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Abstract   In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) 

deformations of solids. As a matter of fact, algorithm of the method is based on an approach which 
descritizes the momentum equation into three parts and solves each part separately and calculates their 
effects on the velocity field and displacement of particles. The most exclusive feature of the method is 
exactly removing artificial viscosity of the formulations and representing good compatibility with other 
reasonable numerical methods without any rigorous numerical fractures or tensile instabilities while 
MCSPH does not use any extra modifications. Two types of problems involving elastic-plastic 
deformations and shock waves are presented here to demonstrate the capability of MCSPH in simulation 
of such problems and its ability to capture shock. The problems that are proposed here are low and high 
velocity impacts between aluminum projectiles and semi infinite aluminum beams. Elastic-perfectly 
plastic model is chosen for constitutive model of the aluminum and the results of simulations are 
compared with other reasonable studies in these cases.

Keywords:  Smoothed Particle Hydrodynamics, Modified algorithm, Low velocity impact, High 
velocity impact.

- یم یمعرف) MCSPH(ریپذتراکم هموار ذره کینامیدرودیه افتهیبهبود روش کی حاضر، مطالعه در   چکیده

هر جداگانه حل و مجزا بخش سه هب مومنتوم معادله يجداساز دگاهید اساس بر روش نیا تمیالگور قت،یحق

 نیا تیخصوص نیترژهیو.استشده نهاده بنا ذرات ییجابجا و سرعت دانیم بر آنها راتیتاث محاسبه و بخش

 ،يعدد معتبر يهاروش گرید با مناسب یهماهنگ ارائه و آن يهايبندفرمول از یمصنوع لزجت حذف روش،

 گونهچیه از حاضر روش در که است یحال در نیا. است یکشش يداریناپا ای مهم يعدد شکست چیه بدون

 کیالاست يهاشکل رییتغ شامل مسئله نوع دو جا نیا در.شودینم استفاده یاصلاح

. دهد نشان شوك ریتسخ در و یمسائل نیچن يسازهیشب در را MCSPH روش ییتوانا تا گرددیم ارائه شوك

 مهین يرهایت و هاپرتابه نیب بالا سرعت و نییپا سرعت ي)برخوردها( هاضربه مطالعه، نیا در شده ارائه مسائل

 و استشده انتخاب ومینیآلوم يساختار مدل يبرا کیپلاست کاملاً - کیالاست مدل. هستند یومینیآلوم تینهایب

.اندگرفته قرار اسیق مورد گرید معتبر مطالعات جینتا با هايسازهیشب جینتا

1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a 
Lagrangian particle method, or, in other words, is a 
gridless technique that competes with conventional 
Lagrangian and Eulerian mesh based techniques.
Advent of SPH is related to solution of 

problems [4], problems with large deformation 
such as high velocity impact of solids [5], impact 
between solid and fluid [6], chemical explosions

     Through the large deformations, formal grid-
based techniques have trouble with grid 
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entanglement, and require complicated regridding 
procedures to deal with this problem. But in SPH, 
this problem is not the major problem and the 
nature of the interpolation, the basic approach of 
SPH, eleminates this trouble. In SPH, fields of 
velocity, pressure and so on, are related to 
particles. The word ‘particle’ does not mean a 
physical mass, but instead, it refers to a region in 
space. Field variables are associated with these 
particles and at any other point in space are found 
by averaging, or smoothing the particle values over 
the region of interest. This is satisfied by an 
interpolation or weight function which is usually 
called the interpolation Kernel [1].
     SPH has different formulations, but the 
essential difference between these formulations is 
related to problems involving shock wave 
structures, is how they deal with shock capturing 
problem. The problem is that real shocks are very 
thin discontinuities in the solution, and hence they 
make some noises in computations. In the most 
instances of the use of the SPH, for controlling the 
oscillations around shocks, artificial viscosity 
(AV) are used [2]. 
     As mentioned above, most of previous 
numerical SPH simulations of high or low velocity 
impacts with techniques, were faced with 
numerical fracture or tensile instabilities as well as 
clumping of particles in high tensile regions, 
during the solution steps, and to avoid such 
difficulties, each of them proposed their own 
artificial viscosity, equation of state, and extra 
modifications such as artificial stress. Briefly, the 
main goal of current work is to introduce a new 
solution algorithm without the requirements of 
using the artificial viscosity (AV), and minimizing 
the solution modification factors. This technique is 
named Modified Compressible SPH (MCSPH).

