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Abstract In the present work a two fluid model for blood flow through abnormally constricted
human artery (stenosed artery) has been developed. The model consists of a core region of suspension
of al erythrocytes assumed to be micro-polar fluid so as to include the micro-structural effects in
addition to the periphera-layer viscosity effects, and a peripherd plasma layer free from cells of any
kind of Newtonian fluid. This model is used to predict the effects on physiological characteristics of
blood flow in normal and stenosed condition. The significance of the present model over the existing
models has been pointed out by comparing the results with other theories both analytically and
numerically.

Keywords Peripherd Layer, Micro-Polar Fluid, Apparent Viscosity, Stenosed Artery, Newtonian
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1. INTRODUCTION

Blood is a suspension of red cdls in plasma; a
micropolar  fluid may represent it. The
experimental results by several mathematical
models Eringen [1], Valanis [2], Aroesty [3],
Thurston[4], lida[5], have been proposed to study
the various aspect of microcirculation. To explain
the observed Fahraeus-Lindquist effect, Haynes
[6], has considered a two-fluid model with both
fluids as Newtonian fluids and with different
viscosities, i e, the peiphera layer with the
viscosity of plasma and the core with the viscosity
equivalent to shear viscosity of blood. The authors
Haynes [6], Bugliarello, et a [7], have assumed
that either both layers, i.e, peripheral layer of
plasma and core region, are of Newtonian fluid or
both layers are of non-Newtonian fluids. This
seems to be improper because it has been shown
experimentally by Bugliarel et al [7], Cokelet [8],
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that plasma is a Newtonian fluid and core region
fluid behaves like a non-Newtonian fluid.
Bugliarell et al [7] have proposed that blood flow
through an artery in smaller diameter consists of
peripheral plasma layer which, being cell-free, is
Newtonian in character and a core of red cell
suspension in plasma. The effects of stenosis are
much more important in microcirculation where
peripheral layer thickness and viscosity effects
dominate the flow characteristics. Tondon, et al
[9], have investigated the effects of this peripheral
layer in microcirculation, and found that the
viscosity of the peripheral layer fluid is two to
three times higher in the diabetic patients; these
subjects are more prone to such diseases.

Shukla, et al [10], have studied the effect of
stenosis on the resistance to flow through artery by
considering the behaviour of blood as a power-law
fluid and a Casson fluid. In these investigations the
coreregion and peripheral layer fluids are
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represented by two Newtonian fluids of different
viscosities and independent of each other. Again
Shukla, et a [11] have considered a two-layer
model in which the peripheral plasma layer and the
core are both Newtonian in character. In this
analysis they have studied the influence of
peripheral layer viscosity on the resistance to blood
flow through a stenosed artery. Tondon, et al [12]
have discussed that the blood flow in the peripheral
layer is neither a Newtonian nor a non-Newtonian
fluid but it is actually the suspending medium of
red cells. A theoretical model for sedimentation of
red cell aggregates in narrow horizontal tubes has
proposed by Secomb, et a [13] in which they
modelled the core region as a solid cylinder
moving inside the tube. Murata [14] has proposed
a sedimentation model in which he considered
constant values of hematocrit and Newtonian
viscosity in the circular coreregion, containing red
cdl aggregates. Murata [15] has also considered a
two-layer sedimentation modd with flat interface
between the plasma layer and red cell layer. The
experimental study of Cabd, et al [16] conducted
the venous resistance for normal blood decreased
by approximately 60 % when blood flow was
increased 4-fold from 5 ml/(min.100 g tissue) to 20
ml/(min. 100 g tissue), and increased by
approximately 70 % when blood flow was
decreased 5-fold from its normal level to 1
ml/(min. 100 g tissue). For many disorders, like
heart disorder, myocardial infarction,
cerebrovascular disease, stroke, hypertension,
Chien [17] has proposed that the agreeability and
rigidity of red cells is higher than their normal
value. Lerche [18] has used an empirical equation
to describe smooth axisymmetric hematocrit
profiles in power law form. Both hematocrit
distributions have derived by assuming zero
peripheral layer thickness. In this mode the
suspension of erythrocytes in the core region is
assumed to be micropolar fluid and peripheral
plasma layer is treated as Newtonian fluid.

2. ANALYSISOF THE PROBLEM
Consider the axisymmetric flow of blood in a

uniform circular tube with an axially non-
symmetric but radially symmetric mild stenosis.
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The geometry of the stenosis, in Figure 1, is
represented by

BD 1AL e o) - @7

0
=1, otherwise,

D)

where R(2) is the radius of the artery with stenosis,
R, is the constant radius of the artery. L, is the
stenosis length and d indicates the stenosis
location, and m > 2 is a parameter determining the
stenosis shape and is referred to as stenosis shape
parameter. Here axially symmetric stenosis occurs
when m = 2, the parameter A is given by:

dEzEd+L,

6 m m/(m-1)

A :—m—1
R,L" (m-1)

where 6 denotes the maximum height of stenosis at
z=d+ Lo/ m’ ™Y §R<<1.

