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Abstract   Establishment of rating curves are often required by the hydrologists for flow estimates in 
the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and 
difficult process, and the conventional approach of regression analysis of stage-discharge relation 
does not provide encouraging results especially during the floods. Present study is aimed at the 
application of support vector machines (SVMs) based algorithm for modelling stage-discharge 
relation including the hysteresis effect. A data set of two discharge-measuring stations located on two 
Indian rivers has been used for analysis in the present study. A back propagation neural network 
model was employed in order to compare the performance of the results based on support vector 
machines based modelling technique. The outcome of the study suggests that the support vector 
machines works well for both the data sets and produce promising results in comparison to the neural 
network technique. Finally, the results also suggest the suitability of SVMs algorithm in predicting 
the looped rating curve having hysteresis effect.

Keywords   Rating curve; Hysteresis modelling; Neural network; Support vector machines.

سـیل ارائـه    زمـان  در بـه ویـژه   اي نتایج دلگرم کننده تخلیه مرحله رابطه گرسیونر آنالیز متعارف روش و است

مدل  براي الگوریتمی مبتنی بر) SVMs( پشتیبان برداري ماشین کارگیري ازه ب هدف با مطالعه حاضر . دهدنمی

 مـده از دسـت آ ه باز یک سري داده . ماند صورت گرفته استپس اثربا در نظر گرفتن  تخلیه مرحله رابطه سازي

از مدل . استفاده شده است مطالعه حاضر آنالیز در براي هندي دو رودخانه تخلیه واقع در گیرياندازه ایستگاه دو

 روش بـر  مبتنـی  ،پشـتیبان  برداري ماشین بر اساس نتایج مقایسه عملکردبه منظور عصبی شبکهخور پسانتشار

مجموعـه   هـر دو  بـراي  پشـتیبان  برداري که ماشین دهدمی نشان مطالعهنتیجه .ازي استفاده گردیده استسمدل

 ـ عصـبی  شبکه تکنیک مقایسه با در اينتایج امیدوار کنندهها به خوبی عمل کرده و داده در  .ورده اسـت بـار آ ه ب

-پـس  اثر با ايحلقه ارزیابیمنحنی  بینی پیش در SVMs الگوریتم مناسب بودن از نتایج همچنین حاکی ،نهایت

1. INTRODUCTION

Prediction of stage-discharge relation or a rating 
curve is of immense importance for reliable 
planning, design and management of most of the 
projects on water resources. A common practice is
to measure the river stages at regular intervals and 
use them for further discharge calculations, which 
can be used for future hydrological analysis. The 
stage and discharge at a gauging site is generally 
represented by a rating curve. The rating curve is
determined by assuming that there exists a unique 

relation between stage and discharge of the river at 
the given site. However, the stage-discharge 
relationship is time dependent and often exhibits a 
random phenomenon with fluctuations. The 
process of establishing a rating curve can be 
assumed to be a mapping problem wherein stage is 
considered as the input variable and discharge is 
the output variable. Mostly, a power equation is 
used to establish the relation between stage and 
discharge whose variables can be determined by 
regression analysis. A major limitation of this 
approach is that it is not able to take into account 
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the hysteresis effect, i.e. two distinct discharges 
occur for the same stage, one during the rising 
river stage, which is a higher value, and another 
during recession, which is a lower value.
Recently, there has been a growing interest in the 
analysis of the complex hydrological processes by 
using modelling techniques like artificial neural 
networks [1]. Any hydrological system consists of 
nonlinear and multivariate variables, which may 
have unknown relationships among them. The 
artificial neural networks (ANN) adapt itself to 
reproduce the desired output when presented along 
with input data sets. Several studies have reported 
the application of neural network in predicting the 
stage-discharge curve [2-8]. Most of the studies 
employing neural networks have used back 
propagation and radial basis function types of 
neural networks to establish the stage-discharge 
relationship. A neural network based modelling 
approach requires setting up several user-defined 
parameters like learning rate, momentum, optimal 
number of nodes in the hidden layer and the 
number of hidden layers, so as to have a less 
complex network with a relatively better 
generalization capability. Further, training a neural 
network requires a number of iterations and a large 
number of training iterations may force ANN to 
over train, which may affect the predicting 
capabilities of the model. Keeping in view these 
limitations of ANN, and the recent use of SVMs in 
water resource studies [9-14], this study explores 
the potential of support vector machines in 
predicting the rating curve development using data 
from two different gauging sites of two Indian 
rivers. The performance of support vector 
machines is compared with a back propagation 
neural network modelling approach for both data 
sets.