The SPH method is based on the interpolation 
theory. The method permits any function to be 
expressed in terms of its values at a set of 
disordered points representing particle positions 
using kernel function. The kernel function refers to 
a weighting function and specifies the contribution 
of a typical field variable, )( rf , at a certain 

r, in space. The kernel estimation of 

)( rf
                                 

rdhrrWrfrf   ),()()(                                   (1)  
   

       The smoothing length h represents the 
effective width of the kernel and W is a weighting 
function with following conditions:

of small smoothing length
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Employment of a kernel function transforms the 
partial differential equations of continuum 
dynamics into integral equations through the 
kernel estimation (Equation 1).
      The integral is discretized to a sum over 
particles, i.e.
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Here, jm is the mass and j is the density 

associated with the thj particle, and
jrrj rff  )( . 

Integrating the above equation by parts and using 
the compactness property of W, we get an 
expression for the derivative.
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These equations yield estimates for accelerations, 
strain and so on.

2.1. The Kernel Function     The kernels used in 
the SPH method approximate a delta function. 
Monaghan [8] proposed a compact support 
condition for suitable kernel to guarantee zero 
interactions outside its computational domain. The 
original calculations of Gingold and Monaghan [9] 
used a Gaussian Kernel. Although this kernel, 

(1), and (2), it does not possess a compact support 
so its computational efficiency is rather low[10]. 
Various other forms of the kernel function such as position , 

satisfies the basic requirements given by  equations

is defined as [14]:      

2. 

1. W must reduce to a delta function in the limit 

2. FUNDAMENTALS OF SPH
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super-Gaussian [11], Spline [12], and polynomial 
[13] kernels and so on, were proposed later. Recent 
studies [8, 14], indicate that the stability of the 
SPH algorithm depends strongly upon the second 
derivative of the kernel. One of the most popular 
kernels based on Spline functions [8] is named 
Cubic Spline and defined as:

( , )
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where, hrz / , m represents the number of 

dimensions and  is normalization constant which 
takes the values 2/3, 10/7π, 1/π in one, two and 
three dimensions. This kernel has compact support 
so that its interactions are exactly zero for 

regards to principal equations of the method, some 
calculus operators such as first derivatives, 
gradient, and divergence are needed to be 
rearranged in SPH discretized forms [15].
First order derivatives in SPH forms are:
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where, jiij rrr  . Other derivatives can be 

calculated in the same way. The gradient of a 

scalar A and divergence of vector v

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represented as:  
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where ijiW   is the gradient of the kernel function 

ji : here ir


is the position vector of the 

particle i.

3. THE GOVERNING EQUATIONS

The basic equations of a continuum mechanics
expressing conservation of mass, momentum and 
energy are represented as following [16]:

dt

d 
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where 
dt

d means the substantial derivative,  is 

the density, e is the internal energy per unit mass, 
and σ is the Cauchy stress tensor.
      Rearranging the above equations in SPH 
discretized forms by using Equations (7) to (10), 
and using the conventional SPH method [16, 17] 
and [17] that adds the artificial viscosity ij , the 
formulations become:
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where (α, β=1, 2) are the nominators of the spatial 

coordinates and  

i
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ij x

W
W


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, is the derivative 

of the kernel function W with respect to position 
vector x of the ith particle.
      In current work, the basic equations of the 
system in the following from are more suitable for 
the MCSPH instead of general forms of Equations 
(11) to (13):

