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Abstract   In acceptance sampling plans, the decisions on either accepting or rejecting a specific batch is 
still a challenging problem. In order to provide a desired level of protection for customers as well as 
manufacturers, in this paper, a new acceptance sampling design is proposed to accept or reject a batch 
based on Bayesian modeling to update the distribution function of the percentage of nonconforming items. 
Moreover, to determine the required sample size the backwards induction methodology of the decision tree 
approach is utilized. A sensitivity analysis that is carried out on the parameters of the proposed 
methodology shows the optimal solution is affected by initial values of the parameters. Furthermore, an 
optimal ( n ,c ) design is determined when there is a limited time and budget available and hence the 
maximum sample size is specified in advance. 
  
Keywords     Acceptance Sampling; Bayesian Inference; Decision Tree; Backwards Induction 

 

 
1. INTRODUCTION 

 
Acceptance sampling plan is a practical tool used 
in quality control to provide decision rules for lot 
acceptance regarding its desired level of quality. 
The decision, based on counting the number of 
nonconforming items in a sample, can be to accept 
the lot, reject the lot, or for multiple and sequential 
sampling schemes, to take another sample and then 
repeat the decision process. It protects consumers 

from getting unacceptable nonconforming product, 
and encouraging producers in the use of process 
quality control in two ways: (1) by varying the 
quantity and severity of acceptance inspections in 
direct relation to the importance of the 
characteristics inspected, and (2) in the inverse 
relation to the goodness of the quality level as 
indication by those inspections. The plans are 
employed when testing is destructive, the cost of 
100% inspection is high, and/or 100% inspection 

ارائه شده است.  

) بهینه  n ,c ) مواقعی که به دلایل محدودیت بودجه و زمان، حداکثر اندازة نمونه از قبل مشخص است نیز طرح 

پارامترهاي روش پیشنهادي نشان می دهد که طرح بهینه به مقادیر ابتدایی پارامترها وابسته است. به علاوه، در 

استنتاج رو به عقب که در درخت تصمیم گیري مطرح است استفاده شده است. تحلیل حساسیت روي بعضی از 

توزیع احتمالی پسین درصد قطعات ناسالم استفاده میکند. علاوه بر این، براي تعیین اندازة مناسب نمونه از روش 

تولید کنندگان یک محصول، یک طرح نمونه گیري پذیرش پیشنهاد شده است که از روش بیزي براي تعیین تابع 

مسئلۀ چالش برانگیز است. در این مقاله، به منظور فراهم کردن سطح مطلوبی از اطمینان براي مشتریان و براي 

چکیده   تصمیم گیري در مورد پذیرش یا رد یک انباشتۀ تولیدي در طرح هاي نمونه گیري پذیرش کماکان یک 
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takes too long. 
McWilliams et al. [1] provided a method of 

finding exact designs for single sample acceptance 
sampling plans. William et al. [2] developed 
mathematical models that can be used to design 
both 100% inspection and single sampling plans. In 
their research, inspection error is explicitly 
included in the model as the ability to mitigate the 
consequences by expending resources. Aminzadeh 

sampling plans using the inverse Gaussian model 
and step-loss function. He used inverse Gaussian 
(IG) distribution as a lifetime model to obtain 
optimal values for sample size and decision limit 
for employing economic variable acceptance-
sampling plans based on step-loss function. 

Pearn and Wu [4] proposed a variables 
sampling plan based on pmC index and process loss 
to handle processes requiring very low parts per 
million (PPM) fractions of defectives. They 
developed an effective method for obtaining the 
required sample sizes n and the critical acceptance 
value 

acceptance-sampling plans based on the 
assumption that consecutive observations on a 
quality characteristic are autocorrelated. He 
obtained the sampling plans based on the 
autoregressive moving average (ARMA) model 
and suggested two types of acceptance sampling 
plans: (1) non-sequential acceptance sampling and 
(2) sequential acceptance sampling based on the 
concept of sequential probability ratio test (SPRT). 
Niaki and Fallahnezhad [6] used Bayesian 
inference concept to design an optimum-
acceptance-sampling-plan in quality control 
environments. They formulated the problem into a 
stochastic dynamic programming model; aiming to 
minimize the ratio of the total discounted system 
cost to the discounted system correct choice 
probability. Fallahnezhad and Hosseininasab [7] 
proposed a single-stage acceptance-sampling plan 
based on the control threshold policy. In their 
model, decision is made based on the number of 
defectives items on an inspected batch. The 
objective of their model is to find a constant 
control threshold that minimizes the total costs, 
including the cost of rejecting the batch, the cost of 
inspection and the cost of nonconforming items. 

