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Abstract   In this paper, the dynamic response of a three-rotor flexible coupling to the angular 
misalignment has been studied. The coupling is a power transmission agent between the motor and 
gearbox, in the power transmission system of SAG Mill (semi autogenously mill) in the Gol-e-Gohar 
iron ore complex in Sirjan, Iran. Degrees of freedom of the system are the model's lateral deflections 
and the rigid-body linear motions. The equations of motion are obtained by using the Lagrange 
equations through successive partial differentiation of the kinetic and potential energies. In the 
dynamic model, the middle rotor is considered as an eccentric flexible Jeffcott rotor. The gearbox 
input shaft is considered to be angularly misaligned with respect to the motor shaft. Diagrams of the 
amplitudes versus the frequency ratio reveal the system dynamic response to the angular 
misalignment.  
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مورد  يا هيزاو ييراستاشامل سه روتور با ناهم ريپذ نگ انعطافيک کوپلي يکيناميدر کار حاضر، پاسخ د   چكيده
 يايستم انتقال قدرت آسيربکس در سين موتور و گينگ، واسط انتقال قدرت بين کوپليا .گرفته استقرار  يبررس

ستم و يدر س يستم، انعطاف جانبيس يدرجات آزاد. ران استيرجان در ايمه خودشکن معدن سنگ آهن گل گهر سين
از  ياپيپ يريگ و با مشتق يک لاگرانژيناميستم با روش ديمعادلات حرکت س. جسم صلب هستند يحرکات خط

 مدل ريپذ ک روتور انعطافي، ياني، روتور ميکيناميدر مدل د. شوند يل استخراج ميو پتانس يجنبش يهايانرژ
ربکس نسبت يگ يمحور ورود يبرا يا هيزاو ييراستاناهم. است  در نظر گرفته شده خروج از مرکز، يدارا جفکات

- ستم به ناهمي، پاسخ سيدامنه بر حسب فرکانس نسب ينمودارها. شود يموتور درنظر گرفته م يبه محور خروج
  .سازد يرا آشکار م يا هيزاو ييراستا

 
  

1. INTRODUCTION 
 
Couplings are widely used in industry to transmit 
the power from the driver to the driven rotors. 
Generally, there are two types of connections in 
couplings: rigid and flexible. Rigid couplings have 
low deflections; however, they insert additional 
force and moments on the system equipments such 
as motor, bearings and gearbox. Flexible couplings 
are used to eliminate the additional force and 
moments; however, their position changes may be 
resulted in high level vibrations that can damage 
the system and lead to shutdown.  

Misalignment of the connected rotors is one of the 
most common defects that may be encountered. It 
may cause undesired vibrations. Many factors 
affect the vibration behavior of a misaligned 
system. Therefore the phenomenon must be well 
understood so that it can be detected and adjusted 
at the initial stages of its appearance.  
 There are a lot of discussions in industry regarding 
the interpretation of the vibration signals 
introduced due to misalignment, but there is not 
enough academic research to explain the 
phenomenon in a simple way.  
Al-Hussain [1] studied the dynamic behavior of a 
two-rotor rigid coupling model exposed to parallel 
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misalignment, to aid turbo machinery diagnostic 
engineers in understanding the dynamic response 
of a misaligned system. He proposed future works 
such as angular misalignment and axial motions. 
Lorenzen et al. [2] compared the critical speeds of 
a high-speed high-power compressor train that 
alternatively equipped with the solid couplings, 
flexible-disc and gear-type couplings. They 
showed that the solid couplings can cause the rotor 
to be more stable. Sekhar and Prabhu [3] explained 
the effect of the coupling misalignment on the 
turbo machinery vibrations. They showed that the 
location of the coupling has a strong influence on 
the level of vibrations. A theoretical model of a 
complete system of the motor-flexible coupling 
rotor was presented by Xu and Marangoni [4]. 
They assumed that the flexible coupling behaves 
exactly like a universal joint to take the 
misalignment effect into account. Prabhu [5] 
experimentally investigated the effect of 
misalignment on the cylindrical and three-lobe 
journal bearings. He showed that an increase in the 
angular misalignment caused change in the second 
harmonic of the vibration response. Simon [6] 
predicted the behavior of a large imbalanced turbo 
machine, imposed by the misalignment. He 
computed numerically the vibration, excited by the 
coupling, using the assumed values for the 
coupling reaction force and moments.  
Diagnostic engineers of the Gol-e-Gohar industry 
aimed to develop a VCM (vibration condition 
monitoring) process on the power transmission 
system of the SAG Mill. Misalignment is one of 
the common system defects, so its dynamic effects 
must be good understood. In the present work the 
system dynamic response to the angular 
misalignment has been investigated.  
 