0
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2.2 Fundamental Operators in SPH     With 
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where t is time, g


is gravitational acceleration, P is 

pressure, v


is the velocity vector, S


is the 
deviatoric part of the Cauchy stress tensor σ  and 

dt
vd


refers to the material derivative, in which 

stokes theorem is used to segregate the stress 
tensor to viscous and pressure parts in momentum 
equations. 
     The main difference between the current 
method and the conventional SPH methods is in 
solution steps regarding the rearranged form of the 
momentum equations (Eq. 18). A similar solution 
technique is proposed by Hosseini et al. [15]. Their 
technique is incompressible while MCSPH is 
compressible which is suitable for problems 
involve shock wave structures.
     Previously, Hosseini algorithm was used to 
simulate fluid structure interaction [18] and high 
velocity impact problem without shock capturing 
[19]. With These simulations, it is evident that 
Hosseini algorithm is a reliable algorithm of SPH, 
especially in incompressible physics. But shock 
capturing ability is vital for those who want to 
simulate impact problems. In this paper, it is 
focused to show the ability of the new modified 
three step compressible algorithm (MCSPH) in the 
field of shock capturing.

4. ARTIFICIAL VISCOSITY

In order to simulate problems of hydrodynamics, 
special treatments or methods are required to allow 
the algorithms to be capable of modeling shock
waves, or else the simulation will develop 
unphysical oscillations in the numerical results 
around the shocked region. A shock wave is not a 
true physical discontinuity, but a very narrow 
transition zone whose thickness is usually in the 
order of a few molecular mean free paths. To 
capture shock wave, it is needed to damp and 
control oscillations around shock wave structures
[20]. So, in conventional SPH algorithms a term 
named artificial viscosity has been added to 
momentum equation to overcome unwanted 
oscillations around shock waves. The artificial 
viscosity terms are usually added to the physical 
pressure term, and help to diffuse sharp variations 
in the flow and to dissipate the energy of high 
frequency term. The SPH method was first applied 

to treat problems with low or no dissipation. Later 
an artificial viscosity was developed [21] to allow 
shocks to be simulated. This Monaghan type 
artificial viscosity ij is the most widely used 
artificial viscosity so far in the SPH literature. The 
detailed formulation is:

2
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where, ijc , ij and ijh are, mean values of sound 

speed, density and smoothing length between ith

and jth particles, respectively. Also  and  are 

constants about 0.1 and the factor ijh1.0 is 

inserted to prevent numerical divergences when 

     One of the purposes of the current study is to
eliminate artificial viscosity from SPH 
formulations which is not a primary component of 
momentum equation and relieve the oscillations 
around shock wave structures with changing the 
structure of SPH conventional algorithms.

5. SOLUTION ALGORITHM

In section 3, all the necessary operators for 

three parts in right hand side of Equation (18)
suggestthat the momentum equation can be solved 
in three steps. At the first step the velocity 
variations are related to the body force, and the 
computed results are saved to the temporary 
variable ( *v


). 

g
dt

vd 



*

      
And,

tt 
*

                 
This step is actually valuable for the physics that 

discretizing Equations (17) to (19) are defined. The 

two particles are approaching each other [24].

                                                         (22.1)              

v  v  gt                                               (22.2)   
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the body force has a significant role in 
deformations, whereas in impact studies it is 
ignorable.
      In the second step, the velocity vector ( v


) is 

confronted with the deviatory stress tensor ( S


), 
and the computed results are saved to the second 

temporary variable ( **v


), and as a result a 

temporary position vector of the particles ( *r


) is 
related to this temporary velocity:

jSiSSdivS yx 












1

Regarding the momentum equation:
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And,

tvrr tt  
*** 

After this step, the conservation of mass is checked 
by replacing the computed velocity vectors in the 
continuity equation (Eq. 17), and a temporary 

value ( * ) is found for the :

tv  )(* 
                                       (24)   

     

      At the final step, the algebraic equation of 
state, which is expressed in the form of

