle; Natural frequency;
Mode Shape.

رسی قرار طی تو در تو در ساختمانهاي بلند مورد بریستم قاب محیکی سینامین مقاله پاسخ دیا درچکیده  

اند که در سازي شدهوسته معادلیک پیهاي داخلی و خارجی با استفاده از صفحات اورتوتروپقاب. گرفته است

هاي شکلرییبا در نظر گرفتن سازگاري تغ. ن شده استیگزیجا اير طرهیک تیآن هر قاب به طور جداگانه با 

کار مجازي معادلات حاکم بر حرکت سازه و  رات وییري اصول حساب تغیکارگبهدو قاب داخلی و خارجی و 

ن مشخصات ارتعاشی در ین ایتخم. عی و مود شکل متناظر حاصل شده استیمعادلات حاکم بر فرکانس طب

ج حاصله از روش یی نتایصحت و کارا. باشدد مییه مفیتو و برآورد اولطی تو در یستم قاب محیه سیز اولیآنال

ج یوتري و نتایز کامپیج حاصله با آنالیز و نتایطی تو در تو آنالیستم قاب محیشنهادي براي ساختمان بلندي با سیپ

  .استشده سه یهاي قبلی موجود مقاحاصله از روش

Nomenclature
A Sum of the cross sectional area of exterior columns
Ci Arbitrary coefficients of general solution
dc Dimension of column
E Modulus of elasticity
EI Flexural rigidity of a tall building
G Shear modulus
h Height of story
H Total height of the building
j An integer representing mode number
P(x,t) Distributed external force
sf Span spaces of flange frame
sw Span spaces of web frame
S Shear rigidity of a tall building

t Thickness of equivalent membrane
u Natural mode shape function
2Wf Width of flange frame
2Ww Width of web frame
Wext Virtual work done by external forces

x
Spatial position of any material along the height of 
the building

y(x,t) Lateral displacement of the building
 Variation operator
 Poisson ratio
 Mass density
 Circular natural frequency

 Nondimensional coordinate for x 

بدست آمدهاند. با اعمال برخی سادهسازيها بر ارتعاش آزاد سیستم قاب محیطی تو در تو  شرایط مرزي 
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1. INTRODUCTION

Tall building structures are affected by lateral 
loads due to wind or earthquake actions to an 
extent that they play an important role in structural 
design. Over the last decades, various forms of tall 
building structures have been developed to be 
efficient in resisting lateral loadings [1]. In general, 
framed tube structures are widely accepted as an 
economical system in high rise buildings, over a 
wide range of building heights. Framed tube 
system, in its simplest form consists of closely 
spaced exterior columns tied at each floor level by 
relatively deep spandrels [2]. In order to increase 
the efficiency of the framed tube under the lateral 
loads, framed tube commonly is utilized with 
central core. A framed tube under lateral loads acts 
like a cantilevered box beam to resist the 
overturning moment; and the central core acting 
like second tube within the outside tube. The 
central core may be designed not only for gravity 
load but also to resist lateral loads. When lateral 
sway is critical and starts controlling the design, 
the ‘‘framed tube’’ can be supplemented by a tube 
instead of the central core to create ‘‘tube-in-tube’’ 
system [1]. In recent years, due to developments in 
design technology and material qualities in civil 
engineering, the structures have become lighter 
and more slender. These will cause the structure to 
vibrate when they are located in environments 
where earthquake or high winds exist. 

These vibrations may lead to serious structural 
damage with potential for structural failure. A 
great number of researches have studied the natural 
modes of tall buildings over the past decades. 
Youlin [3] has analyzed tube-in-tube structures. In 
this work, the outer framed tube was considered as 
an equivalent closed tube. Based on compatibility 
of deformation between the two tubes, a 
differential equation was developed and formulas 
for calculating horizontal displacements of tube-in-
tube structure and load distribution on the two 
tubes were derived. Then, the natural period of the 
first mode of tube-in-tube structure and the seismic 
loads on it were obtained by the Top-Displacement 
method. Wang [4] obtained a formula for 
calculating the natural frequencies of tube-in-tube 
structures in tall buildings directly from the fourth-
order Sturm-Liouville differential equations. In 
another study, numerical solutions of eigenvalues 
for free vibration of tube-in-tube structures by 

