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Abstract It is assumed that a beam made of material has a physical nonlinear behavior. This beam is
analyzed under the moving concentrated and distributed continuous loads. The vibration equations of motion are
derived from the Hamilton's Principle and Euler—Lagrange Equation. In this study, the amplitude of vibration,
circular frequency, bending moment, stress and deflection of the beam has been calculated. At the state of
concentrated moving load, the obtained analytic solution has been exemplified. The results of this study indicate
that when the material of the beam is considered physically nonlinear, there is no critical velocity and the

resonance phenomenon doesn’t happen.
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1. INTRODUCTION

The study of dynamical effect of moving loads at
highway and railroad bridges has a history of more
than one and a half century. The collapse of Jester
Bridge in England in 1847 encouraged both the
theoretical and experimental studies. The
catastrophe caused tremendous human losses and
created a lot of excitement in civil engineering.
Presently, there are many structures made
from materials which are not subject to the Hook’s
law. Therefore, there is a great tendency to study
stress and strain in elements of structures made of
physical nonlinear material under various static
and dynamic loads. In the linear theory, the
property of material is not taken into consideration;
however, all of relevant parameters are taken into
consideration in the theory of nonlinear. Thus, the
physical nonlinear theory at small deformations
demonstrates an exact calculation method for the
analysis of stress, strain, and other internal forces

IJE Transactions B: Applications

in structural elements.

In order to represent all the possible states of
the material by one mathematical law, the
following algebraic function may be introduced:

G=0618+0(282+a383+... (1)

This equation is not different from the general
relationship between  ande.

o=f(e) (2)

Manzhaalovsky employed Empeher’s method
and proposed the following two-term equations of
the parabolic type on the basis of the tests carried
out by Glushkov [1].

o, =ae— B for compression 3)

0, = a,6 — B.&’ ( for tension) 4)
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where, a;, o,, B; and B, are empire elasticity.
Trinomial equations of the parabolic type were
suggested for cast iron by Glushkov who proposed
the use of a similar relationship for metal wire [1]:

e=ao+bc’ +co’ &)

In addition to exponential and power laws,
hyperbolic relationships were suggested for brittle
materials. Accordingly, as introduced the
following function for cast iron:

g=—"2 (6)

Glushkov [1] has developed a theory for bars
and discs made of brittle materials, employed the
following hyperbolic laws:

oc=—"2 (7
A+ Be
o 1

AN S ®)
E 1-qo+ oo

Finally, the relationship between stress and
strain, in the case of physical nonlinear, is
presented by Kauderer [2]. As the equation
proposed by Kauderer is comprehensive and
expresses the relationship between the stress and
strain in three dimensional states, we preferred to
use the equation for the analysis of the physical
nonlinear stress and strain

_K(@y) 1)

& Y aEY: (0, —0,9;) )

i,j=1,2,3
where, 0; is Croneker symbols, and o ,is average
stress:
o +to, +0,
G, =——2 = (10)

3

K and G at small deformation are respectively
volume contraction and shear elastic module. The
relationship among K, E, and G is indicated
through the following equation:

_ 9KG (11)
5K+G
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K (o-) is average stress function and l(t(f) is

shear stress function; it can be indicated through
the following equation:

K(o))=1+K,0c,+K,00 +...= ZK,,O'(')’
=0 (12)

It =1+1,t5 +1,t5 +..= Y 1 13"
n=0

Researches have demonstrated that K (o) in
physical nonlinear material on anaverage relative
deformation is close to the straight line (i.e., K (o)
= 1). Also, the two first sentences of the shear
stress function are enough.

I(t)=1+1t; (13)

In the above equation, /, is the physical

nonlinear coefficient.

As the Eq. (9) indicates, stress components of
6z, Oy, and oy, are created. The simplification of
the equation suggests that the stress components
are too small in comparison with the cz. These
new components of the stress have less impact on
the frequency of vibration and on the other
parameters during the vibration of the beam. As a
result, the following equation is obtained from the
Eq. (9) at a two dimensional surface:

2

E3
GZ:E(eZ—EQ?g;) (14)

The purpose of this paper was the analysis of
a beam made of physical nonlinear material under
the moving concentrated and distributed
continuous loads, which was discussed through
examples analytically.

2. THEORY

2.1. Analytical solution for moving concentrated
load To study the effect of moving load on the
prismatic beam, first, we are discussing moving
concentrated load. Thus, it is assumed that the load
P moves along the beam (Fig. 1).
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Figure 1. Schematic view of a prismatic beam under
moving load

To consider the effect of external moving
load, it is assumed an equivalent distributed load
which depends on z and t as follows [3]:

kra krz

q(z,0)= Zk 1— s1n— s1nT (15)

where, p(z) = , (k = 1,2,3,...) is the head

vibration mode of the beam.