),( ePP  is solved, and the pressure field is 
updated. The updated pressure is used to correct 
the temporary velocity and the position of the 
particle:
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      With the new values for principle variables at 
this moment, it is possible to derive Cauchy stress 
tensor by aggregating the values of deviatory stress 
and pressure, for solving the equation of energy in 
a fully explicit manner. Thereby, solving the 

equation of energy, a new value for internal energy 
per unit mass of each particle would be obtained. 
This new value for specific internal energy can be 
used as an initial value at the next time step for 
solving the equation of state.
       Other necessary equations can be solved same 
as the energy equation at this stage, with a fully 
explicit approach in the time marching. 
Now, all the required computations for a single 
time step are completed. 
     The main difference of the current algorithm 
with that proposed by Hosseini, et al. [15] stands 
on density variations. In this study, the continuum 

the incompressible approach and did not use the 
equation of state. As a result, the current algorithm 
inherently has the capability of shock capturing, 
which plays an important role in plastic 
deformations.

6. CONSTITUTIVE EQUATIONS

6.1. Isotropic Material     For an isotropic 
material the Cauchy stress tensor in Equation (19) 
is defined in terms of deviatory stress S and 
pressure P, as follows:  
                                                                                                           

PS       (26)                                                  
      

where,  is the Kronecker delta. To account for 
the rotation effect caused by the large deformation 
of the material, the elastic deviatoric stress rate 

S using the Jaumann rate is given as follows
[23]: 
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The rotation terms ensure invariance between 
rotated observer frames for small deformations 
[22]. Regarding Equations (17), (18) and (19), one 

is compressible whereas Hosseini, et al. [15] used 

                                 (23.1)  

                                                (23.2)                

                                                (23.3)                          

          (25.1)                                       

                                               (25.2)  

                                (25.3)                                          (28)

                                                                 (25.4)    
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needs to have pressure to gain the total stress in 
each particle for solving momentum and energy 
equations. As explained, the equation of state 
(EOS) in the form of is used to 
compute the pressure.
       The desired equation of state used in current 
work is Mie-Grunisen EOS [18]:

ePeP H   )()
2

1
1(),(                              (30)

where  is The Grunisen constant, )1(
0



 is 

the parameter which represents the compressive 
behavior, 0 is the initial density, and HP is the 

so-called Hugoniot curve commonly used in the 
SPH method, and is written as:
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In Equation (31), the constants a1, a2 and a3 can be 
expressed in terms of the parameters C0 and ξ
which appear in the linear relation of the shock 
velocity sv


and particle velocity pv


, 

i.e. ps vcv
  0 , as   

2
001 ca 

)]1(21[12  aa

])1(3)1(2[ 2
13  aa

6.2. Elastic-Perfectly Plastic Model     It is a well 
known fact that the materials are not perfectly 
elastic, and if the applied stress exceeds a critical 
value the material starts its plastic behavior. The 
von-Misses yielding criterion is used to compute 
the critical stress. So, deviatory stress tensor is 
limited [24]: 

 fSS                                                     (33)            
   

where f is computed from:











3 2

2
0

J

Y
f                                              (34)                                           

where 2J is the second invariant of the deviatoric 
stress tensor defined by:

 SSJ
2

1
2                                                     (35)

and 0Y is a material dependent yield stress which 

is in general .

7. TEST CASES

Two different test cases are simulated by MCSPH 
method, and a FORTRAN 95 code is provided to 
solve the equations. In both test cases all the 
domain are simulated and symmetry conditions are 
not used.

7.1. 2D-Low Velocity Impact     Here, an 
aluminum projectile with the velocity of 400 (m/s) 
strikes into a semi infinite aluminum target, the 
same as the case of Howell et al. [25] with exactly 
the same features. The material properties are 
shown in Table 1.

TABLE 1. Material Properties for Aluminum
Property Value

Density, 3 2785

Bulk sound speed, )( 1
0

msC 5328

Gruneisen modulus, 2.0

Shear modulus, 10

Yield stress, )(0 paY

problem.  The dimensions of the projectile are set 
to 21050.0  (m), 1. 21020  (m) and for the target 
are set to 21020.2  (m) and 21080.3  (m)
respectively.