using modified ODE solver for eigenvalue 
problem was presented by him based on an 
existing Ordinary Differential Equation (ODE) 
solver [5]. Lee [6] proposed a simple mathematical 
model for approximate analysis of framed tube 
structures with multiple internal tubes using the 
minimum potential energy principle in conjunction 
with the variational approach. Lee [7] presented an 
approximate solution that was formulated for free 
vibration analysis of tube-in-tube tall buildings. 
The governing partial differential equation of 
motion has been reduced to an ordinary differential 
equation with variable coefficients on the 
assumption that the transverse vibration is 
harmonic. A power-series solution was used to 
obtain mode shape functions for the tube-in-tube 
structures.
     In the present study, a mathematical model is 
proposed for accurate prediction of the 
fundamental natural frequencies and corresponding 
mode shapes of tube-in-tube systems in tall 
building structures. Tube-in-tube system is 
analyzed using an orthotropic box beam analogy 
approach in which each tube is individually 
modeled by a box beam thus accounting for 
flexural as well as the shear deformations [6, 8-
10]. Appling compatibility of deformation for the 
two tubes, the governing dynamic equations of the 
tube-in-tube structure and their associated 
boundary conditions are derived using variational 
principle of virtual work. Appling differential 
calculus with some simplifications, and deriving 
non-trivial solution of these equations, a closed 
form solution has been presented to obtain the 
fundamental natural frequencies and mode shapes 
of tube-in-tube structures. The method is simple 
and accurate enough. It can greatly reduce the 
computational work as compared to finite element 
approach, and yet a solution of acceptable 
precision can be obtained. 

2. DERIVATION OF THE BOUNDARY AND 
EIGENVALUE PROBLEMS

It is well known that highly accurate results for 
vibrational analyses of tall building structures may 
be obtained using appropriate finite element based 
computer softwares. However, the analytical 
technique based on continuum modeling, not only 
provides a simple and convenient means for free 
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vibration analysis, it also permits one to visualize 
directly the dynamic performance of tall building 
structures, and hence to understand qualitatively 
how the natural frequencies and corresponding 
mode shapes are related to the structural 
parameters by carrying out simple parametric 
studies. The analytical techniques based on 
continuum modeling can clearly reveal the static 
and dynamic characteristics of tall building 
structures. Moreover, information provided by the 
analytic technique, can also be used to develop a 
basis for analysis of tall building structures using 
approximate methods. Furthermore, to investigate 
the influence of particular structural parameters on 
static and dynamic characteristics of a given 
structure, it is very convenient if analytical
methods are utilized. The advantages of both 
analytical and approximate methods based on 
continuum modeling for tall building structures are 
not realized by the highly time consuming 
modeling in finite element analyses. In contrast, 
the finite element approach requires one to solve 
thousands of linear simultaneous equations to 
obtain quantitative results in detail. So it is a 
powerful tool for analysis and design at the 
detailed and final design stages of tall buildings. It 
takes much more time hence expensive, for the 
modeling of a given structure using finite 
elements.

In this section an approximate mathematical 
model is presented to obtain natural frequencies 
and corresponding mode shapes of tube-in-tube 

structure can be modeled as an assemblage of 
equivalent orthotropic plate panels. Consequently, 
a framed-tube structure may be analyzed as a 
continuum. Figure 1 shows a typical framed-tube 
structure with internal tube. Each of the tubes is 
composed of four equivalent orthotropic plate 
panels. All framed tubes under consideration 
consist of an assemblage of such plate panels of 
uniform thickness in vertical planes [10]. Each 
framed tube structure can be modeled as cantilever 
beam with hollow section. Thus, the tube-in-tube 
model can represent a coupled system consisting of 
two tubes. Since floor slabs is essentially rigid 
within their own plane, the relative lateral 
displacements between the two tubes can be 
assumed negligible at each floor level. The outside 
tube and the internal tube, each described by a set 
of differential equations, are forced to have 
compatible lateral deflection at the floor level. 

The following assumptions are adopted in this 
paper for structural analysis:
a) Structure's behavior is linear elastic.
b) Floor slabs are considered to be rigid 
diaphragms within their own plane.
c) The spacing of beams and columns are uniform 
through the building height.
d) Sectional properties for beams and columns are 
uniform throughout the height of building.
Analytical analysis for natural frequencies and 
corresponding mode shapes is carried out using the 
Hamilton’s principle. By considering a distributed 
system defined over the closed domains 
0 ,x H   where x is the spatial position of any 
material point of the system, H is total height of 
the structure and lateral displacement of 
cantilevered beams are denoted by y(x,t) (see 

Figure 2. Behavior of tube-in-tube structure.
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Figure 1. Equivalent tube-in-tube structure.

structures in tall buildings. A discrete tube-in-tube 
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Figure 3. Structural plan of the tube-in-tube structure.