The function Ry(z) representing the radius of
the artery in central layer, and the geometry of the
stenosis in central region is given by, Figure 1

V4 m m
_REQ( ) =0,- AL (2- d)- (z- 97, dezEd+L,
0
o, otherwise,
)
6 mm/(m—l)

— 1

LT R,LY (M- 1)

Where: §; denotes the maximum bulging of
interface at z = d + Lo¢/m"™? due to the presence
of stenosis and a is the ratio of the central core
radius to the tube radius in the unobstructed region.

3. FORMULATION OF THE PROBLEM

Consider a steady, laminar and fully developed
flow of blood through a rigid circular tube of
radius R. Based on the experimental results of
Bugliarello, & a [7], the blood flow can be
represented by a two-fluid model with core of
micropolar fluid of radius R; and peripheral layer
of plasma as a Newtonian fluid of thickness (R-R,)
as shown in Figure 1. Let p,; be the viscosity of
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Figure 1. Geometry of stenosed artery with peripheral layer.

Newtonian fluid in the peripheral plasma layer and
u, be the shear viscosity of blood in the core
region.

The equations for steady, one-dimensional
velocity and cell rotation are given by,

OELr£R,

)1‘ﬂae‘ﬂV o} aél‘ﬂ(fﬂ))o TP _
r‘ﬂrg ‘ﬂrg Rgr o g 1z
AV, 0
Rgﬂr

(0, + 1

T ael‘ﬂ(rw )o
- 2
‘ﬂrgr 0

- 4p,o,=0
)
andforR £r£R,
1ﬂae‘|1Vo P _
TS e 5 Tz (4)

_ 11V,
! 2 0’

where 0P/oz is the constant pressure gradient,
(Vyo1) and (Vao,) are the velocity and cdl
rotation in the region R, £r£RrR ad 0£r£R;

respectively. (ur/2) is relative rotational viscosity
and vy is viscosity of gradient of total rotation (4)
which is assumed to be zero for Newtonian fluid.

These boundary conditions have been used to
solve Equations 3 and 4:

V1=0atr=R

1ﬂ(r032)

Vi=Vy 1171y, =

=0 a r=R; (5)
r qr
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W,=0and V,isfiniteatr =0,

wheret; and 1, are stresses at r = Ry.

The expression for velocities V,, V, and cel
rotations w; and w, obtained as the solution of
Equation 3 and 4 with boundary condition (5) are;

ForR1£r£R,

1
YT 4p & dzg (6)

andfor 0£r £ R,

e 2 d}
= 1 & deeRz R12+u1QR12-|’2+ 4HRR M _g
a5, dz o€ ¢ (h, + 1) 4
(7
v < 30 r/ZR)- N( RllR)g
€ 17,0RJ/R) 5
1 & dp oé arl 1 (I R/R)-2RI (I r/R) 06U
>~ 4, & dzog I'1,( R,/R) "
Thetota flux, Qis
Q=Qq+Q
and Q iswritten as:
n P
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Since for small x the modified Bessel function can
be approximated as:

From Equation 8 the pressure gradient is written as
follows:

p= BHR/IQ o
n
::(u DR +RA+ ' RR a2, (I R/R)- R (| R/R) &

(1, +hg) VIARP
To determine A, we integrate Equation 9 for the
pressure Py and P arethe pressureat z=0and z =
L, respectively, where L isthelength of the tube.

The resistanceto flow (I o) is defined as follows
Young [19]

A = PL - PU (10)
° Q

Let | y be the resistance to flow for Newtonian
fluid and with no stenosis, then

A =St (1)
N 4
P R,
from Equation 10 and 11 we have,
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Equation 8 can be rewritten as:

PR*
Q=L
8uaPP
Where
u =€ 'S u
" gll- (- ) a TR /R, g (13)

and can be termed as apparent viscosity of fluid
flow in the tube.

The shearing stress at the (maximum height of
the stenosis) can be written as:

_é 4u,Q(1- (d/Ry)) u
=T B RA(A- (d/R)) - (1- p) (a- (/R )Tg
(14)

and the shear stress for Newtonian fluid with no
stenosisis as:

(15

Now the ratio of shearing stress at the wall can be
written as.

_tg_¢ 'y u
_t_ TH1- (@ W) ofla- dIR ) §

(16)
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4. RESULTSAND DISCUSSION

Using governing equations with appropriate
boundary conditions the expression for resistance
to flow (I ), apparent viscosity (pLap) and wall shear
stress (1) have been derived and represented by
Equations 12, 13 and 16 respectively. The graphs
1-8 have been plotted by taking the values of
parameters based on experimental data of Ariman,
et al [20] (Table1).