To decrease the computational efforts the initial 
length for the particles of the projectile is set to be 
constant, and similarly, two different initial 
constant lengths are set for particles of the target. 
At the interface zone, the particles are smaller than 
particles in outer zones. The total number of the 
particles in computational domain is 13676. The 
problem is solved for 3.0 (µs) after the initial 
contact between the projectile and the target. The 
computed results are compared with the same 
problem which is solved by Howell and Ball [9] in 
two different methods.

Y Y (T , ,...)0 0

P  P(  , e )

 

                                                   (32.1)

                                             (32.2)

                               (32.3)

 ( pa )

 ( kgm )

3.0108

2.7610

min ,1

       Fig. 1 shows the initial configuration of the 
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Figure 1. The initial configuration of the low velocity 
impact with initial projectile velocity of 400 (m/s)

Howell et al. [25] modeled the impact a free 
Lagrange augmented Godunov method (that is 
called free Lagrange method in this study), and 
then solved it with AUTODYN SPH code. Fig. 2
shows the contribution of the total x-wise stress in 
the both the projectile and the target in 4 different 
time steps. In comparison with Howell and Ball 
[25], it is apparent that the current computed 
results are in a good agreement with the referred 
works. Figure 2 also illustrates the wave generated 
in the projectile and the target at 0.5, 1.0, 2.0 and 
3.0 (µs) after initial contact.
      At 0.5 (µs), shock waves were generated at the 
interface and also were propagated toward both 
sides, back into the projectile, and rightward into 
the target. At 1.0 (µs), because of the shock 
reflections at the lower and upper free surfaces of 
the projectile, rarefaction waves were originated 
and meet at the symmetry axis. The left-running 
shock wave has also reached the rear of the 
projectile and has reflected as a rarefaction. After
2.0 (µs), the two-wave family has matured and an 
elastic precursor wave and trailing plastic shock 
have formed. The rarefaction returned from the 
rear of the projectile has crossed into the target, 
and produced a region of high tensile stress in the 
x-direction that is approximately 91082.1  (pa) 
which is close to the Howell and Ball’s [25] 

9109.1  (pa) at this region. At the final elapsed 
time of 3.0 (µs), wave structures have reached the 
top and bottom of the target and the plastic shock 
was started to be weakened. Deformation of both 
the projectile and the target is obvious at the 
interface, top and bottom of the projectile. At the 

distinct points are chosen to be analyzed. Point 1 is 
initially 1.8125 mm from the face contact and x-

3 shows the time histories of pressure, density, x-
wise velocity and the total stress in x-wise 
direction, which are recorded at these points, and 

[25].
It is apparent that the MCSPH method has the 

required capability of shock capturing considering 
the good agreement between compared data.

Figure 2. Four different time intervals of low velocity 

free Lagrange solver of Howell & Ball [25] with total x-
wise stress interval of 150 (Mpa).

wise distance between points is 3.625 mm. Figure 

are compared with the results of  Howell et al.

second part of this study, as shown in Fig. 1, five 

simulation and Figs.  5 to 8 is related to AUTODYN 
impact problem. Figs.  1 to 4 is related to MCSPH 
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MCSPH in comparison with Free Lagrange solver of the Howell et al. [25] and diagrams 5 to 8 are related to MCSPH 
in comparison with SPH  solver of the Howell et al. [25].In each Diagram, solid lines show the results of current study 
(MCSPH) and dash lines imply to Results of Howell et al. [25]. 

Figure 3. Time variation of four main parameters at 5 distinct points (Illustrated in Figure 1). Diagrams 1 to 4 are related to 
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      Because of the explicit nature of the method 
and elimination of artificial viscosity (AV), in 
some cases more damping in pressure and other 
variables that are shown in the Figure 3 during the 
solution are observed, in comparison with 
AUTODYN SPH code and Free Lagrange method 
used in Howell and Ball [25], but in general, it has 
a good compatibility in shock capturing and 
amplitude of shock waves specially when
compared with SPH solver of Howell and Ball 
[25]. 