Hamilton’s principle [11-14] states that:

2 2 2 2

1 1 1 1

( ) 0
 t  t  t  t

ext ext t  t  t  t
L dt W  dt T V  dt W  dt           (1)

where  denote variation with respect to field 
variable y, L is the Lagrangian, Wext is the  work 
done by external forces, T and V are the kinetic and 
potential energy of the tube-in-tube structure, 
respectively.

Assuming that lateral deflection, y, is identical 
in both tubes, the potential energy and kinetic 
energy are written as follows:
potential energy [11]:
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kinetic energy [11]:
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Lagrangian of tube-in-tube structure can be 
obtained as follows [11]:
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work done by external forces:

0
( , ) ( , )ext

 H
W P x t  y x t  dx  (5)

where EI is the sum of flexural rigidities for inner 
tube and outer tube, S is the sum of shear rigidities 
for inner and outer tubes,  is the mass density, 
P(x,t) is a distributed external force and A is sum 
of the cross-sectional areas for framed tube 
structures.  Substituting Equations (4) and (5) in 
Equation (1) and integrating by parts, the 
following basic equation of motion for the tube-in-
tube system is obtained:

2

2
( ) ( ") 0, 0S  y EI  y  A y P     x H      

(6)

with boundary conditions:

x Hx 

 


(7)

and

  0x HEI y   (8)

where a dot over a variable indicates the 
differential with respect to time and a prime 
indicates the partial differential with respect to x. 
Equations (7) and (8) state that shear force and 
moment are zero at the free top of the structure. As 
there are zero deflection and zero rotation at the 
fixed base of the structure the following boundary 
conditions are obtained:

(0, ) 0y t  (9)

and

(0, ) 0y t  (10)

It is considered that the free vibration motion at 
any point of the structural height x is harmonic and 
the deflected shapes are independent of time t [13-
14]. The displacement vector can then be written, 
in a separable form of variables x and t, as follows:

( , ) ( ) sin ( )y x t u t     (11)

where x H  is the relative height of structure, 

 is the circular frequency, and u is the mode 
shape function. In free vibration analysis of any 
structure, the applied external force P(x,t) is 
equaled to zero. Substituting Equation (11) into 
Equations (6-10) and carrying out the necessary 
differentiation, the eigenvalue equation of the 
symmetric frame structures and its boundary 
conditions are:

Z  

2(Ww)o  

2(
W

f) i
  

2(Ww)i  

(tw)o  

(tw)i  

(tf)i  

Y  

(tf)o  

2(
W

f) o
  

P  

[  S  y  (EI  y )]  0

 
x x



IJE Transactions A: Basics                                  Vol. 25, No. 2, April 2012 - 111

governing equation:
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3. SOLUTION METHOD

3.1. Theoretical Method of Solution   When 
values of , EI and S are constants in the length of 
structure, to obtain a theoretical solution to the free 
vibration of tube-in-tube structures, eigen problem 
given in Equation (12) may be written as:

4 2
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with boundary conditions of the eigenvalue 
equation as follows:
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in which the structural parameters are as follows:

22 S
H
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H
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Substituting ( )  u C e  into Equation (17)
gives:

4 2 2 2 2 0       (24)

Hence
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Thus, for a uniform tube structure the general 
solution of Equation (17) which is a fourth-order 
differential equation with constant coefficients, the 
general solution is:

1 1 2 1 3 2 4 2 (29)

Solution of Equation (24), ( )u  and its related 
derivatives are:
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Applying boundary conditions to Equation (30) 
leads to:
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Solution of Equation (31) consists of two parts. 
The first part is the eigenvector which corresponds 
to the mode shape, while the second part is the 
eigenvalue, which corresponds to the frequency of 
free vibration of the tube-in-tube structure. A 
closed form solution has been derived for 
determining the natural frequencies and 
corresponding mode shapes of symmetric tube-in-
tube structures in tall buildings.

Corresponding Mode Shapes     Mathematically, 
the non-trivial solution of Equation (31) can only 
be obtained when the determinant of the 
coefficients is equal to zero, i.e.
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The solution of Equation (32) is then obtained by 
Mathematica 7.0.0 software [15] as follows:
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From Equation (31), coefficients in Equation (29) 
are obtained as follows:
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Hence, the corresponding natural mode shapes can 
be expressed as follows [11]:
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where ( )jA are unknown constants, and ( )jw the 
non-normalized mode shape functions, given by:
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( )j

constitute a complete set of orthogonal modes. 
Hence, free vibration frequencies and associated 
mode shapes of a symmetric-plan tube-in-tube 
structure can be determined by using Equation (33) 
and Equations (36-37) respectively.