Markov model for a single sampling plan based on 
the control threshold policy taking into 
consideration the run-lengths of successive 
conforming items as an indicator of process 

extended this approach to the sum of run-lengths of 
successive conforming items. Aslam et al. [10] 
presented acceptance-sampling plans for 
generalized exponential distribution when the 
product lifetime is truncated at a pre-determined 
time. 

One of the challenging issues in acceptance 
sampling plans is that they do not guarantee 
detection of all defective items, i.e. there is a risk 
of not achieving the exact quality level of the lot. 
Acceptance sampling methods are mostly designed 
based on the desired probabilities of the first and 
the second type of errors. Nonetheless, designing 
economically optimal acceptance sampling plans 
has not been widely addressed even though 
sampling remains a commonly used technique in 
certain quality engineering systems.  

In this research, a new selection approach on 
the choices between accepting or rejecting a batch 
based on Bayesian modeling and backwards 
induction is proposed. The Bayesian modeling is 
utilized to model the uncertainty involved in the 
probability distribution of the nonconforming 
percentage of the items and the backwards 
induction method is employed to determine the 
sample size. Moreover, when the decision on 
accepting or rejecting a batch cannot be made, we 
assume additional observations can be gathered 
with a cost to update the probability distribution of 
the nonconforming percentage of the batch. In 
other words, a mathematical model is developed in 
this research to design optimal single sampling 
plans. This model finds the optimum sampling 
design whereas its optimality is resulted using the 
decision tree approach. As a result, the main 
contribution of the paper is to model the 
acceptance-sampling problem as a cost 
optimization model so that the optimal solution can 
be achieved via using the decision tree approach. 
In this approach, the required probabilities of 
decision tree are determined employing the 
Bayesian Inference. To do this, the probability 
distribution function of nonconforming proportion 
of items is first determined by Bayesian inference 
using a non-informative prior distribution. Then, 
the required probabilities are determined by 

[3] derived Bayesian economic acceptance 

nonlinear equations. Aminzadeh [5] proposed 
by solving simultaneously two  c

Moreover, Fallahnezhad et al. [8] proposed a 

performance. Recently, Fallahnezhad and Niaki [9] 
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applying Bayesian inference in the backward 
induction method of the decision tree approach. 
Since this model is completely designed based on 
the Bayesian inference and no approximation is 
needed, it can be viewed as a new tool to be used 
by practitioners in real case problems to design an 
economically optimal acceptance-sampling plan. 
However, the main limitation of the proposed 
methodology is that it can only be applied to items 
not requiring very low fractions of 
nonconformities. 

The rest of the paper is organized as follows. 
After introducing notations in Section 2, the 
problem is defined in Section 3. The Bayesian 
modeling comes in Section 4. Section 5 contains 
the proposed backward induction method. The 
numerical demonstration on the application of the 
proposed methodology comes in Section 6. 
Sensitivity analyses are carried out in Section 7. 
The general decision making framework comes in 
Section 8. We conclude the paper in Section 9. 
 
 

2. NOTATIONS 
 
The following notations are used throughout the 
paper. 

Set of decisions: { }1 2,A a a= is defined the set of 
possible decisions where 1a  and 2a  refer to 
accepting and rejecting the batch, respectively. 

State space: { }; 1,2,...; 0 1i iP p i p= = < <  is 
defined the state of the process where ip represents 
nonconforming proportion items of the batch in ith 
state of the process. The decision maker believes 
the consequences of selecting decision 1a  or 2a  
depend on P  that cannot be determined with 
certainty. However, the probability distribution 
function of the random variable p  can be obtained 
using Bayesian inference. 

