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Abstract    It is assumed that a beam made of material has a physical nonlinear behavior. This beam is 
analyzed under the moving concentrated and distributed continuous loads. The vibration equations of motion are 
derived from the Hamilton's Principle and Euler–Lagrange Equation. In this study, the amplitude of vibration, 
circular frequency, bending moment, stress and deflection of the beam has been calculated. At the state of 
concentrated moving load, the obtained analytic solution has been exemplified. The results of this study indicate 
that when the material of the beam is considered physically nonlinear, there is no critical velocity and the 
resonance phenomenon doesn’t happen.
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1. INTRODUCTION

The study of dynamical effect of moving loads at 
highway and railroad bridges has a history of more 
than one and a half century. The collapse of Jester 
Bridge in England in 1847 encouraged both the 
theoretical and experimental studies. The 
catastrophe caused tremendous human losses and 
created a lot of excitement in civil engineering.                

Presently, there are many structures made 
from materials which are not subject to the Hook’s 
law. Therefore, there is a great tendency to study 
stress and strain in elements of structures made of 
physical nonlinear material under various static 
and dynamic loads. In the linear theory, the 
property of material is not taken into consideration; 
however, all of relevant parameters are taken into 
consideration in the theory of nonlinear. Thus, the 
physical nonlinear theory
demonstrates an exact calculation method for the 
analysis of stress, strain, and other internal forces 

in structural elements.
In order to represent all the possible states of 

the material by one mathematical law, the 
following algebraic function may be introduced:

 32 

This equation is not different from the general 
 and.

 f

Manzhaalovsky employed Empeher’s method 
and proposed the following two-term equations of 
the parabolic type on the basis of the tests carried 
out by Glushkov [1].
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where, 1, 2, 1 and 2 are empire elasticity. 
Trinomial equations of the parabolic type were 
suggested for cast iron by Glushkov who proposed 
the use of a similar relationship for metal wire [1]:

32  cb      (5)

In addition to exponential and power laws, 
hyperbolic relationships were suggested for brittle 
materials. Accordingly, as introduced the 
following function for cast iron:

           (6)

Glushkov [1] has developed a theory for bars 
and discs made of brittle materials, employed the 
following hyperbolic laws:

 


1

Finally, the relationship between stress and 
strain, in the case of physical nonlinear, is 
presented by Kauderer [2]. As the equation
proposed by Kauderer is comprehensive and 
expresses the relationship between the stress and 
strain in three dimensional states, we preferred to 
use the equation for the analysis of the physical 
nonlinear stress and strain

2
0

0
0

where, ij 0

stress:

                    (10)

K and G at small deformation are respectively 
volume contraction and shear elastic module. The 
relationship among K, E, and G is indicated 
through the following equation:

E             (11)

K () is average stress function and  2
0tl is 

shear stress function; it can be indicated through 
the following equation: 
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Researches have demonstrated that K () in 
physical nonlinear material on an
deformation is close to the straight line (i.e., K () 
= 1). Also, the two first sentences of the shear 
stress function are enough.

2
02

2
0

2l is the physical 
nonlinear coefficient.

As the Eq. (9) indicates, stress components of 
Z, y, and xy are created. The simplification of 
the equation suggests that the stress components 
are too small in comparison with the Z. These 
new components of the stress have less impact on 
the frequency of vibration and on the other 
parameters during the vibration of the beam. As a 
result, the following equation is obtained from the 
Eq. (9) at a two dimensional surface: 

)3
3

3

2               (14)

The purpose of this paper was the analysis of 
a beam made of physical nonlinear material under 
the moving concentrated and distributed 
continuous loads, which was discussed through 
examples analytically.

2. THEORY

2.1. Analytical solution for moving concentrated 
load    To study the effect of moving load on the 
prismatic beam, first, we are discussing moving 
concentrated load. Thus, it is assumed that the load 
P moves along the beam (Fig. 1).

             (9)

      (8)

      (7)

                  (13)
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In the above equation, 
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Figure 1. Schematic view of a prismatic beam under 
moving load

To consider the effect of external moving 
load, it is assumed an equivalent distributed load 
which depends on z and t as follows [3]:
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where,
L
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zp


sin)(  , (k = 1,2,3,…) is the head 

vibration mode of the beam.

Therefore, the potential and kinetic energy of 
the system will be as follows [4]:
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Also, the work of the external moving load 
will be as follows [5]:

   

  






L

L

dztzw
L

zk

L

ak

L

P
A

dztzwtzqA

0

0

,sinsin
2

,.,


(18)

The Hamilton's Principle for this beam will be 
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where,   dxdyyJdxdyyJ 4
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from 0 to  and 0 to 2.
   where, 

0 is circular frequency vibration of the 

system in linear case and expressing in Hamilton 
principle (19), the following equations are 
obtained:
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We assumed that the deformation of the beam 
would be found from the following expression [7]:

      qpw ,                                  (21)

where,  p and  q are coordinate and 
generalized functions respectively. 