7.2. 2. D-High Velocity Impact     The second test 
case is the solution of a high velocity aluminum-
aluminum impact (3.1 km/s). In this case, it is 
expected that the pressure has a bigger magnitude 
than yield strength of the material and however, a 
localized fluid-like plastic behavior is also 
expected when the case is compared to the low 
velocity case.

and the projectile is shown. The impact velocity is 
set to 3.1 (km/s). The dimensions and the other 
characteristic of both the target and the projectile 
are the same as the case of Howell et al. [25].

Diameter of the circular projectile is 10.0 mm and 
the target has 2.0 mm width and 50.0 mm height. 
However, 12046 particles are used to simulate the 
physic, 5406 of which in the projectile and 6640 in 
the target (ΔL= initial particle length =0.12 mm). 
The results are checked with the woks of Howell et 
al [25] and Mehra et al. [16].

8.0 (µs), after contact of the projectile to the target 
are shown. In this figure pressure contribution for 
both the projectile and the target is shown in 8

shocks are captured and the results are in good 
agreement with Howell et al. [25] in arrival time of 
the waves, and in magnitude of pressure. The 
pressure at the centre of the projectile, behind the 
leftward running shock, after 1.0 (

1072.18 
to 9106.18  (pa) of Howell et al. [25] at the same
time and in the same position. Noticeable 
deformation of both the target and the projectile 
are seen at 2.0 (µs), with thin arms of ejecta 

of a strong tension has been generated at the rear 

face of the projectile, because of the reflection of 
the focused wave structures.

x

y

-0.005 0 0.005

0.02

0.022

0.024

0.026

0.028

0.03

V0= 3100 (m/s)

Figure 4. The initial configuration of high velocity 
impact problem with projectile initial velocity of 3.1
km/s.

A tensile pressure of 91062.16  (Pa) is noted 
in the core of the wave structure. These values are 
checked in Table 2 with values of both Howell et

µs), 
the most part of this wave reflects as a 
compression wave, and it reaches the target from 
the projectile and then reflects again as a tensile 

intervals. Consequently, in every reflection, wave 
is weakened and loses its power. During this 
process, the arms of the ejecta get larger and in 
about 2.0 (µs), begin to break away from the front 
of the target. Throughout the process, large 
deformation is exerted in both the projectile and 
the target, especially in the projectile and at the 
interface.

penetrates into the target, the more reduction in 
resistance of the target is created and the projectile 
goes ahead and carries the target particles with 
itself till a narrow region remains around the 
projectile with a little resistance against the 
projectile’s momentum. Results show that the 
current method is a convenient and practical 
method in high velocity impact and large
deformation problems. It is in a good agreement
with other valuable studies accomplished by other 
researchers such as Howell et al. [25] and Mehra et
al. [16].

wave. This procedure is repeated in other time 

al. [25] and Mehra et al. [16] studies. At 1.0 (

is recorded as 9 (pa) that is clearly close 

In Fig.  4, initial position of the aluminum target 

different Figs. 1- 8. It is apparent that the 

µs), (Fig. 5.1)  

released from the front face of the target (Fig. 5.2). 
It is noticeable in Figs. 5.2 and 5.3 that a region 

On the other hand, the more the projectile 

In Fig. 5, transient results for an elapsed time of 



54 - Vol. 25, No. 1, January 2012 IJE Transactions A: Basics

Figure 5. The results of eight different time intervals of 
MCSPH simulation (Upper halves) in comparison with 
AUTODYN Free Lagrange solver of Howell et al. [25] 
(Lower Halves). Pressure contour intervals of 1.0 (GPa) 
is selected in Howell et al. [25] work and the pressure 
field of MCSPH is shown in pictures

TABLE  2. Results for Al–Al impact at 3.1 km/s.