2. SUPPORT VECTOR MACHINES

Support vector machines (SVMs) are classification 
and regression methods, which have been derived 
from statistical learning theory [15]. The SVMs 
classification methods are based on the principle of 
optimal separation of classes. If the classes are 
separable – this method selects, from among the 
infinite number of linear classifiers, the one that 
minimize the generalization error, or at least an 
upper bound on this error, derived from structural 

risk minimization. Thus, the selected hyper plane 
will be one that leaves the maximum margin 
between the two classes, where margin is defined 
as the sum of the distances of the hyper plane from 
the closest point of the two classes [15]. The 
Support Vector Machines can also be applied to 
regression problems and can be formulated as 
given below.
Vapnik proposed -Support Vector Regression 
(SVR) by introducing an alternative - the 
Insensitive Loss Function. This loss function 
allows the concept of margin to be used for 
regression problems. The purpose of the SVR is to 
find a function having at most deviation from the 
actual target vectors for all given training data and 
have to be as flat as possible [16]. This can be put 
in other words as the error on any training data has 
to be less than    ; which is negligible. For a given 
training data with k number of samples, 
represented by    1 1 k kx , y ,............, x , y ,  a linear 

decision function can be represented by:

 

where Nw R and b R. w,x represents the dot 

product in space NR .  A smaller value of w
indicates the flatness of equation 1, which can be 
achieved by minimising the Euclidean norm as 

defined by 
2

w [16]. Thus, an optimisation 

problem for regression can be written as:

Minimise 21
w
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The optimisation problem in Equation 2 is based 
on the assumption that there exists a function that 
provides an error on all training pairs which is less 
than . In real life problems, there may be a 
situation like one defined for classification by [17]. 
So, to allow some more error, slack variables ', 
can be introduced and the optimisation problem 
defined in Equation 2 can be written as:
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f x,a = w,x +b      (1)

Subject to     (2)
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and ',i i 0   for all    i = 1, 2,……, k.Parameter 
C is determined by the user and it decides the 
trade-off between the flatness of the function and 
the amount by which the deviations to the error 
more than  can be tolerated. The optimisation 
problem in Equation 3 can be solved by replacing 
the inequalities with a simpler form determined by 
transforming the problem to a dual space 
representation using Lagrangian multipliers [18]. 
The prediction problem in Equation 1 can now be 
written as:

   '

1

,
k

i i i
i

f x x ,x +b  


  (4)

where iλ and '
iλ are positive Lagrange multipliers. 

The techniques discussed above can be extended to 
allow for non-linear support vector regression by 
introducing the concept of the kernel function [15]. 
This is achieved by mapping the data into a higher 
dimensional feature space, thus performing linear 
regression in feature space. The regression 
problem in feature space can be written by 

replacing i jx x with    i jΦ x ×Φ x .

where      i j i jK x ,x Φ x ×Φ x

Regression function for this case can now be 
written as:

     '

1

,
k

i i i
i

f x K x , x +b  


  (5)