Therefore, the potential and kinetic energy of
the system will be as follows [4]:

P Y S T

o2 Oz 54 ° G Oz

Ki=Lt FjLa—Wzdz (17)
2P o

Also, the work of the external moving load
will be as follows [5]:

A= I (z,t)dz
i (18)
_[ Z —s1n%w z,t) dz

The Hamilton's Principle for this beam will be
expressed as below[6]:
o*w)
o’ J -

H=["(-4-Ki)dt={" j;[%JOE(

1, B (ow) 2P kma . km (19)
—bL—=J| = _ sin—sin—mu{z 1)
G\ ) 1 L L

2
1 PF (a_wj dzdt
2 ot
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where, J, :”yzdxdy , J, z_['[y4dxdy

Considering:

e _E= ,T=ayt, Which ¢, 7 varies respectively
L

from 0 to 7 and O to 2.
where, @, is circular frequency vibration of the

system in linear case and expressing in Hamilton
principle (19), the following equations are
obtained:

L 1 at(oY
L (2

@, 2 L\ o

1 E* 2 (ow) 2Pwa . (20
pred e B M

sink¢ . w(¢, )—%pF (awj}dg“.dr

ot

We assumed that the deformation of the beam
would be found from the following expression [7]:

w(¢.7)=p () q(c) (21)

where, p(7) and ¢(r) are coordinate and

generalized functions respectively.

By substitution of expression (21) in
expression (20), we obtain the following
expressions:

i e e

1 E* zt
‘QEF*FW”“ 22

2P o kvt
T z kel s

1
EPng P2(§ )

2

sin k¢ - p (&) q(r)-

qz} d¢ . dr

The following expression is derived from the
calculations indicated above in Eq. (22) [8]:

H:—IZE aq’ +bq* —cwlq'’ dq}dr

= L Ndr
W, *°
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where:
RN LY
a_z 0 L4 Iop é/
1 E4 7[8 nd
b=—sgh g h o (24)
_1 T2
c=2pF | p(¢)dg
afzﬁ sin—km}t
L L

For Integral (23), Euler equation gives [9]:

o (8NJ_8N:O

or 0q 0q
i(—2ca)02q'):—an)ozq” (25)
ot

ai:2aq +4bg’ - d’

9q

-2cw, q"-2aqg —4bg’ +d’'=0

~2c ] q"—2aq(1+2éq2j=d’=§ sin? (26)
a

By substitution of szﬂTv ) t:wi into Eq. (26)
0
we’ll have:
, s a b ,\ . 27
w, q"+—q|1+2—¢q" |=d sinnrt 27)
C a
where, ,_ 0, _ 7P
, 2cL

By substitution of X:a’_ozq into Eq. (27), X is
d

dynamic coefficient. We will have:

X"+ X(1+eX?)=sinnt (28)
2

where, ¢ = 29 d_ (29)
a o

To solve the Duffing Eq. (28), we follow the
following procedure [10]:

X= Z X,sinpt = X;sinpt +

n=1,3,5....

(30)
X,sin3nt + X sinSnr+...
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If we substitute the expression (30) into 28,
and compare the similar coefficients of sinnnz,
we will get a lot of cubic nonlinear algebraic
equations. To our knowledge, there is no exact
solution for these equations. Thus, we employed an
approximated method. For this purpose, we applied
three constraints Eq. (30) and we assumed that X,
>> X,..1: therefore, in this case, we will have the
following system of nonlinear equations:

(1-n)x, +e(%Xf +%X1X3X5 +%X12X3 +
%Xle +%X§X5 +%X1X§):l

(31)
( 2 1 3,3 53,3
1-9n ))(3+e—11)(1+—4)(3 +—2X1X3X5+

3 3 3
5)(5)(3 +5X3X52 +ZX12X5j =0

(12502 )x, +e(%X53 +%X12X3 +%X1X32 +

3 3
E)(32)(5 +5X3X5j =0

With solving of Eq. (31) by the method of Zeidel,
we will have [11]:

(1-n°)x, +%eX13 -1

3
ex,

X. =
Y4l -) (32)
C3ex, X, (X, + X))

 4(2sp7 -1)

X

When the load is out of the beam, Eq. (27)
will be as below in which the system will have free
vibration.