Method
P1

(Gpa)a
P2

(Gpa)b
dcra

(cm)c
Lextn

(cm)d
Lproj

(cm)e

SAV1 18.0 -18.5 2.0 0.7 1.8
SAV2 17.5 -17.5 1.9 0.7 1.8
BAL 17.5 -18.5 2.0 0.7 1.8
MON 22.0 -13.5 2.0 0.8 2.0
CON 17.5 -14.0 2.1 0.7 1.9
HBf 18.6 -15.9 1.9 0.7 2.0

MCSPHg 18.72 -16.62 1.92 0.7 1.83

a. Pressure generated at the centre of the projectile 1.0
(µs) after initial contact.
b. Peak tension generated in the projectile after the 
reflection of initial pressure wave, ~ 2.2(µs) after initial 
contact.
c. Crater diameter.
d. Lextn= Longitudinal extension of the projectile 8.0
(µs) after impact.
e. Lproj=Longitudinal distance traveled by the projectile 
in the 8.0 (µs) interval after impact.
f. Results from the free Lagrange solver of Ball and 
Howell.
g. Results from Modified Compressible SPH (MCSPH) 
implemented in current study.
       

The presented results show that this method has no 
tensile instability in comparison with SPH solver 
of AUTODYN [25] and standard SPH with 
artificial stress, Morris et al. [16], and only the thin 
region around the projectile shows a little 
discontinuity in about 8.0 (µs), which may be an 
effect from the number of particles used to solve 
this problem. The number of particles used in this 
study is 12046, while in the case of Mehra et al.
[16] is 17850 and it can be a benefit of MCSPH 
method that can adequately simulate high velocity 
impacts with lower number of particles.

Clumping of particles in high tension regions 
always leads to unwanted results in problems 
involving high stress and pressure field with shock 
capturing or in tensile tests [22]. As shown in 
Figure 5, during the solution of the current 
presented algorithm, there is no clumping in 
particles in highly tensional zones and the 
algorithm shows acceptable results in tensional 
regions. 

case are compared with thosegiven by Mehra et al.
[16] at 8.0 (µs). Results give the required 
assurance when are compared with other SPH 
methods; however in this study, the artificial 
viscosity is eliminated. As evident in Figure 6, the 

    In Fig. 6, the results of high velocity impact 
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results from MCSPH in case of shape are very 
similar to Contact algorithm and in case of 
magnitude are quite close to Howell et al. [25], 
expect for Lprojec. Besides, as mentioned before, 
there is no major clumping in particles in 8.0 (µs)
and it can be a valuable benefit of using MCSPH.
     Another advantage of this method in 
comparison with other valuable SPH methods [16] 
is again a much lower tensile instability or 
numerical fracture.

Considering the fact that SPH techniques may have 
some inherent numerical fracture because of their 
particle nature and their discretizing techniques of 
principal equations, Howell et al. [25] with their 
free Lagrange method may have more reliable 
results than SPH ones. Consequently each method 
which has a closer result to Howell et al. [25] 
could be a more reliable SPH method than the 
others. So MCSPH can be a useful technique with 
a low numerical fracture and clumping for solving 
other problems with high tensional regions and 
large deformations and high velocities. It can be a 
future work to lessen its errors and progress it into 
other problems.

Figure 6. The upper half figure of the impact for six 
different SPH solutions with initial projectile velocity of 
3.1 km/s at 8.0 (µs) after the initial contact.

       To give a comparison in case of magnitude of 

characters and the pressure values for current and 

P1, current study shows a value close to Howell et. 
al. [25] as discussed before, but it also shows 
maximum tension P2 as a moderate value in 
comparison with other techniques and also in the 
vicinity of Howell et al. [25]. Regarding the fact 
that all the results are numerical and there are no 
experimental results for this case, it is impossible 
to say which method has more accuracy indeed. 

MON, considering the value of peak pressure P1

and the value of maximum tension P2 and 
clumping in particles and discontinuities in both 
the projectile and the target in Figure 6, it is 
obvious that MON method suffers from a big 
numerical fracture. In other SPH studies in Figure
6, CON has the best results in the simulated shape. 
Besides MCSPH is very much like CON in 
simulated shape and in case of magnitude its 
results is comparable with Howell et al. [25].

