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Abstract  Control of a fluid flow velocity profile by injection and suction of a non-ionized fluid in 
presence of a uniform steady magnetic field has important technical applications. In this paper, the 
unsteady incompressible and viscous conducting fluid flow has been investigated in a circular 
channel. The channel walls are assumed to be non-conducting and porous. They are subjected to a 
uniform steady magnetic field which is perpendicular to the axis of channel, then and suction and 
injection are applied at the walls. The well known equations of Magnetohydrodynamics are governed 
to the motion of an electrically conducting fluid flow that is subjected to magnetic field. The 
numerical solution is carried out by finite difference approach. The results of present numerical 
simulation shown that the flow injection and suction through the wall can be controlled effectively, 
the main flow in channel especially in industrial purposes. The results are obtained for different 
values of the injected and sucked non-ionized flow rate and the effect of Hartman number on the 
velocity profile is investigated. Finally, a good agreement is seen between the presented results and 
the corresponding data of finite element method. 

ن اجریان غیر یونیزه  در حضور میدیک بوسیله تزریق و مکش سیال کنترل پروفیل سرعت جریان   چکیده

در این مقاله، جریان سیال رساناي ویسکوز، غیر قابل . مغناطیسی یکنواخت دائم، کاربردهاي فنی مهمی دارد

کانال عایق و متخلخل فرض شده  دیواره. تراکم و غیر دائم در یک کانال دایروي مورد بررسی قرار گرفته است

ن در معرض یک میدان مغناطیسی دائم یکنواخت که بر محور کانال عمود است قرار دارد و تزریق جریا. است

معادلات معروف هیدرودینامیک مغناطیسی بر حرکت یک سیال رساناي . شوداعمال میها و مکش در دیواره

حل عددي توسط دیدگاه اختلاف محدود . ارد، حاکم هستندالکتریکی که در معرض میدان مغناطیسی قرار د

تواند جریان دهد که جریان تزریق و مکش در دیواره مینتایج حل عددي حاضرنشان می. صورت گرفته است

. کنترل کند که این پدیده کاربردهاي صنعتی داردبراي اهداف صنعتی اصلی عبوري از کانال را به طور موثري 

دست آمده  و تاثیر عدد هارتمن بر روي پروفیل ه ر متفاوت نرخ جریان تزریقی و مکشی بنتایج براي مقادی

نتایج ارائه شده مورد نظر و نتایج متناظر آن توافق خوبی میان  ،در نهایت. سرعت مورد بررسی قرار گرفته است

.شده استمحدود مشاهده با استفاده از روش المان 

  

Nomenclature

MHD            Magnetohydrodynamics

B0                 uniform static magnetic field (Tesla)

Rem               magnetic Reynolds number

Re                 Reynolds number

μ                  Dynamic viscosity (N.s/m2)

1. INTRODUCTION

Recent years have been marked by dramatic 
advances in active flow control, but developments 
have had little effect on conducting fluids moving 
in magnetic fields. MHD is that part of the 
mechanics of continuous media which studies the 
motion of electrically conducting media in the 
presence of a magnetic field. MHD is essential in 

ρ                   Density (kg/m )3
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plasma physics and astrophysics and was mainly 
created by Alfven [1] around 1940 (Nobel prize in 
physics 1970). In nature, systems in which MHD 
effects are important include: the Earth’s core and 
solar flares; and in the engineering world: the 
electromagnetic casting of metals and the 
confinement of plasmas [2]. Another area of much 
interest is fusion engineering; reactor designs 
commonly involve the use of electrically 
conducting liquid metals [3]. On the other hand, 
flow through channels is of paramount importance 
in many industrial applications. One can mention
for example that flow through nozzles, diffusers 
and reducers as encountered in polymer processing 
operations. Therefore, in this paper, MHD flow in 
circular channel has been investigated.

The uses of advanced finite difference, finite 
element and other semi-analytical and numerical 
hybrid solvers have resolved many lingering 
problems in classical viscous flows of electrically-
conducting fluids. In this paper, the numerical 
solution has been carried out by finite difference 
approach.