3. APPLICATION OF SVMS FOR STAGE-
DISCHARGE PREDICTION

To assess the usefulness of SVMs based modelling 
approach in predicting the stage-discharge 
relationship, the data sets collected on two gauging 
sites located on river Brahmani and Mahanadi in 
Orrissa (India) was used (Table 1). 
A hypothetical data set consisting of 168 pairs 
exhibiting the hysteresis effect was also created for 
studying the loop-rating curve in order to judge the 
performance of SVMs in the flooding state of flow 
to account for the hysteresis effect. The stage 
values and the corresponding discharge were taken 
at an interval of 0.1 m, starting as the initial stage 
value from 100.0 m for rising as well as falling 
stages.
The SVMs are used in calculating correlation 

coefficients and root mean square errors (RMSE) 
by using cross-validation to generate the model on 
the input data set and predicting the discharge for 
both data sets with different input combinations. 
The cross-validation is a method of estimating the 
accuracy of a classification or regression model. 
The input data set is divided into several parts (a 
number defined by the user), with each part in turn 
used to test a model fitted to the remaining parts. 
For this study, a ten-fold cross-validation was 
used. The use of SVMs requires setting of the user-
defined parameters such as regularisation 
parameter (C), type of kernel and kernel specific 
parameters. As the choice of kernel may influence 
the prediction capabilities of the SVMs, present 
study uses a polynomial (    dx  y +1 ) and a radial 

basis kernel (
2

-γ x- ye ) where d and    are kernel 
specific parameters. The suitable value of 
parameters C, d and   (Table 2) were obtained by 
comparing the correlation coefficients and root 
mean square error (RMSE) values after a number 
of trials for the different data sets used in the 
present study.

TABLE 1. Details of the gauging sites with  number of 
data set (1440 pairs)

Name of 
River

Name of 
Site

Drainage 
area (sq 

km)

Site 
number

Months and years 
of observations

Brahmani Jenapur 33955 61N June, July, August, 
September and 

October, 1981 to 1986
Mahanadi Tikarapara 124450 44 June, July,  August, 

September and 
October, 1981 to 1986

TABLE 2. Values of user defined parameters used with 
SVMs for different data sets

Gauging site/Data
Polynomial kernel RBF kernel

C d C 
Jenapur site 5 1 5 0.6

Tikarapara site 1 1 1 1.2
Hypothetical data 5 1 5 0.6

4. MODEL DEVELOPMENT AND 
PERFORMANCE CRITERIA

Two data sets consisting of daily stage and 
discharge records of the sites; Jenapur (1440 pairs) 
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on Brahmani river and Tikarapara (1440 pairs) on 
Mahanadi river in Orrisa (India) have been used in 
the present study. A hypothetical data set of stage
and discharge (168 pairs) showing hysteresis effect 
on the rating curve was also used. To model the 
rating curves, seven combinations of stage and 
discharge values were considered as input 
parameters for the Jenapur as well as Tikarapara 
site. Tables 3 and 4 provide the list of all input 
variable used to predict the discharge for both 
sites, where tS represents the stage at any time t 
(i.e. month of August for each year in present 
study) and tQ is the corresponding discharge. 

Further, 2 1 1 2, , ,t t t tS S S S    and 2 1 1 2, , ,t t t tQ Q Q Q   

represent stages and discharges at (t-2), (t-1), (t+1) 
and (t+2) times respectively i.e. months of June, 
July, Sept and October for each year. 
Normalisation of the data was carried out so as to 
bring all input variables within a range of 0 to 1. 
Correlation coefficient and root mean square error 
(RMSE) values for different data sets (Tables 3 & 
4) are used for the performance evaluation of the 
models and comparison of the results for 
establishing the stage-discharge curve using 
SVMs. A higher value of correlation coefficient 
with a smaller value of RMSE for given set of 
input parameters is considered to be a better 
performing model. To study the scatter, a line of 
perfect agreement (i.e. a line at 45 degrees) was 
plotted in the resulting graphical output between 
the actual and the predicted discharge values with 
both data sets. Further, rating curves were also 
plotted for the predicted and actual discharges at 
different stages.