Set of experiments: { }; 1,2,...iE e i= =  is the set 
of experiments to gather more information on 
p and consequently to update the probability 

distribution of p . Further, ie  is defined an 
experiment in which, i items of the batch are 
inspected. 

Sample space: { };jZ z j 0,1,2,...,i= = denotes the 
outcomes of experiment ie  where, jz shows the 
number of nonconforming items in ie .  

Cost function: The function ( , , , )u e z a p  on 
E Z A P× × ×  denotes the cost associated with 
performing experiment e , observing z , making 

decision a , and finding p .  
N : The total number of items in a batch 
R : The cost of rejecting a batch 
C : The cost of one nonconforming item 
S : The cost of inspecting one item 
m : The sample size 
n : An upper bound on the number of 

inspected     items 
α  : The number of nonconforming items in an 

inspected sample 
β : The number of conforming items in an 

inspected sample 
c : The optimum value of acceptance threshold 

in the resulted ( ),n c  design 
 
 

3. PROBLEM DEFINITION 
 

Consider a batch of size N with an unknown 
percentage of nonconforming p and assume 
m items are randomly selected for inspection. 
Based on the outcome of the inspection process in 
terms of the observed number of nonconforming 
items, the decision-maker desires to accept the 
batch, reject it, or to perform more inspections by 
taking more samples. As Raiffa & Schlaifer [11] 
stated "the problem is how the decision maker 
chose an e and then, having observed z , choose 
an a  such that ( , , , )u e z a p  is minimized. 
Although the decision maker has full control over 
his choice of e and a , he has neither control over 
the choices of z nor p . However, we can assume 
he is able to assign probability distribution function 
over these choices." They formulated this problem 
in the framework of the decision tree approach, the 
one that is partially adapted in this research as well. 
 
 

4. BAYESIAN MODELING 
 
For a nonconforming proportion p , referring to 
Jeffrey’s prior [12], we first take a Beta prior 
distribution with parameters 0 0.5α =  and 0 0.5β =  
to model the absolute uncertainty. Then, the 
posterior probability density function of p  using a 
sample of α β+  inspected items is 
 

( )
0.5 0.5

( ) ,
( ) ( )

( ) ( )

f p Beta 0.5 0.5
1 p 1 p

0.5 0.5
α β

α β
α β

α β
− −

= + + =

Γ + +
−

Γ + Γ +

                       (1) 
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where,α  is the number of nonconforming items 
and β  is the number of conforming items in the 
sample. Moreover, to allow for more flexibility in 
representing prior uncertainty it is convenient to 
define a discrete distribution by discretization of 

prior distribution for 1p as 
 

{ } ( )
1

1

2

1

2

p

p

Pr p p f p dp
δ

δ

+

−

= = ∫                (2) 

                                                                                       

where, ( )1
1  and =  for ,p 2l - 1 2 l 1,2,... m
m

δ δ= = . 

Now, define ( , ); ...,j i i 1,2, m=  and  ,...,j 0,1,2 i=  
the experiment in which j  nonconforming items 
are found when i items are inspected. Then, the 
sample space Z  becomes 

, resulting in the cost 
function representation of  

( ) 1, , , , ;i ku e j i a p   1,2k =  that is associated 
with taking a sample of i items, observing  j 
nonconforming, and adopting 1 2or a a when the 
defective proportion is 1p . Using the notations 
defined in Section 2, the cost function is 
determined by the following equations: 

 
( )
( )

1 1 1

2 1

1. For accepted batch:   , ( , ), ,

2. For rejected batch:    , ( , ), ,
i i

i i

u e j i a p CNp Se

u e j i a p R Se

= +

= +
(3) 

 

 

Hence, the probability { }1Pr , j ip p z z e e= = =  
can be calculated as 
 

{ } { }

{ } ( ) ( )
1

1

1 1

2

1 1 1

2

Pr , Pr ,

Pr 1

j i j i

p
i ji j

j
p

p p z z e e z z p p e e

p p C p p f p dp
δ

δ

+
−

−

= = = = = = =

= = − ∫
    (5) 