4. NUMERICAL INVESTIGATION

To demonstrate the simplicity and accuracy of the 
proposed method a tube in tube tall building 
structure which studied by Lee [7] is analyzed. 
Geometric parameters of the building are listed in 
Table 1. The plan and sectional views of the 
structure are shown in Figure 4. The flexural 
rigidity of the outer tube is (EI)o= 3.52872109

KN.m2, the flexural rigidity of the inner tube is 
(EI)i=7.5538109 KN.m2, the shear rigidity S= 
3.9888107 KN.m2, mass per unit length is 
m=325.828 t/m, the total height of the building is 
H=75.9 m.

TABLE 1. Specifications of the 25-story building.

Outer tube 
dimensions

Inner tube 
dimensions

Center to 
center 

spacing of 
columns

Height of 
building

2(Wf)o
(m)

2(Ww)o
(m)

2(Wf)i
(m)

2(Ww)i
(m)

sw
(m)

sf
(m)

H
(m)

30 26 7.65 10.40 2.0 2.0 75.9

u ( )The natural modes (j=1,2,…) 

3.2. Vibrational Frequencies and 
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Figure 4. Typical floor plan of tube-in-tube tall 
building.

The first two natural frequencies are compared 
with those obtained by Top Displacement Method 
(TDM) [3], Mode Superposition Method (MSM) 
[3], Finite Element Method (FEM) 
(COSMOS/M1988) [16], Variational Method 
(VM) [17], Sturm-Liouville equation (SL) [4], 
ODE solver (ODE) [5] and Power-Series Solution 
(PSS) [7]. The capabilities of the proposed method 
and those of the previous published approximate 
methods are compared in Table 2. 

TABLE 2. Comparison of natural frequencies of tube-
in-tube tall building.

Methods 1(rad/s) 2(rad/s)
Proposed 
method

3.705 16.127

TDM 3.157 -
MSM 3.279 17.921
FEM 3.715 21.200
VM 3.462 21.200
SL 3.462 21.525

ODE 3.461 19.239
PSS 3.518 20.763

The results of approximate proposed method 
are in good agreement with results available in the 
published literature.

5. DISCUSSIONS

It can be seen that the results calculated by the 
proposed method agree well with those obtained 
from a detailed finite element analysis and 
previous published methods. The difference of the 
natural frequency and corresponding mode shape 
of tube-in-tube tall building in the frequencies 

computed by the proposed method and reference 
methods are within acceptable ranges. The main 
sources of error between the proposed approximate 
method and other methods are as follows [19-20]:
(a) All closely spaced perimeter columns tied at 

each floor level by deep spandrel beams 
considered to form a tubular structure.

(b)Modeling the frame panels as equivalent 
orthotropic membranes, so it can be analyzed as 
a continuous structure.

(c) The approximation to derive EI and GA
parameters.

(d)The effect of shear lag in the external and 
internal tubes has been neglected in assessing 
the global behavior of the tube-in-tube 
structures in approximate method.

The numerical example demonstrates the accuracy 
and simplicity of the proposed method as 
compared to previous published methods.  

6. CONCLUSION

Based on Hamilton’s principle in conjunction with 
the variational approach and differential calculus, a 
simple mathematical model is presented for the 
free vibration analysis of tube-in-tube structures. 
Each tube through the height of the structure is
modelled as cantilever beam. Also the tube 
structures are modelled as a box assemblage of 
orthotropic plate panels. By simplifying 
assumption related to behavior of tube-in-tube 
structures and using Hamilton’s principle, the 
complex free vibration analysis is reduced to a 
linear differential equation with four boundary 
conditions. By obtaining the trivial and non-trivial 
solutions of these equations a closed form solution 
is obtained for calculating the natural frequencies 
of free vibration and associated mode shapes of 
tube-in-tube tall building structures. The accuracy, 
simplicity and reliability of the proposed method 
are verified for a tube-in-tube tall building. 
Differences between natural frequencies of 
proposed method and previous published works 
are small. Accuracy and economy of the proposed 
method is confirmed. The proposed method is 
simple, accurate, economical and reliable, and 
especially suitable for use at preliminary design 
stages where a large number of structures with 
different features are required to be analyzed 
repeatedly.
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