Many profound studies have been 
communicated in the past several decades. Snyder 
[4] analyzed MHD flows in the entrance region of 
a rectangular channel and provided a good 
bibliography of the earlier work. Shercliff [5] 
examined the steady motion of an electrically 
conducting, viscous fluid along channels in the 
presence of an imposed transverse magnetic field 
when the walls do not conduct currents. K. S. Sai, 

injection on an incompressible laminar flow in a 
rectangular duct with non-conducting walls in the 
presence of an imposed transverse magnetic field. 
They obtained analytical solutions for the velocity 
and magnetic field, which are useful for obtaining 
the current density and electric field strength. 
Singh and Lal [7] studied the unsteady MHD flow 
through a pipe having arbitrarily conducting walls 
using finite elements, for various Hartmann
numbers and wall conductivities at various time 
levels, showing that an increase in wall 
conductivity or Hartmann number induces a 

a mathematical model to predict the velocity 
profile for a unidirectional, incompressible and 
steady flow of an Oldroyd 6-constant fluid. The 
fluid was made electrically conducting by a 
transverse magnetic field, and the developed 

governing equation was non-linear. This equation 
had been solved analytically to obtain the general 
solution. Also, the governing non-linear equation 
had been solved numerically subject to appropriate 
boundary conditions (three cases of typical plane 
shearing flows) by an iterative technique with the 
finite-difference discretizations. Hazem Ali Attia
[9] studied the unsteady Hartmann flow of a dusty 
viscous incompressible electrically conducting 
fluid under the influence of an exponentially 
decreasing pressure gradient without neglecting the 
ion slip. The parallel plates had been assumed to be 
porous and subjected to a uniform suction from 
above and injection from below. An analytical 
solution for the governing equations of motion had
been obtained to yield the velocity distributions for 
both the fluid and dust particles.

In this research, the unsteady incompressible and 
viscous conducting fluid flow has been 
investigated in a circular channel. The channel wall 
has been assumed to be non-conducting and 
porous. It has been subjected to a uniform static 
magnetic field which is vertical to the axis of 
channel and suction and injection have been 
applied at the wall. Hence in this work, for solving 
the problem, finite difference method has been 
applied to the unsteady incompressible and viscous 
conducting fluid flow.

devoted to the basic equation of motion and 

of the numerical solution are validated. Section 4
deals with the results of the numerical solution and

2. EQUATIONS OF MOTION AND 
FORMULATION OF THE MODEL

We next consider the unsteady viscous and 
incompressible conducting fluid flow past a non-
conducting and porous circular channel in the 
presence of a uniform static magnetic field. The 
circular channel is divided into two equal parts. 
Fluids are injected with a velocity, v0, at lower half 
cylinder and sucked with the same velocity at 
upper half cylinder; the geometry of the problem as 
shown in Figure (1).
For comfortable mathematical modeling, we 
consider an infinitesimal element to formulate the 
problem; the selected elements are depicted in 
Figure (2). 

This paper is organized as follows: section 2 is 

formulation of the model. In section 3, the results 

section 5 gives the conclusions.
et al. [6] examined the effects of suction or 

decrease in the flux. Y. Wang, et al. [8] developed 
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Figure 1. Schematic of the model

Figure 2. Cross-section of the model with selected 
infinitesimal elements

With these considerations, we formulate the 
unsteady flow through a non-conducting and 
porous parallel plate channel in the presence of a 
uniform static magnetic field that (x, y) are 
Cartesian coordinates and B0 is a uniform static 
magnetic field in y-direction. The two independent 
velocity components are u (in x-direction) and v (in 
y-direction).
For either laminar or turbulent flow, the two-
dimensional continuity equation is given by:

u v
0

x y

 
 

  (1)

Momentum differential equation can be written as:

Vpf
dt

dV
b

2  (2)

where, fb is a body force. One can neglects gravity 
body force (fb,y) in y-direction ,but there is a 
magnetic body force fb,x on the x-direction and is 
called Lorenz force [10, 11]; that its relation is 
given by:

BJforceLorenz  (3)

The (J) stands for the electric current density,
and (B) is the magnetic flux, respectively. We 
obtain the current density from Ohm’s law [10, 
11]:

 BVEJ  (4)

where, (σ) is the electrical conductivity and  E is 
the electric field. Motion of an electrically 
conducting fluid in an applied magnetic field 
would induce a magnetic field in the medium. The 
total field is, therefore, the sum of the applied and 
induced magnetic fields. The relative strength of 
the induced field is characterized by the magnetic 
Reynolds number (

m mRe = UL with characteristic 
values of velocity and length, U and L, and m is 
magnetic permeability). One can assume that the 
induced magnetic field is negligible. This 
assumption is justified when the magnetic 
Reynolds number is small. Since no external 
electric field is applied and the effect of 
polarization of the ionized fluid is negligible, we 
can also assume the electric field is zero, so that:

0E (5)

Substituting this expression into Eq. (4) and its 
result in Eq. (3), yields:

  VBBBVf xb
2

0,   (6)

We assumed that a static magnetic field with a 
constant magnetic flux density B0 is applied in the 
y-direction.
Momentum differential equation in x-direction for 
this problem is given by:
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(7)

On the other hand, in this model Fluids are 
injected with a velocity v0 at lower half cylinder 
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and sucked with the same velocity at upper half 
cylinder, hence, the velocity in y-direction is
assumed to be v0. According to this assumption:

00 




y

v
vv (8)

Substituting Eq. (8) into continuity equation, one 
gets:

 ,
u

0 u u y t
x


  


(9)

Due to the fact that the velocity in x-direction is a 
function of y and t, then:

2 2u x = 0  (10)

Substituting Equations (8), (9) and (10) into Eq. 
(7), brings:

2 2
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0 2

1 Bu u p u
v u

t y x y




 
    

          
(11)

Also, Momentum equation in y-direction is 
introduced by:

2 2

2 2
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Because of v=v0, then:
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Substituting Eq. (13) into Eq. (12), one obtains:

0



y

p
(14)

Combining Equations (14) and (11), it would be 
found that:

)(tpxp  (15)

It is expedient to write the Eq. (11) in the non-
dimensional form. To do this, we introduce the 
following non-dimensional quantities:
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Eq. (11) reduces to:
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The velocity distribution can be evaluated from the 
no-slip boundary condition at the upper and lower 
walls:

 * *u 0,t = 0

 * *u 1,t = 0
(17)

Also, initial condition for this problem is assumed
as:

 * *u y ,0 = 0 (18)

According to Equation (15), ( )p t cte is 
considered for simplicity in mathematical 
computation.

3. VALIDATION
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In the computations, the pressure gradient is 
decomposed into a steady component and an 
imposed (oscillatory) part such that:

 
*

*
0* s

p
p p coswt

x


  


that is:
terms of dimensionless longitudinal velocity, U, 
following non-linear partial differential equation in 
governing equation had been reduced to the 
the method is available in the literature [12]. The 
noded line elements. An excellent description of 
channel, using a finite element method with two-
boundary conditions prescribed at both walls of the 
conservation equation had been solved under 
channel containing porous medium. The 
electrically conducting Newtonian biofluid via a 
study of pulsatile flow and mass transfer of an 
Bhargava et al. [12] have investigated a numerical 
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where, λ is Darcian linear drag parameter and NF is
Forchheimer second-order parameter. More 

simplest case; steady, non-magnetic, non-porous 
flow is considered (p0=0, ps=10, Ha=0, λ=∞, 
NF=0). They computed the influence of Reynolds 
number on velocity profiles.

With these assumptions, Eq. (19) would be change 
into Eq. (16) and these results can be compared 
together.

u* versus y* has been 
plotted for Re=3 and Re=5. Whereupon, the 
comparison of finite element results with the 
corresponding curves obtained by finite difference 
method show good agreement.

* *

* *

4. NUMERICAL SOLUTION AND RESULTS

For solving the differential equation (Eq. 16), the 

provided and utilized. In this research, the Taylor-
series expansion is utilized to approximate, and 
discretization of the equations are carried out with 
implicit method. This method is usually 
unconditionally stable. ,The results of this solution 
are  presented in this section. Dimensionless 
velocity surface as function of y* and t* is shown in 
Figure (4), that is for Re=10, Ha=1 and p(t) =1. As 
can be seen in this figure, profile of u* is 
asymmetric at about the plan y*=0.5 because of the 
injection and suction, and maximum velocity 
occurs at almost *

Figure 4. The velocity profile in the surface with 
Re=10, Ha=1 and p(t) =1.