8. EFFECTS OF PARTICLE INITIAL 
LENGTH ON SIMULATIONS

To have an evident sense of resolution effects on 
simulations, three different particle initial lengths
(ΔL= 0.18 mm, 0.12 mm and 0.085 mm) are 
elected in high velocity case. This choice came 
from this theory in which the higher initial impact 
speeds are specified the higher tensile instabilities 
may occur. So, it will help one to have more 
reasonable vision of particle size on the 
simulations of MCSPH method. 

Final stage geometrical parameters (at 8.0 µs) have 

compatibility in three resolutions. Decreasing the 
particle numbers will result in increasing the P1

and the difference between P1 and P2. In attention 
to Smoothing method which SPH methods use in 
their calculations, it would be expected that more 
particles result in more smoother and better values 
for principal parameters such as pressure. But the 
differences are not of a significant order and it is
possible to say MCSPH is independent of particle 
size in general.

To prove this idea, 4 different depictions of 
simulations in different time intervals and in 

parameters, Table 2 denotes the geometric 

other method. As Table 2 shows, in peak pressure

But as Table 2 shows, for example, in the case of 

been tabulated in Table 3. Results show a close 
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diverse ΔL are shown in Figure 7. As it is obvious, 
simulations are very similar and just in lower 
number of particles (ΔL=0.18 mm), MCSPH will 
encounter with some numerical instabilities in the 
region between projectile and target (in front of the 
projectile in 6 and 8 µs).
But this fact leads one to use a moderate number of 
particles in MCSPH method to prevent the 
probably numerical instabilities and time coasting 
in low particle numbers.

TABLE 3. Results for Al–Al impact at 3.1 km/s in three 
different ΔL 

ΔL
(mm)

P1

(Gpa)
P2

(Gpa)
dcra

(cm)
Lproj

(cm)
0.18 19.45 -17.2 1.90 1.89
0.12 18.72 -16.62 1.92 1.83

0.085 18.43 -16.9 1.91 1.82

Figure 7. Results of the MCSPH simulations in 3
different ΔL. Figures 1 to 4 are related to ΔL = 0.18
mm, Figure 5 to 8 are related to ΔL =0.12 mm and 
Figures 9 to 12 are related to ΔL =0.085 mm.

9. CONCLUSION

In the current work, new proposed modified 
compressible algorithm of SPH method (MCSPH)
is introduced which can simulate problems 
involving shock wave structures without need to
include artificial viscosity. It is the result of the 
approach in which momentum equation is 
segregated into three parts and pressure is derived 
from an equation of state (EOS). To show its 
capabilities, two different 2D test cases were 
simulated by means of MCSPH method. The first 
one was a low velocity impact of an aluminum 
projectile to an aluminum target. The results were 
checked with Howell et al. [25] free Lagrange
solver and SPH method, and shown good 
agreement with them in behavior of shock waves 
and magnitude of total x-wise stress σxx, x-wise 
velocity, pressure and density. Considering the 
behavior of the MCSPH that shown no numerical 
fracture or clumping, and with the compatibility of 
its results with the work of Howell et al. [25], and 
regarding the elimination of artificial viscosity as a 
controller of numerical oscillations, the MCSPH 
method sounds a much simpler SPH method with 
the adequate accuracy.
       In the second test case, a high velocity impact 
of a spherical projectile to a thin semi infinite 
aluminum target is considered in 2 dimensions and 
is compared with Howell et al. [25] and 4 different 
SPH methods of Mehra et al. [16]. In this case, the 
magnitude of results complies with Howell et al.
[25] as the most reliable work in this test case and 
the simulated shape has a good similarity with both 
Howell et al. [25] and CON with very low 
numerical fracture and clumping. Consequently, 
this research may provide the following 
conclusions about MCSPH:

removing the artificial viscosity and using the 
three step algorithm.

the programming and computational efforts.  

capability of shock capturing as well as 
removing the artificial viscosity and using the 
three step procedure.

The method has the required assurance to be used 
and tested for both low and high velocity elastic-
plastic deformations that covers a wide range of 

1. The method simplifies the SPH algorithm by 

2. Removing the artificial viscosity may lower 

3. The method as a new algorithm has the 
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continuum deformations, for example from a 
simple elastic vibration to fluidized behaviors in 
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