5. ANALYSIS AND DISCUSSION OF 
RESULTS

Much success has already been achieved by using 
modelling techniques like Artificial Neural 
Network (ANN) in stage-discharge analysis and an
exhaustive literature review indicates that so far no 
works have reported the use of support vector 
machines based approach for the prediction of the 
rating curve. One major advantage of using SVMs 
modelling approach is the use of quadratic 
optimization problem, which provides global 
minima in comparison to the presence of local 
minima due to the use of a non-linear optimization 

problem with a back propagation neural network 
approach. Further, the SVMs require setting of 
fewer user-defined parameters. The SVMs, in 
addition to the choice of kernel, require setting up 
of kernel specific parameters. The optimum values 
of the regularization parameter C and the size of 
the error-insensitive zone  need to be determined. 
After several trials by varying the value of error-
insensitive zone for a fixed value of C and kernel 
specific parameter, a value of 0.0010 was found to 
be working well for different data sets used in this 
study. User-defined parameters  ,, dC working 
well for SVMs modelling technique with different 
data sets in the present work are given in Table 2.

5.1 Jenapur Data Set   The results of the RBF and 
polynomial kernel based SVMs (SVM_rbf and 
SVM_poly) for each data set for Jenapur site in 
terms of correlation coefficients and RMSE are 
given in Table 3. For each combination of inputs, 
the values of kernel specific parameters d and 
that provide the minimum RMSE and maximum 
correlation coefficient using a 10 fold cross 
validation were used. The value of regularization 
parameter (C) was kept equal with same input data 
combination using both kernels. Figures 1(a) and 
1(b) provide the rating curves obtained by using 
RBF and polynomial kernels respectively in 
comparison to the actual values. These curves are 
plotted for the data set providing the highest value 
of the correlation coefficient and the minimum 
value of RMSE. With the RBF kernel, the highest 
value of correlation coefficient (i.e. 0.988) and 
Minimum value of RMSE (249.02) were obtained 
using a data set consisting of tS as the input 
parameter. The input combination of 

1 1,t t tS S and Q  provides the best performance 
with the polynomial kernel (i.e. correlation 
coefficient = 0.973 and RMSE = 371.7). The 
observed and the estimated discharges obtained by 
using the RBF and the polynomial kernels based 
SVMs are plotted in Figures 2(a) and 2(b). These 
figures depict almost perfect agreement between 
the actual and predicted discharge with both 
kernels. A comparison of correlation coefficients 
and RMSE from Table 3 for the rating curve 
suggests a better performance by the RBF kernel 
for this data set. The errors in the discharge 
(difference in observed and predicted discharge by 
using RBF kernel only) along with time are 
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presented in Figure 3(a), while Figure 3(b) 
represents the variation of actual and predicted 
discharges with time. It is evident from Figure 3(a) 
that errors for most of the points are within a range 
of  250 m3/sec with the RBF kernel for all the 
stages and no major deviation of the results is 
observed for any discharge value. A comparison of 
the results in Figure 3(b) suggests almost perfect 
agreement between predicted and actual discharges 
with time.

(a)

(b)

Figure 1. Stage discharge relationship for actual and 
predicted values by (a) RBF kernel (b) polynomial 
kernel based SVMs for Jenapur site.

(a)

(b)

Figure 2. Actual versus predicted discharge by (a) RBF 
kernel (b) polynomial kernel based SVMs for Jenapur 
site.

Figure 3(a). Error in computed discharge with respect 
to observed discharge using RBF kernel based SVMs 
for Jenapur site.

Figure 3(b). Variation in actual and computed 
discharge with respect to time using RBF kernel based 
SVMs for Jenapur site.
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TABLE 3. Values of correlation coefficient and root 
mean square error (RMSE) for different combinations 
of input parameters for Jenapur gauging site using 
support vector machines. The highlighted values 
indicate the best input combination.