 

Thus, 

{ } { }

{ } ( ) ( )
1

1

1
1

2

1 1
1

2

Pr Pr ,

Pr 1

m

j i j i
l

pm
i ji j

l j
l p

z z e e p p z z e e

p p C p p f p dp
δ

δ

=

+
−

= −

= = = = = =

 
 = = −
 
 

∑

∑ ∫
   (6) 

 
In other words, applying the Bayesian rule, the 
probability { }Pr ,l j ip p z z e e= = =  can be 

obtained by: 
 

{ } { }
{ }

( ) ( )

( ) ( )

1
1

2

1 1

2

2

1
2

Pr ,
Pr ,

Pr

1

1

l

l

k

k

j i
j i

j i

p
i ji j

j
p

pm
i ji j

j k k
k p

p p z z e e
p p z z e e

z z e e

C p p f p dp

C p p f p dp

δ

δ

δ

δ

+
−

−

+
−

= −

= = =
= = = =

= =

−

=

−

∫

∑ ∫

 (7) 

 

In the next Section, a backward induction approach 
is taken to determine the optimal sample size. 
  
 

5. BACKWARD INDUCTION 
 

The analysis continues by working backwards from 
the terminal decisions of the decision tree to the 
base of the tree, instead of starting by asking which 
experiment e the decision maker should select 
when he does not know the outcomes of the 
random events. This method of working back from 
the outermost branches of the decision tree to the 
initial starting point is often called "backwards 
induction" [11]. As a result, the steps involved in 
the solution algorithm of the problem at hand using 
the backwards induction becomes; 
 
1. Probabilities { }Pr lp p=  and { }Pr ( , ) lj i p p=  

respectively. 
2. The conditional probability 

{ }Pr ,l j ip p z z e e= = =  is determined using 

3. With a known history ( , )e z , since p is a 
random variable, the costs of various possible 
terminal decisions are uncertain. Therefore, 
the cost of any decision a  for the given ( , )e z  
is set as a random variable ( ), , ,u e z a p . 

are determined using Equations (2) and (4), 

Equation (7). 

Z {( j,i) :0  j  i  m}

the Beta density [13]. In other words, we define the 

       (4)
j i j

i j i  j
Pr z  z p  p ,e  e C p 1 p1 1 1  

as:li , p  p 
a binomial distribution with parameters 

, can be obtained using Pr z  z p  p ,e  ej 1 i 
items in a sample of  i  inspected items, i.e., 
Moreover, the probability of finding  j  defective  
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Applying the conditional expectation , p zE , 
which takes the expected value of  
( ), , ,u e z a p  with respect to the conditional 

probability p zP
expected value of the cost function on state 
variable { }1 1Prp p p= =  is determined by 
the following equation: 

 

{ }
1

1 1

*  ( , , , )
*  ( , , )

Pr ,

m i j k

i j k
l j i

u e z a p
u e z a

p p z z e e=

 
 =
 = = = 

∑              

(8) 
 

4.  Since the objective is to minimize the 
expected cost, the cost of having history 
( , )e z  and the choice of decision (accepting or 
rejecting) can be determined by: 

 
*  ( , ) min *  ( , , )

ki j a i j ku e z u e z a=              (9) 
 

5. The conditional probability { }Pr j iz z e e= =  

6. The costs of various possible experiments are 
random because the outcome z is a random 
variable. Defining a probability distribution 
function over the results of experiments and 
taking expected values, we can determine the 
expected cost of each experiment. The 
conditional expected value of function 

*  ( , )i ju e z  on the variable jz  is determined 
by the following equation: 

 

( ) ( )
2

0 1 1
1

2

*  ( , )

* ( )
1

l

l

i j
i

pm
i ji i j

j j
l p

u e z

u e
C p p f p dp

δ

δ

+
−

=
= −

 
   =   −     

∑ ∑ ∫

 

(10) 

 
7. Now the minimum of the values * ( )iu e  would 

be the optimal decision, which leads to an 
optimal sample size. 