The variation of resistance to flow (I') with
stenosis size (d/Ro) for different values of stenosis
shape parameter (m) is shown in Figure 2. It is
evident that resistance to flow increases as stenosis
Size increases. Increase in the resistance to flow
with stenosis shape parameter is also indicated in
this figure. These results are consistent with the
observations of Eringen [1] and Tandon [12].
Figure 2 shows that the resistance to flow increases
with peripheral layer viscosity (1*) aswell. Coagan
[21] found that the peripheral layer viscosity of
blood in diabetic patients is higher than in non-
diabetic patients, resulting higher resistance to
blood flow. Thus diabetic patients with higher
peripheral layer viscosity are more prone to high
blood pressure. Therefore, the resistance to blood

TABLE 1. Ligt of Parameters used in the Paper Has Been
Taken from Ariman, et al [19] Data.

Parameter Value

UR 0.98 cp
y 12 x 10°® gm-cn/sec
Ro 0.2 cm
L 5 cm
o 0.95

8/Ro 0.02t00.14

L/Lo 0.02t00.14
ut 0.1t01.0
m 2109
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flow in case of diabetic patients may be reduced by
reducing viscosity of the plasma. This can be done
by injecting saline water to such patients [9]; the
processis called dilution in medical terms.

Figure 3 shows variation of resistance to flow
(') with stenosis length (Lo/L) for different values
of stenosis shape parameter (m). In the figure, the
resistance to flow (1) is found to decrease as
stenosis length (Lo/L) increases. However, the
resistance to flow (I ) is found to increase with the
increase in stenosis shape parameter (Figure 2).
This was also reported by Haldar [22], Siddiqui, et
al [23]. The variation of apparent viscosity (M)
with stenosis size (d/Ry) is shown in Figure 4. The
apparent viscosity (myp) IS Seen to increase as
stenosis size (d/Rp) increases. This indeed is the
case with human artery, as apparent viscosity (M)
of the blood is found to increase with stenosis
growth [24] and hence this validates the present
model. Apparent viscosity (M) is Symmetrically
distributed in the stenotic region and its maximum
lies at axially symmetric stenosis (m = 2). Figure 4
also shows that the apparent viscosity (M)
changes inversely with peripheral layer viscosity
(1). The symmetry of the curves may be dueto the
assumed symmetry in the geometrical
configuration of the stenosis.

Figure 5 describes the variation of apparent
viscosity (myp,) with stenosis length (Lo/L) for
different values of peripheral layer viscosity (uh).
The apparent viscosity (my,) is found to increase as
stenosis length (Lo/L) increases. Tandon [26] has
also obtained similar results. In addition, the
apparent viscosity (my,) is found to change
inversely with peripheral layer viscosity (u'). The
variation of apparent viscosity (myp) With stenosis
shape parameter (m) for different values of
peripheral layer viscosity (u') is shown in Figure 6.
The apparent viscosity (myp) iS Seen to increase as
stenosis shape parameter (m) decreases, and is
maximum at axially symmetric stenosis (m = 2) for
al values of peripheral layer viscosity. It is aso
seen that apparent viscosity (my,) decreases as
peripheral layer viscosity (u') incresses. The
apparent viscosity (Mmyp) is found to decrease as
peripheral layer viscosity (u') increases with o
(Figure7).

Variation of apparent viscosity (myp) with
stenosis size (d/Ry) for different values of stenosis
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length (Lo/L) is described in Figure 8. The
apparent viscosity (my) is found to decrease with
decreasing stenosis size. But the sameis hot truein
the absence of stenosis [24]. In norma human
artery, apparent viscosity (my,) is found to
decrease with the artery radius [27] and is called
Fahraeus-Lindquist effect. Figure 8 also shows that
the apparent viscosity (my,) increases as stenosis
length (Lo/L) increases. Sirs, et a [28] observed
that diabetic patients are more prone to various
cardiovascular diseases due to increased apparent
viscosity. The wall shear stress (t) is found to
increase with stenosis size (d/Ry) as observed in
Figure 9. Chow, e a [25 had similar
observations. The wall shear stress (t) is also found
to increase with peripheral layer viscosity (u').

5. CONCLUSION

The effect of peripheral layer viscosity on the blood
flow in the presence of mild stenosis in the lumen of

the artery has been investigated by developing a
mathematical modd. The resistance to flow and
apparent viscosity have been found to decreases
with viscosity of peripheral layer, but the same are
found to increase as the size (height and length) of
the stenosis increases. The modd predicts increase
in wall shear stress with peripheral layer viscosity.
Predicted trends are found to exist in human artery
and hence validate the model.
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