Input parameters

error

tS

, SS 0.972 380.93 0.949 572.08

,, QSS 0.968 404.80 0.973 371.70

121 ,,,  tttt QSSS 0.981 306.51 0.941 595.41

2 1 1 2

2 1 1 2, , ,
t t t t t

t t t t

   

   

5.2. Tikarapara site data    To validate the 
performance of the SVMs for stage-discharge 
prediction, another data set from Tikarapara 
gauging site on Mahanadi river (Table 1) was used. 
Seven combinations of input data as used for the 
Jenapur site were also tested for this site. The 
results are expressed in terms of correlation 
coefficients and RMSE and presented in Table 4. 
The optimal values of user-defined parameters C, d


4(a) and 4(b) provide the plot for actual and 
predicted discharges using a RBF and polynomial 
kernels based SVMs against the corresponding 
stage values for the best combination of input data 
set obtained from Table 4.  Values for correlation 
coefficient of 0.934 and RMSE = 1929.80 were
achieved with input combinations of 

11,  ttt QandSS using RBF kernel as given in Table 

4. The combination of 

121  tttt QandSSS ,, provides the best 

performance (i.e. correlation coefficient = 0.909
and RMSE = 2207.30) with the polynomial kernel 
based SVMs. The observed and estimated 
discharges obtained by using both the kernels are 
plotted in Figures 5(a) and 5(b). The perusal of 
these figures shows that there is a perfect 
correlation between observed and predicted 
discharge in RBF kernel based SVM. The results 
obtained for this data set suggest that SVMs 
modelling approach can effectively be used for 

stage-discharge modelling. The results also suggest 
that RBF kernel works better for this data set.

(a)

(b)

Figure 4. Stage discharge relationship for actual and 
predicted values by (a) RBF kernel (b) polynomial 
kernel for Tikarapara site.

TABLE 4. Values of correlation coefficient and root 
mean square error (RMSE) for different combinations 
of input parameters for Tikarapara gauging site using 
support vector machines. The highlighted values 
indicate the best input combination.

Input parameters

RBF kernel Polynomial kernel
Correlation 
coefficient

Root 
mean 
square 
error

Correlation 
coefficient

Root 
mean 
square 
error

tS 0.928 2042.04 0.905 2268.85

1, tt SS 0.934 1934.63 0.908 2216.64

11 ,,  ttt QSS 0.934 1929.80 0.909 2212.87

121 ,,,  tttt QSSS 0.933 1937.12 0.909 2207.39

2121 ,,,,  ttttt QQSSS 0.931 1970.82 0.908 2219.06

2121 ,,,,  ttttt QQSSS 0.920 2081.94 0.905 2279.58

2 1 1 2

2 1 1 2

, , , , ,

, , ,
t t t t t

t t t t

S S S S S

Q Q Q Q
   

   
0.926 2006.82 0.909 2225.36

and for this data set are given in Table 2. Figures 

coefficientcoefficient square error mean 
Correlation Root mean Correlation Root 

RBF kernel Polynomial kernel

0.988 249.02 0.950 567.34

square 

0.984 286.54 0.945 583.51

0.987 260.28 0.937 609.99

0.987 257.59 0.950 576.89S ,S ,S ,Q ,Q

S , S ,S , Q ,Q

t t1 t1

t t1

Q Q Q Q

t t1 t2 t1 t2

t t1 t2 t1 t2

S , S , S , S , S ,
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(a)

(b)

Figure 5. Actual versus predicted discharge by (a) RBF 
kernel (b) polynomial kernel based SVMs. for 
Tikarapara site.