By substitution of expression (21) in 
expression (20), we obtain the following 
expressions:
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The following expression is derived from the 
calculations indicated above in Eq. (22) [8]:
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For Integral (23), Euler equation gives [9]:
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To solve the Duffing Eq. (28), we follow the 
following procedure [10]:
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If we substitute the expression (30) into 28, 
and compare the similar coefficients of sin n , 
we will get a lot of cubic nonlinear algebraic 
equations. To our knowledge, there is no exact 
solution for these equations. Thus, we employed an 
approximated method. For this purpose, we applied 
three constraints Eq. (30) and we assumed that Xn

>> Xn+1: therefore, in this case, we will have the 
following system of nonlinear equations: 
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With solving of Eq. (31) by the method of Zeidel, 
we will have [11]:
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When the load is out of the beam, Eq. (27) 
will be as below in which the system will have free 
vibration.

021 2

22

2







  q

a

b
q

c

a

d

dq


     (33)

Finally, by solving Eq. (33), we found the 
period of vibration:
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Consequently, the circular frequency is as follows: 
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where,
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elliptic integral. As the above equation indicates, 
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b has a minus sign, which decreases the  in 

comparison with 0 (as it was indicated in 35).

Based on the equations expressed above, the 
explanation of the analysis of deflection, bending 
stress, and bending moment are as follows. 

Deflection:     Deflection is obtained from the Eq.
(21).
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As it will be indicated in the tables below, the 
coefficients X3 and X5 are too small and neglected.
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Bending Stress:     Bending Stress is calculated by 

using Eq. (14) and 2
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Bending Moment:     Bending Moment in every 
section of the beam is designed by the following 
equations:
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Now the obtained analytic solutions are being 
applied to the following example. It has been 
assumed that the material of the beam is copper 
(Fig. 2). 
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Figure 2. Section of beam

Then vibration amplitudes are determined and 
are shown in Table 1.

TABLE 1. Dimensionless vibration amplitudes

2 X1

X3 X51
1

1
2

1
3

0.0 -40.2 -39.83 1.00 -16.11 -22.04
-3

-4

-6 -11

Based on Table (1) the diagram of resonance 

Figure 3. Resonance Curve

10 cm

Y

2

is indicated in Fig. 3.     



X X X

0.84 -21.07 10.54 0.1902 -1.31 10

 
1 -11.73 0.041 -1.01 10

 2 1.00 3.69 10 -1.63 10

|X|

dddddddd
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Deflection, stress, and bending moment in the 
section of the beam are calculated by using 
equations (36), (37), and (38) for  azand 12 , 
which are indicated in Tables 2 and 3.

moment at the point of load
a

8

l

4

l
8

3
l

2

l

8
5

l
4

3
l

8
7

l

W (cm)
- 0.054 - 0.1856 - 0.3468 - 0.3712 - 0.316 - 0.1856 - 0.054

M 
(K.N.m)

2.057 6.842 11.922 14.05 11.922 6.842 2.057

Y (cm) 6.61 7.9676 8.9816 10

)(mpaz 49.49 58.37 66.91 70.25

Bending stress in the middle section of the 
beam is indicated in Fig. 4.

                                                                     
70.25

                                                                      
                                                                   

70.25

Figure 4. The diagram of stress in the middle section of 
the beam

The Critical velocity for given example is 
obtained 135.95 m/s Dynamical Coefficients 
according to velocity is obtained and are written in 
Table 4.

Dynamic Coefficients at linear state are 
derived by Kesiliv [12]:
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The Dynamical Coefficient when the load is 
in the middle of the Span              is estimated and 
shown at Fig. 5.

Figure  5. Dynamical coefficient-velocity

As shown at the Fig. 5, when   1
2
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 the 

critical V equals to 135.95 m/s and resonance 
happens at linear state. Whenever, at nonlinear 
state, X has definite value, equals 11.73 in Table 4. 

Based on v=50 m/s, (v=180 km/h), deflection, 
bending moment, and bending stress in the middle 
of the span are found by the obtained equations for 
nonlinear state, and for linear state they are found 
by equations which are given by Kesiliv [12]:
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TABLE 4. Dynamical Coefficients
V (m/s) 0 25 50 75 100 124.57 135.95

2
2 








 0 0.0338 0.1353 0.3036 0.541 0.83895 1

|X| 1 1.036 1.158 1.438 2.193 9.27 11.73



V

0
0 20 40 60 !80 100 120 140

TABLE 3. Stress in the middle section of the beam

V(m/s)

5

10

15

20

25

TABLE 2. Calculation of deflection and bending 



IJE Transactions B: Applications                                            Vol. 24, No. 3, October 2011 - 233

The numerical resultants have written at Table 5.

TABLE 5. A comparison of deflection, stress, and 
bending moment at linear and nonlinear state

State W (cm)  mpa M (KN.M)

Nonlinear 0.025 7.73 9.5

Linear 0.034 10.29 12.48

2.2. Analytical solution for moving distributed 
load   To consider the effect of moving distributed 
continuous load, it is assumed that the moving 
distributed continuous load moves along the 
prismatic beam as it is shown in Fig. 6.