2
dL2+L2q(1+22q2j:0 (33)
dt w’c a

Finally, by solving Eq. (33), we found the
period of vibration:

T4 ) (4
-1
C a
Consequently, the circular frequency is as follows:
oo ﬁ(Hész. I (35)
2\c a K6
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where,

K(6’)=E 141 6in? 04— sin 0+ sin®0+...
2| 4 64 256

o is the circular frequency of vibration, Q is

amplitude of vibration, and k (@) is a second order
elliptic integral. As the above equation indicates,

égz has a minus sign, which decreases the ® in
a

comparison with @, (as it was indicated in 35).

Based on the equations expressed above, the
explanation of the analysis of deflection, bending
stress, and bending moment are as follows.

Deflection:  Deflection is obtained from the Eq.
2.
W(z,t) =izsinE Z X, sin@

@ n=13,5 / (36)

z X, sin 72 =X, sinE+X3 sin3ﬂ—a+X5 sinSﬁ—a
2135 / ) / /
d Pl’
o EJ, 7 [[p(Q) ds

As it will be indicated in the tables below, the
coefficients X3 and X are too small and neglected.

a=Vt, and

W(zt) = x sin”Z sin =% (37)
o l

Bending Stress:  Bending Stress is calculated by

2

0
using Eq. (14) and ¢, = y—w which is called

oz*’
KIRHOF principle.
o’'w 2 E° o’w ’
g, 0w 2, E (38)
oz y822 272G3(y822]

Bending Moment: Bending Moment in every
section of the beam is designed by the following
equations:

M:HO'Zydxdy:E”{ySZZv: —217 zg—z[y%ﬂ dx dy (39)

*w 2, E J(dw
M=g, S22 2
J“azz{ 2776 Jo(azzﬂ

IJE Transactions B: Applications

The expression 9w equals the following equation:
oz

o*w d 7* . 7z . 7ma
2 Z——Z.TSIH—SIH—
0z , / /

Now the obtained analytic solutions are being
applied to the following example. It has been
assumed that the material of the beam is copper

(Fig. 2).

| v
J, =1.236x10*cm* T
J, =5844x10*cm’

G =0.46x10° kg/cm’
E =1.241x10° kg/cm?

1, =0.18x10° |
L=2m,P=20KN —
R=6.615cm

Figure 2. Section of beam

Then vibration amplitudes are determined and
are shown in Table 1.

TABLE 1. Dimensionless vibration amplitudes

2 X!

T Tyt xt xS Xs

0.0 -402 -39.83 1.00  -16.11 -22.04

0.84 -21.07 10.54 0.1902 -1.31x107
1 -11.73 0.041 -1.01x10*
2 1.00 3.69x10°  -1.63x10™!!

X

Based on Table (1) the diagram of resonance
is indicated in Fig. 3.

resOnance curye
45

40
5 e=B8.25%104
30

25

b n
o 0z 0.4 06 08 1 1.2 14 16 18 2
eta

Figure 3. Resonance Curve
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Deflection, stress, and bending moment in the
section of the beam are calculated by using
equations (36), (37), and (38) for 7=l and z=a,
which are indicated in Tables 2 and 3.

TABLE 2. Calculation of deflection and bending
moment at the point of load
a / l ! I l / /
L 3= L L
8 4 8 2 > 8 4 8
W (cm)
-0054  -0.185%  -03468 -03712  -0316 -0.185%  -0.054
M
X N.m) 2057 6842 11922 1405 11922 6882 2097

TABLE 3. Stress in the middle section of the beam

Y (cm) 6.61 79676  8.9816 10

49.49 58.37 66.91 70.25

o, (mpa)

Bending stress in the middle section of the
beam is indicated in Fig. 4.

70.25

70.25

Figure 4. The diagram of stress in the middle section of
the beam

The Critical velocity for given example is
obtained 135.95 m/s Dynamical Coefficients
according to velocity is obtained and are written in
Table 4.

Dynamic Coefficients at linear state are
derived by Kesiliv [12]:

e 1 _lﬁ2 [l - [ B sin% sin%ﬂ

, =2 o=
[0}

where, qa=vt

when the load is
1s estimated and

The Dynamical Coefficien
in the middle of the Span 4= 12
shown at Fig. 5.

25

20 |

15 F

10

0

0 20 40 60 bo 100 120 140
V(m/s) V

Figure 5. Dynamical coefficient-velocity

As shown at the Fig. 5, when (%) )Z —1 the

critical V equals to 135.95 m/s and resonance
happens at linear state. Whenever, at nonlinear
state, X has definite value, equals 11.73 in Table 4.