5.3. Comparison of SVM with back propagation 
neural network     To compare the performance of 
SVMs with a neural network modelling approach, 
a back propagation neural network was used for 
both (Jenapur and Tikarapara) data sets. The input 
combinations providing the best results with RBF 
kernel based SVMs (Tables 3 and 4) were used in 
both data sets. After several trials, a three-layer 
network with one hidden layer having 8 nodes, a 
learning rate of 0.02, momentum value of zero and 
a total of 1000 iteration was found to provide the 
best results with both data sets (Table 5). Similar 
to the SVMs, a 10 fold cross-validation was used 
with neural network to get the results in term of 
correlation coefficient and RMSE values. The 
results from Tables 3 and 5 indicate that SVMs 
works equally well to the neural network 
modelling approach for Jenapur data set.
Figures 6(a) and 6(b) confirm the results obtained 
by a neural network modelling approach for this 
data set. For Tikarapara data set, a comparison of 
Tables 4 and 5 suggests a better performance by 
RBF kernel based SVMs algorithm in comparison 

to a back propagation neural network approach. 
The rating curve as well as observed and estimated 
discharges obtained by using a back propagation 
neural network for Tikarapara data set are plotted 
in Figure 7(a) and 7(b). The results for both sites 
indicate an improved or comparable performance 
by SVMs approach (RBF kernel) for stage 
discharge modelling in comparison to the back 
propagation neural network algorithm.

TABLE 5. Values of correlation coefficient and root 
mean square error (RMSE) and obtained with back 
propagation neural network for both data sets (Jenapur 
& Tikarapara sites).

Data set

Back propagation neural 
network

Correlation 
coefficient

Root mean 
square error

Jenapur data ( tS as input parameter) 0.988 248.97

Tikarapara data (
11,  ttt QandSS as input 

parameter)
0.919 2089.54

Figure 6(a). Stage discharge relationship for actual and 
predicted values by back propagation neural network for 
Jenapur site.

Figure 6(b). Actual versus predicted discharge by back 
propagation neural network for Jenapur site.
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Figure 7(a). Stage discharge relationship for actual and 
predicted values by back propagation neural network for 
Tikarapara site.

Figure 7(b). Actual versus predicted discharge by back 
propagation neural network for Tikarapara site.

5.4 Looped-Rating Curve Modelling     The 
SVMs approach was also employed to predict the 
discharge using a hypothetical data set in order to 
model a looped-rating curve. Two different data 
sets for rising and falling stages were created to 
judge the performance of SVMs for stage-
discharge curve prediction. For both data sets, a 
10-fold cross-validation was used to train and test 
the SVMs. The values of user-defined parameters 
obtained for this data set using both kernels are 
given in Table 2. The results obtained using both 
kernels are given in Table 6. A correlation 
coefficient value of nearly one indicates a good 
performance by using a RBF kernel SVMs 
approach for the looped-rating curve. Figure 8
provides a looped rating curve between actual and 
predicted discharges (RBF kernel based SVMs), 
suggesting almost a perfect match between actual 
and predicted discharge values except a slight 
deviation near the peak zone.

TABLE 6. Values of correlation coefficient and root 
mean square error (RMSE) obtained by SVMs using 
hypothetical data set.

Input parameters

RBF kernel Polynomial kernel
Correlation 
coefficient

Root 
mean 
square 
error

Correlation 
coefficient

Root 
mean 
square 
error

tS (rising stage) 0.999 11.27 0.996 32.89

tS (falling stage) 0.999 7.32 0.989 46.50

Figure 8. Loop rating curve obtained by using RBF 
kernel based SVMs along with the hypothetical data.

6. CONCLUSIONS

The SVMs modelling approach has been applied to 
establish the rating curves for two different data 
sets at gauging sites from two Indian rivers. 
Results from this study suggest an encouraging 
performance by the RBF kernel based SVMs 
approach. Outcome of the present work also 
indicates that the RBF kernel based SVMs can be 
used effectively for the analysis of looped rating 
curves having hysteresis effect. It can also be 
concluded from this study that RBF kernel based 
SVMs approach works equally well, or better than 
the back propagation neural network. This study 
also suggests that that the accuracy of the SVMs 
modelling approach does not improve by 
considering more number of discharges and stages 
values in the input data sets. In view of the above 
results, this research indicates that SVMs approach 
can be applied as an effective and potential tool for 
establishing stage-discharge relationship on a river. 