Figure 6. Schematic view of a prismatic beam under 
moving load

The potential and kinetic energy of this 
system can be written as follows:
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where, E, G, l2, ρ, m, and F denote modulus of 
elasticity, modulus of elasticity in shear, 
nonlinearity coefficient and density, mass of load 
per unit length and cross sectional area,

beam is as follow:
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where, Q0 , is amplitude of vibration of beam at 
linear state.

If Eq.
(44)
derived:
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Private solving of Eq. (11) is defined as follow:
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where, a1 ,a2 , a3 ,  a4   are constant coefficients, 
by substitution Eq.
comparing the same coefficients Sin kξ, Cos τ, a1, 
a2, a3, a4 and  are obtained, which are as follows 
[13-15]:

l

v)/( mkgm

, by considering Eq. (43) 

(45) is substituted at right side of Eq. 
and is simplified, the following equation is 

(47) into Eq. (46) and 

respectively. The principle of Hamilton for this 

(42) and further simplification the 

                     (43)

  (44)

(42)

    As solving of the Eq. (44)

is difficult the consecutive approximated method 
is used. Furthermore, to make the solving procedure 
easier, it is assumed at linear state: 
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Thus, circular frequency of system ω is obtained:
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The critical velocity is derived by considering 
the criteria ω = 0.0
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If at Eq. (52), m= 0.0 that is the load is out of 
beam:
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ω is the circular frequency at free vibration at 
physical nonlinear . It is seen from Eq.
circular frequency of system depends on 
nonlinearity of material and the velocity of load.

To understand the analysis obtained here an 
example is presented in this section.
assuming beam which is shown in Fig. (1), the 
parameters used in studied equation are as follows:

E =2.1 105Mpa                                                                   
G = 0.87105Mpa
l2  =  .085106

q = mg =20 KN/m (unit weight of load)
P = ρfg = 0.66 KN/m (unit weight of beam)
I0=1.5110-3m4

I1 = 1.310-4m6

L=12m

Circular frequency is obtained from Eq. (52) 
and plotted in Fig. 8.

Figure 8. Frequency – Velocity Curve

Vcr =103.044m/sec.
   The dynamic coefficient (Yd/Ys) at the middle 
point of beam is derived from Eq.
in Fig. 9.

Figure 9. Dynamic Coefecient- Velocity Curve
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The critical velocity is obtained from Eq. (53):
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Diagram of motion at interval of a period is 

Figure 10. The time history of the oscillation at the   
middle section of the beam during one cycle

The bending moment at the middle point (a = L/2)

Figure 11. Bending moment – Velocity Curve

3. CONCLUSION

The effect of material nonlinearity on the 
response parameters of bridge under concentrated 
and distributed moving loads are investigated 
analytically. The Hamiltonian principles and 
Euler’s equations employed to found the nonlinear 
vibration equation of the system. The Fourier 
series is used to decompose the deflection as a 
multiplication of functions in time and space. The 
resulting equation in time is the well known 
Duffing’s equation. Solving the Duffing equation 
by perturbation method the response parameters of 
the system is evaluated. In the case of concentrated 
moving load and linear material, theoretically with 
increasing the speed of the moving load resonance 
might happen. However considering the material 

nonlinearity, resonance doesn't happen, and the 
internal forces will have definite values. Taking 
into account the material nonlinearity the internal 
forces for velocities blew critical velocity reduces 
as much as 10-15 percent in comparison with the 
linear case. Using the results dynamic 
amplification factors is calculated for the system. 
Increasing the material nonlinearity, results in 
decreasing in the value of vibration amplitude. In 
the case of distributed continuous moving loads 
using analytical solution, vibration frequency and 
the dynamic amplification factors and bending 
moment are evaluated for different velocities, blew 
critical velocity. Analysis shows that the more is 
the speed of the moving load, the more is the 
amplitude of the vibration.

Notation
A = external work of the moving load
 = the distance of the concentrated load from the 
support
E = module of elasticity 
F = an area of the section
G = sheer elastic module
H = Hamilton Principle
J0 = moment of inertia
J1 =  dydxx4

K = volume contraction
 0K = average stress function

Ki = kinetic energy
L = the span of the beam
 2

0tl = sheer stress function

2l = nonlinear coefficient 

 p = coordinate function
P = concentrated load
p(z) = the head vibration made of the beam 
q() = generalized function
q(z , t) = equation distributed load
w (z , t) = deformation of the beam  
X = dimensionless amplitude (dynamic coefficient)
Z = a distance of any point from the support
 = stress
0 = average stress
X , Y , Z = original stress 
 = strain 
ij = three – dimensional strain
 = density
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is shown in Fig. 11.
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 = potential energy
0 = circular frequency
 = circular frequency of load
V = velocity
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