 

1

*  min  *  ( )  
min   min  ( , , , )

e i

e a i j kz e p z

u u e
E E u e z a p

= =
       (11) 

      

In the next Section, a numerical example is given 
to illustrate the application of the proposed 
methodology. 

6. NUMERICAl ILLUSTRATION 
 

Assuming a lot of 100N =  items is received, the 
number of inspected items is 3m = , the cost of 
each inspection is 1S = , the cost of accepting a 
nonconforming item is 2C = , and the cost of 
rejecting a batch is 45R = . Moreover, assume 2 
out of 10 inspected items are nonconforming, i.e., 

2 and 8α β= = . Then, the distribution function of 
nonconforming proportion is obtained as; 
 

 ( ) ( )f p Beta 2.5,8.5=                                       (12) 
 

By discretization of the Beta density function 
with 3m = , the discrete values of the 
nonconforming proportion will be 

1 0.17,p = 2 0.50,p = 3 0.83p = , where the 
elements of different spaces are given in Table 1. 
Furthermore, the conditional probabilities ,z e pP  for 

all possible ( ),e p pairs are shown in Table 2, 
where the marginal probabilities { }Pr lp p=  are 
given in Table 3. 

 
 

TABLE 1. Elements of the spaces 
 

Space Elements Interpretation 

A  
1

2

a
a




 Accept 
Reject 

P  
1

2

3

p = 0.17
p = 0.50
p = 0.83







 Different Values for 
Nonconforming 

Proportion 

E  { ie i i 1,2,3= =  Inspecting i items 

Z  { 0,1,2,3jz j j= =  Finding  
j nonconforming items 

 
 

TABLE 2. Conditional measures on Z  
 

Z  
E  

1e  2e  3e  

 1p  2p  3p  1p  2p  3p  1p  2p  3p  

0z  0.83 0.50 0.17 0.69 0.25 0.03 0.58 0.13 0.00 

1z  0.17 0.50 0.83 0.28 0.50 0.28 0.35 0.38 0.07 

2z     0.03 0.25 0.69 0.07 0.38 0.35 

3z        0.00 0.13 0.58 

 

(Equation (7)), the conditional 

is determined using Equation (6). 
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TABLE 3. Marginal measures on P  
 

p  pP  

1p  0.8115 

2p  0.1873 

3p  0.0012 

 1 

 
 

      Based on these probabilities, we first obtain the 
joint probability ,p z eP  for each of the experiment 

; 1,2,3ie i = . The results are shown in Tables 4 to 
6, respectively. From the joint probabilities, we 
then compute the marginal probability z eP  for 

each  e  and obtain the results given in Table 4 to 
6. The results of conditional probabilities ,p z eP  for 
each z are shown in Table 7. 

 
 

TABLE 4. Measures associated with 1e  

Z  
Joint Measures on 

P Z×  
Marginal 

Measures on Z  
 1p  2p  3p  

0z  0.6735 0.0937 0.0002 0.77 

1z  0.1380 0.0937 0.0000 0.23 

2z  0.0000 0.0000 0.0000 0.00 

3z  0.0000 0.0000 0.0000 0.00 
Marginal 
Measures 

on P  
0.8115 0.1873 0.0002  

 
 
 

TABLE 5. Measures associated with 2e  

Z  
Joint Measures on 

P Z×  
Marginal 

Measures on Z  
 1p  2p  3p  

0z  0.5599 0.0468 0.0000 0.61 

1z  0.2272 0.0937 0.0003 0.32 

2z  0.0243 0.0468 0.0008 0.07 

3z  0.0000 0.0000 0.0000 0.00 
Marginal 
Measures 

on P  
0.8115 0.1873 0.0012  

TABLE 6. Measures associated with 3e  

Z  
Joint Measures on 

P Z×  
Marginal 

Measure on Z  
 1p  2p  3p  

0z  0.4707 0.0244 0.0000 0.4950 

1z  0.2840 0.0712 0.0001 0.3553 

2z  0.0568 0.0712 0.0004 0.1284 

3z  0.0000 0.0244 0.0007 0.0250 
Marginal 
Measures 

on P  
0.8115 0.1911 0.0012  

 
 

The first step of the decision tree analysis is to start 
from the end of the tree and to use the data to 
evaluate ( )* , ,u e z a  for all values of ( ), ,e z a . 