Based on v=50 m/s, (v=180 km/h), deflection,
bending moment, and bending stress in the middle
of the span are found by the obtained equations for
nonlinear state, and for linear state they are found
by equations which are given by Kesiliv [12]:

y= po s1nﬂ—ﬁ 1nlﬂ
1-p7 ) b1

TABLE 4. Dynamical Coefficients

V (m/s) 0 25 50
9 2

ni=|= 0 0.0338 0.1353
(0]

IX] 1 1.036 1.158

75 100 124.57 135.95
0.3036 0.541 0.83895 1
1.438 2.193 9.27 11.73
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The numerical resultants have written at Table 5.

TABLE 5. A comparison of deflection, stress, and
bending moment at linear and nonlinear state

State W (cm) O (mpa) M knomy
Nonlinear 0.025 7.73 9.5
Linear 0.034 10.29 12.48

2.2. Analytical solution for moving distributed
load To consider the effect of moving distributed
continuous load, it is assumed that the moving
distributed continuous load moves along the
prismatic beam as it is shown in Fig. 6.

fmz(kg/m) v
Pl d b L P ET L LY
F% I

Figure 6. Schematic view of a prismatic beam under
moving load

The potential and kinetic energy of this
system can be written as follows:

1 (ézwjz 1, E* [&%T (40)
M=(|-EL| "= ——1L=1| "2 |dz
l {2 Na&) 46 ' &

(@j¢+Lﬁpﬁj¢ (1)
a 2"

where, E, G, 1,, p, m, and F denote modulus of
elasticity, modulus of elasticity in shear,
nonlinearity coefficient and density, mass of load
per unit length and cross sectional area,
respectively. The principle of Hamilton for this
beam is as follow:

N R
klepF_([

et etw, 1 E*
H:J.(H—kz)dt:j-([{EElo( 7 —glhorh (42)

! 2 54

w1 p w1 dw,

(ozz) ~ 3 PECE)  —gmly) |

By considering, 9¥ _ 9% 9%  and  Euler
dt ot oz

equation:
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6> oL, o0 0L o 0L

S (o DU i WY Gt Y| (43)
oz’ (8u) at(ak) 82(8i)
where, u= 222\'2\',k:%,i:% , by considering Eq. (43)

and Eq. (42) and further simplification the
differential motion equation can be written as:

' d'w . n’mv’ 8’w @’ (pF+m) 0’w
I* o' " TPEI, 8¢’

3 8 2 3
2, B m Oy T ey
909G, I ag | ac

EIO 61:2 (44)
o'w 0w
o¢® o¢’

where, ¢ = ”Z—Z,r = wt.As solving of the Eq. (44)

is difficult the consecutive approximated method
is used. Furthermore, to make the solving procedure
easier, it 1s assumed at linear state:

w, = Q,Sink {.Cos t (45)

where, Q, , is amplitude of vibration of beam at
linear state.

If Eq.(45) is substituted at right side of Eq.
(44) and is simplified, the following equation is
derived:

7t o'w  a'mv’ Ow @ (pF +m) 0w

R + =
1* et IPPEI, d° EI, or’
3 878
7—12 2%5—;”15 X (3Sink¢ Cost + Sink¢ Cos3e (40)

—98in3k¢{ .Cost —3Sin3k( .Cos3r)
Private solving of Eq. (11) is defined as follow:

w(¢,7) =a,Sinkl .Cost + a,Sinkl .Cos3t + @)
a,Sin3k¢ .Cost + a,Sin3ké . Cos3t

where, a; a, a; 6 a, are constant coefficients,
by substitution Eq. (47) into Eq. (46) and
comparing the same coefficients Sin k&, Cos 1, a,

a,, a3, a4 and o are obtained, which are as follows
[13-15]:
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a a
AR D 5 A EI (48)

7tk? 7’k my’? o’ (pF +m) _
R A (49)
1 E I 7%,
7c 1, 2
81”4k4 3 7’k mv’ _a)z(pF+m) _
A C’EI, EI ’ (50)
1 E I, 7%
G A
21 71'44](4 a, _9ﬁzl§2mv2 a, -9 o’ (pF+m)a4 _
Y 0EI. EI. (51)

L, B L

3
24 ¢, A 0
Thus, circular frequency of system ® is obtained:

,  EI, =%k’ (n2k2 3 mvz)
(pF+m) I 1? EI, (52)
1 E* n°%k® 1
1-—1,—1
( 242G A nzszIO—mvzlz)