IJE Transactions A: Basics                                  Vol. 25, No. 1, January 2012 - 9

7. ACKNOWLEDGEMENTS

Authors are thankful to the Chief Engineer, Eastern 
gauging division, Bhuwneshwar (Orissa state), 
Central Water Commission, Ministry of Water 
Resources, Government of India for providing 
stage-discharge data, without which it would not 
have possible to complete the present study.

8. REFERENCES

1. ASCE task committee on application of ANNs in 
Hydrology, “Artificial neural networks in hydrology, II: 
hydrologic applications”, Journal of Hydraulic 
Engineering, ASCE, Vol. 5, (2000). No. 2, 124-137.

2. Tawfik, M., Ibrahim, A. and Fahmy, H., “Hysteresis 
sensitive neural network for  modelling rating curves”, 
Journal of Computing in Civil Engineering, Vol. 11, 
No. 3, (1997), 206–211.

3. Bhattacharya, B. and Solomatine, D.P., “Application of 
artificial neural network in stage discharge 
relationship”, Proceedings of 4th International 
Conference on Hydro informatics, (2000). Iowa, USA.

4. Jain, S. K.  and Chalisgaonkar, D., “Setting up stage 
discharge relations using ANN”, Journal of Hydrologic 
Engineering, Vol. 5, No.4, (2000),  428–433.

5. Sudheer, K. P. and Jain, S.K., “Radial basis function 
neural network for modelling rating curves”, Journal of 
Hydrologic Engineering, Vol 8, No.3, (2003), 161-164.

6. Olerleir, A.P., “Modelling stage discharge relationships 
affected by hysterisis using the Jones formula and non 
linear regression”, Hydrological Sciences Journal, Vol. 
51, No. 3, (2006), 365-388. 

7. Bist, D.C.S., Raju, M.M. and Joshi, M. M., “ANN 
based river stage discharge modeling for Godavari river, 

India”, Computer Modelling and New Technologies,
Vol. 14, No. 3, (2010), 48-62.

8. Bist, D.C.S. and Jangid, A., “Discharge modeling using 
Adaptive neuro fuzzy inference system”, International 
Journal of Advanced Science and Technology, Vol. 
31, (2011).

9. Pal, M. and Goel, A., “Prediction of the End depth ratio 
and discharge in semi circular and circular shaped 
channels using support vector machines”, Flow 
Measurement and Instrum, Vol. 17, (2006).  50-57.

10. Gill, M. K., Tirusew, A. Mariush, W. K. and Mac, M., 
“Soil moisture prediction using Support Vector 
Machines”, Journal of the American Water Resources 
Association, Vol. 42, (2006) No.4, 1033-1046.

11. Khan, M. S. and Coulibaly, P., “Application of support 
vector machine in lake water level prediction”, Journal 
of Hydrologic Engineering, Vol. 11, (2006).  No.3, 
199-205.

12. Yu, P-S., Shien, T. C. and I-Fan, C., “Support vector 
regression for real time flood stage forecasting”, 
Journal of Hydrology, Vol. 328, (2006).  704-716.

13. Pal M. and Goel, A., “Prediction of End-Depth-Ratio 
and Discharge in Trapezoidal shaped channels using 
Support Vector Machines”, Water Resource 
Management, Vol. 21, (2007).  1763-1780.

14. Goel, A. and Pal, M., “Application of support vector 
machines in scour prediction on grade-control 
structures”, Engineering Applications of Artificial 
Intelligence, Vol. 22, No. 2, (2009). 216-223.

15. Vapnik, V. N., The Nature of Statistical Learning 
Theory, New York, Springer-Verlag, (1995).

16. Smola, A. J., Regression estimation with support vector 
learning machines, Master’s Thesis, Technische 
Universität München, Germany, (1996).

17. Cortes, C. and Vapnik, V.N., “Support vector 
networks”, Machine Learning, Vol. 20, (1995), 73-297.

18. Leunberger, D., Linear and nonlinear programming,
Amazon, (1984). 