Different values of ( )1, , ,i j lu e z a p  are shown in 
Table 8.  
Moreover, different values of ( )* , ,i j ku e z a are 
shown in Table 9. As a single example of the 
computations involved in this table, since 
( )1, , ,i j l lu e z a p CNp Si= + and   

( )2, , ,i j lu e z a p R Si= +  we have  
 

( ) ( ) { }
( ) { }

( ) { }
( ) ( ) ( )

*
1 1 1 1 1 1 1 1 1 1

1 1 1 2 2 1 1

1 1 1 3 1 1 1

, , , , , ,

, , , ,

, , , ,

u e z a u e z a p Pr p z e

u e z a p Pr p z e

u e z a p Pr p z e

34.33 0.596 +101 0.404 +167.67 0 = 61.26

=

+ +

=
 

 

Now, we are ready to obtain ( )* ,i ju e z . The 
results are given in Table 10, where as an example, 

( )*
1 1,u e z is obtained as follows. 

 

( )
( )
( )

{ }
*

1 1 1*
1 1 *

1 1 2

, , ,
,

, ,

u e z a
u e z = min min 61.26,46 = 46

u e z a

   = 
  

 
Then, ( )* iu e  for all values of ie  are computed. 
For example, 

( ) ( ) ( ) ( ) ( )
( ) ( )

* * *
1 1 0 0 1 1 1 1 1, ,u e u e z P z e u e z P z e

= 42.47 0.77 + 46 0.23 = 43.28

= +
 

 

The results are shown in Table 11.  
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TABLE 7. Conditional measures on P associated with ; 1,2,3ie i =  
 

Z  
E  

1e  2e  3e  

 1p  2p  3p  sum 1p  2p  3p    sum 1p  2p  3p    sum 

0z  0.878 0.122 0.000 1 0.9228 0.0772 0.0001 1 0.9508 0.0492 0.0000 1 

1z  0.596 0.404 0.000 1 0.7074 0.2916 0.0010 1 0.7994 0.2004 0.0002 1 

2z  0.811 0.187 0.001 1 0.3381 0.6505 0.0114 1 0.4424 0.5544 0.0032 1 

3z  0.811 0.187 0.001 1 0.8115 0.1873 0.0012 1 0.0000 0.9726 0.0274 1 

 
 

TABLE 8. Different values of the end points in the decision tree, ( )1, , ,i j lu e z a p
 

 

Z  
( )1, , ,i j lu e z a p  

1e  2e  3e  

 1p  2p  3p  1p  2p  3p  1p  2p  3p  

0z  34.33 101.00 167.67 35.33 102.00 168.67 36.33 103.00 169.67 

1z  34.33 101.00 167.67 35.33 102.00 168.67 36.33 103.00 169.67 

2z     35.33 102.00 168.67 36.33 103.00 169.67 

3z        36.33 103.00 169.67 

 
 

TABLE 9. Different values of ( )* , ,i j ku e z a
 

 

Z  
( )* , ,i j ku e z a  

1e  2e  3e  
 1a  2a  1a  2a  1a  2a  

0z  42.47 46.00 40.48 47.00 39.61 48.00 

1z  61.26 46.00 54.74 47.00 49.69 48.00 

2z    78.30 47.00 73.18 48.00 

3z        100.18 48.00 

 
 

  

TABLE 10. The  ( )* ,i ju e z values 

Z  
( )* ,i ju e z  

1e  2e  3e  

0z  42.47 40.48 39.61 

1z  46.00 47.00 48.00 

2z   47.00 48.00 

3z    48.00 

 
 
 

TABLE 11. The final values of ( )* iu e  

 ( )* iu e  

1e  2e  3e  

 43.28 43.02 44.02 
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Finally, we compute: 
 

( ) ( )
( )

* *
1 2*

*
3

,

,

u e 43.28 u e
u min 43.02

43.02 u e 44.02

 = = = = 
=    

 
It means that two more items need to be inspected. 
After inspecting the items, the optimal decision is 
obtained as given in Table 12. It is obvious that 
when the outcome of experiment is 0z  , we should 
accept the batch. Otherwise, the batch is rejected. 
 