The critical velocity is derived by considering
the criteria ® = 0.0

Vv :”_k\/&(l_ilzﬁiﬂ4k4 Q(?J (53)

cr ] m

If 1,=0.0 the critical velocity is obtained at

linear state, 5 _ Tk /ﬂ
cr l m

If at Eq. (52), m= 0.0 that is the load is out of
beam:

7k* |EI 1., E* I, »*k*
=" L ) (54)
12 \pF 247G°1, I

o is the circular frequency at free vibration at
physical nonlinear . It is seen from Eq.(52) the
circular frequency of system depends on
nonlinearity of material and the velocity of load.
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To understand the analysis obtained here an
example is presented in this section. For the
assuming beam which is shown in Fig. (1), the
parameters used in studied equation are as follows:

E =2.1x 10°Mpa z ~
G =0.87x10°Mpa

1, = .085x10°

q = mg =20 KN/m (unit weight of load)
P = pfg = 0.66 KN/m (unit weight of beam)
I=1.51x10"m*

I, =1.3x10"m®

L=12m

b

150

o

50

Figure 7. Section of beam

Circular frequency is obtained from Eq. (52)
and plotted in Fig. 8.

120

Frequency

0 50 100 150 200 250

Velocity(m/s)

Figure 8. Frequency — Velocity Curve

The critical velocity is obtained from Eq. (53):
Ver =103.044m/sec.

The dynamic coefficient (Yd/Ys) at the middle
point of beam is derived from Eq.(52) and plotted
in Fig. 9.

25

Dynamic Coefficient

0 10 20 30

w0 Ey 6'0
V (/s)

Figure 9. Dynamic Coefecient- Velocity Curve
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Diagram of motion at interval of a period is

shown inFig. 10 (for v = 30m/, 50m/s)
0.02 T T T T T T
— =0
0.01
%\. 0.005
5
=
S
s
0.005
-0.01
0.015
-0.02

0 0.05 0.1 0.15 02 025 03 035

Time (s)

Figure 10. The time history of the oscillation at the
middle section of the beam during one cycle

The bending moment at the middle point (a = L/2)
is shown in Fig. 11.

800

700 -

(t m)

Bending Moment

0 I1() llll 30 ! 40 ! 50 6'(! 70 ! SUI 90 ! 100
Velocity (m/se)
Figure 11. Bending moment — Velocity Curve

3. CONCLUSION

The effect of material nonlinearity on the
response parameters of bridge under concentrated
and distributed moving loads are investigated
analytically. The Hamiltonian principles and
Euler’s equations employed to found the nonlinear
vibration equation of the system. The Fourier
series is used to decompose the deflection as a
multiplication of functions in time and space. The
resulting equation in time is the well known
Duffing’s equation. Solving the Duffing equation
by perturbation method the response parameters of
the system is evaluated. In the case of concentrated
moving load and linear material, theoretically with
increasing the speed of the moving load resonance
might happen. However considering the material

IJE Transactions B: Applications

nonlinearity, resonance doesn't happen, and the
internal forces will have definite values. Taking
into account the material nonlinearity the internal
forces for velocities blew critical velocity reduces
as much as 10-15 percent in comparison with the
linear case. Using the results dynamic
amplification factors is calculated for the system.
Increasing the material nonlinearity, results in
decreasing in the value of vibration amplitude. In
the case of distributed continuous moving loads
using analytical solution, vibration frequency and
the dynamic amplification factors and bending
moment are evaluated for different velocities, blew
critical velocity. Analysis shows that the more is
the speed of the moving load, the more is the
amplitude of the vibration.

Notation

A = external work of the moving load

a = the distance of the concentrated load from the
support

E = module of elasticity

F = an area of the section

G = sheer elastic module

H = Hamilton Principle

Jo = moment of inertia

Ji= ”x“dxdy

K = volume contraction
K|o;) = average stress function

Ki = kinetic energy
L = the span of the beam
l(t (2)) = sheer stress function

[, = nonlinear coefficient

p (¢) = coordinate function

P = concentrated load

p(z) = the head vibration made of the beam
q(t) = generalized function

q(z , t) = equation distributed load

w (z , t) = deformation of the beam

X = dimensionless amplitude (dynamic coefficient)
Z = a distance of any point from the support
O = stress

Op = average stress

ox , Oy , Oz = original stress

€ = strain
&j = three — dimensional strain
p = density
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7 = potential energy
o = circular frequency
0 = circular frequency of load

V = velocity
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