* *

been plotted for Ha=1, 3, 5; at all three state, 

velocity profile changes from t*=0 to t*=1.5 and 
after that it does not change with time (in fact the 
profile attains steady state at *

Ha=3 and Ha=5, where
steady state has occurred at t*=0.4 and t*=0.7, 
respectively. It can be realized from the above-
mentioned diagrams that the time to achieve steady 
state would decrease with growing of Hartman 
number.

explanation is available in the literature  [12]. For the 
code for finite difference method has been 

Figure 3a. u versus y for Re=3

Figure 3b. u versus y for Re=5

In Figures (5a), (5b) and (5c), u versus y has 

Re=10 and p(t)=1. While Ha=1 (Figure 5a), 

t =1.5). Figures (5b) 
and (5c) is plotted for 

In Figures (3a) and (3b), 

y = 0.75.
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* * *

with Ha=1, Re=10 and p(t)=1.

* * *

with Ha=3, Re=10 and p(t)=1.

* * *

with Ha=5, Re=10 and p(t)=1.

When profile does not change withtime, effect of 
y* on the u* is shown for different Hartman 
numbers in Figure (6). All of these profiles are 
varied for Re=10 and p(t)=1. From this figure, it is 
clear that with increasing Ha, maximum velocity 
would decrease. In high Hartman numbers no 
velocity profile would exist. The maximum value 
of these indicated profiles is seen to happen at 
y*=0.75. Thus the location of the maximum 
velocity is independent of the Hartman number.

Figure 6. Effect of y*on the u*for various values of 
Hartman number with Re=10 and p(t)=1.

Figure (7) illustrates the effect of different 
Reynolds numbers at Ha= p(t)= 1, and profile 
does not change in terms of time). As seen in this 
figure at low Reynolds numbers the velocity 
profile is symmetric about the plan y*=0.5, but 
maximum velocity would take place toward y*=1
with increasing of Reynolds number. Thus, the 
location of the maximum velocity is dependent on 
the Reynolds number.

Figure 7. Effect of versus various values of 
Reynolds number on the u* with Ha=1 and p(t)=1.

Figure 5a. u versus y for various values of t

Figure 5b. u versus y for various values of t

Figure 5c. u versus y for various values of t
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The change of velocity profiles due to impose of 
injection and suction mechanism is gathered in 
Figure (8); that is one of the most goals of present 
investigation. Both profiles are formed since 
Re=10, p(t)=1 and Ha=1. From this results it is 
evident that when injection and suction do not 
exist, profile is symmetric about the plan y*=0.5, 
but maximum of diagram tends to y*=1 when 
injection and suction happen at the wall. Also in 
the same condition, when injection and suction do 
not exist, maximum velocity is larger than while 
injection and suction exist.

Figure 8. Effect of injection and suction on 
velocity profile for Re=10, p(t)=1 and Ha=1

5. CONCLUSION

The unsteady MHD flow with injection and 
suction of a non-ionized fluid under the influence 
of an applied uniform static magnetic field has 
been studied . The governing equations under the 
appropriate assumptions are derived and solved by 
means of finite difference method. Clarifying the 
effects of the magnetic field, the suction and the 
injection velocity on the channel flow velocity 
distribution were the important parameters of 
present research. It is clear that the velocity profile 
of fluid flow in the channel is asymmetric about 
the plan y*=0.5 because of the injection and 
suction at the walls.
Parametric studies show that the time needed for 
reaching steady state would decrease with 
increasing of Hartman number; however, the 
location of maximum velocity is independent of 
the Hartman number, and for higher values of this 

number no velocity profile would exist.
At low Reynolds numbers the velocity profile is 
symmetric about the plan y*=0.5, but maximum 
velocity would take place toward y*=1 with 
increasing Reynolds number,.Therefore, the 
location of maximum velocity would depend on 
Reynolds number.
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