 

TABLE 12. The final values of ( )2* , ju e z  when two 

items are inspected 
  

 ( )2* , ju e z  Optimal Decision  

0z  40.48 1a  

1z  47.00 2a  

2z  47.00 2a  

 
 

     Based on ( )f p , there are two nonconforming 
items among 10 inspected items. Further, from the 
decision tree we need to inspect two more items. If 
the number of nonconforming in the two inspected 
items is zero, the batch is accepted. Otherwise, the 
batch is rejected. In other words, as the whole, if in 
12 inspected items the number of nonconforming 
items is less than 3, the batch is accepted. This 
results in an ( , )n 12 c 2= = design for the existing 
sampling plan problem. 
     In the next Section, sensitivity analyses are 
performed on different values of α , β , and m . 

 
 

7. SENSITIVITY ANALYSIS ON α  AND β  
 

Depending on different values of α  and β , 
various acceptance sampling plans may be 
obtained. A sensitivity analysis on various values 
of ( ),α β is carried on in this section and the results 
are given in Table 13. 
     Based on the results in Table 13, one can 
conclude that the design ( , )n c  is totally dependent 
on the parameters ( ),α β . It means the value of 

( ),α β  affects the final design and therefore a 

sufficient initial data would be required. Further, 
the results in Table 13 show that as the expected 
proportion of nonconforming items ( ( )α α β+ ) 
increases, the proportion c n  generally increases. 
It means that by reducing the quality of the batch, 
the value of the control threshold to accept the 
batch ( )c increases, resulting in lower probability 
of accepting the batch as expected. This pattern can 
be better visualized in Figure 1, where the relation 
between ( )p α α β= +  and c n   is depicted. 
Moreover, Figure 2 shows that an increase in the 
expected proportion of nonconforming items 
causes the optimum value of system cost ( *u ) to 
generally increase as expected. 

 
 

TABLE 13. The results of a sensitivity analysis on 
different values of ( ),α β   

( ),α β  ( , )n c  ( )*,u i  

(2,8) (12,2) (43.3,2) 
(2,15) (17,3) (35.81,1) 
(3,10) (17,4) (44.89,2) 
(3,20) (24,4) (34.6,1) 

 
 

8. EXTENSION OF THE PROPOSED 
DECISION MAKING FRAMEWORK 

 
The proposed methodology can be extended to the 
case in which the sampling budget is limited and 
hence the maximum number of inspected items is 
known priory. Assume the upper bound for the 
number of inspected samples is n . 
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Figure 1. The plot of c n vs. ( )p α α β= +  
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Figure 2: The plot of *u vs. ( )p α α β= +  
 
 
 

     Further, assume that if the number of 
nonconforming items in the sample is less or equal 
to c then batch is accepted. Then, the proposed 
methodology is extended and the following 
decision making framework is proposed to obtain 
the plan. 

1. Select m n<  as the initial sample size 
2. Obtain the values of  α  and β  after 

inspecting the sample 
3. Determine the probability distribution of  

p  via Bayesian inference 
4. Determine the optimal experiment ie  via 

the backwards induction approach 
5. Inspect i more items and set m m i= +  
6. If m n<  then go to stage 2 above. 

Otherwise, solve the decision tree and 
determine the optimal value of  c . 
 

sensitivity analysis on different values of m is 
carried out, where the nonconforming proportion 
of the batch is assumed 0.2. The other parameter 
values of the proposed methodology are the same 
as the ones in the numerical example of Section 6. 
Moreover, assume an upper bound on the sample 
size (the number of inspected items) is 15.  

In a sample of 15 generated Bernoulli 
observations, two nonconforming items were found 
in the second and tenth observations. Then, the 
proposed methodology was employed based on 
different values of m = 8, 10, 12, and 14. Each run 
of the above framework is defined a decision 
making stage. The results are shown in Table 14. 

      The results in Table 14 show that a unique final 
solution is obtained for all values of m . This is 
due to the fact that for all values of m a unique 
final distribution function for the nonconforming 
proportion p  is obtained in the final stage. 
Moreover, we note that as m  gets closer to  n , the 
amount of computational work decreases. Thus, in 
general, since m does not affect the final solution 
and there is less computational efforts associated 
with closer values of m  to n , it is better to select 
m values closer to n . 

 
 
 
 

9. CONCLUSIONS 
 

Acceptance sampling plans have been widely used 
in industry to determine whether a specific batch of 
manufactured or purchased items satisfy a pre-
specified quality. In this paper, based on the 
Bayesian modeling and the backwards induction 
method of the decision-tree approach, we 
developed a sampling plan to deal with the lot-
sentencing problem; aiming to determine an 
optimal sample size to provide desired levels of 
protection for customers as well as manufacturers.  
We made a logical analysis of the choices between 
accepting or rejecting a batch when the distribution 
function of nonconforming proportion could be 
updated by taking additional observations and 
using Bayesian modeling. The decision tree 
approach was used to evaluate the cost associated 
with different decisions. At the end, an analytical 
method to obtain the sample size required for 
inspection was developed that would lead to an 
optimal ( , )n c  design for acceptance sampling 
problem. The main result of this paper was to 
develop an optimal acceptance-sampling plan that 
minimizes the total expected system cost. To 
search for an optimal solution, different decisions 
with their probabilistic outcomes were determined, 
where the expected cost of each decision was 
evaluated based on probabilities of each outcome 
determined by Bayesian inference. Moreover, 
sensitivity analyses on different values of some 
parameters of the proposed methodology were 
carried out. The results showed the optimal 
solution is affected by initial values of the 
parameters. 

Based on the above methodology, a 
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TABLE 14. The results of a sensitivity analysis on different values of m  
 

 m =8 m =10 m =12 m =14 

Stage 
 one 

( )
( )*

8, 1, 7

40.79, 1

m

u i

α β= = =

= =
 

( )
( )*

10, 2, 8

44.25, 2

m

u i

α β= = =

= =
 

( )
( )*

12, 2, 10

40.75, 1

m

u i

α β= = =

= =
 

( )
( )*

14, 2, 12

38.58, 1

m

u i

α β= = =

= =
 

Stage  
two 

( )
( )*

9, 1, 8

39.3, 1,

m

u i accept

α β= = =

= =
 

( )
( )*

12, 2, 10

40.75, 1,

m

u i accept

α β= = =

= =
 

( )
( )*

13, 2, 11

39.49, 1,

m

u i accept

α β= = =

= =
 

( )
( )*

15, 2, 13

37.36, 1,

m

u i accept

α β= = =

= =
 

Stage three 
( )
( )*

10, 2, 8

44.25, 2,

m

u i reject

α β= = =

= =
 

( )
( )*

13, 2, 11

39.49, 1,

m

u i accept

α β= = =

= =
 

( )
( )*

14, 2, 12

38.58, 1,

m

u i accept

α β= = =

= =
  

Stage four 
( )
( )*

12, 2, 10

40.75, 1,

m

u i accept

α β= = =

= =
 

( )
( )*

14, 2, 12

38.58, 1,

m

u i accept

α β= = =

= =
 

( )
( )*

15, 2, 13

37.36, 1,

m

u i accept

α β= = =

= =
  

Stage five 
( )
( )*

13, 2, 11

39.49, 1,

m

u i accept

α β= = =

= =
 

( )
( )*

15, 2, 13

37.36, 1,

m

u i accept

α β= = =

= =
   

Stage six 
( )
( )*

14, 2, 12

38.58, 1,

m

u i accept

α β= = =

= =
    

Stage seven 
( )
( )*

15, 2, 13

37.36, 1,

m

u i accept

α β= = =

= =
    

Resulted ( , )n c  (15,3): Accept the batch (15,3): Accept the batch (15,3): Accept the batch (15,3): Accept the batch 
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