 

2. GEOMETRY DESCRIPTION 
 

 
The system that transmits power between a 3Mwatt-
motor and the gearbox of a SAG Mill is studied here. It 
is composed of output motor-side shaft, flexible 
coupling and gearbox input shaft. The flexible coupling 
is illustrated in Figure 1. The motor shaft and gearbox 
input shaft are located inside the hubs 1 and 3 
respectively. The geometrical system properties are 
shown in Table 1. 
 

 
TABLE 1.  Geometrical system properties 

 

Shaft  Length 
(mm)  Diameter (mm)  Length to 

diameter ratios 
Motor shaft 320 220 1.45 

Flexible shaft 1260 Do =368, Di =324 3.42 
Gearbox shaft 240 220 1.1 
 
 

Figure 1. Coupling with steel plates as the flexible elements 

 
3. DYNAMIC MODEL 

 
 

The system model with angular misalignment is 
illustrated in Figure 2. The angular misalignment 
of the gearbox input shaft relative to the motor 
output shaft is taken as a pure rotation around the y 
axis as shown in Figure 2. In this figure, γ is the 
angular misalignment magnitude and α is the 
orientation change of rotor 2 due to the 
misalignment.  
 

 
Figure 2. Model of the misaligned system 

 
Rotor 2 is considered as an imbalanced flexible 
Jeffcott rotor. Figure 3 shows the position of the 
area and mass centers of rotor 2 at an instant of the 
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motion, and the point o corresponds to the end 
position of rotor 2 at this instant. The length-
diameter ratios of rotors 1 and 3 are such that they 
can be considered as rigid cylinders.  
 

4. KINETIC AND POTENTIAL ENERGIES 
 
 

The Lagrange energy method is used to obtain the 
equations of motion. The generalized coordinates 
for the 13 degrees of freedom of the system are: 
q = {x1 , y1 , z1,  β1, xo , yo , zo , xr2 , yr2 , x3 , y3 , z3,  β3}  (1) 

 

Figure 3. Position of rotor 2 at an instant of the motion 

 Independent coordinates, r and β2=ωt, specify the 
position of center mass of rotor 2 with respect to its 
ends but, in the present study, they have been 
replaced by the coordinates xr2 and yr2 respectively. 
So, the position of the center of mass of rotor 2 
with respect to its static state is specified as 
follows:  
x2 = xo + xr2                                                                 (2) 

 y2 = yo + yr2                                                                (3) 

xr2 = r sinωt + ε sin(ωt+φ)                                          (4) 

 yr2 = r cosωt + ε cos(ωt+φ)                                       (5) 

The rotations of rotor 2 around the x and y axes 
have been ignored. Therefore:  
z2 = zo                                                                           (6) 
the system kinetic energy is: 

T = T1 + T2 + T3                                                      (7) 
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and the potential energy is:  
U = Ubm + Ubg + U2 + Uc1 + Uc2                                              (9) 
It is assumed that the bearings are linearly flexible and 
their potential energy is as follows[1]: 
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The potential energy of the flexible connections is 
due to the relative motion of the ends of rotor 2 
with respect to the rotors 1 and 3 [7]. The end 
displacements of rotor 2 in direction of rotors 1 
and 3 can be written by using unit vectors as: 
rc21 = (xo cosα – zo sinα)i1 + yo j1 + (xo sinα + zo cosα)k1  (12)  

rc23 = [xo cos(γ - α) – zo sin(γ - α)]i3 + yo j3  + [xo sin(γ - 
α) + zo cos(γ - α)]k3                                                    (13) 
then, the potential energy of the connection is:  
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Bending potential energy of rotor 2 is: 
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Total potential energy of the system is the sum of 
all potential energies, is:       
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5. EQUATIONS OF MOTION 

 
 

Equation (18) ( Lagrange's equation) is used to 
obtain the equations of motion. 
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where, n is the number of generalized coordinates and 
Qi is the generalized force(or moment) in direction of qi.  
 

)sincos()(

}sincos{)(

)(

11111

111111

1
111

αα

αα

oocxcxbmxx

xoocxbmx

x

zxkxkkxCxm

xCxzxkxkxm
dt
d

Q
x
T

x
U

x
T

dt
d

−=+++

−=−−−+

=
∂
∂

−
∂
∂

+
∂
∂

&&&

&&

&

  

(19)  

ocycybmyy ykykkyCym =+++ 11111 )(&&&                    (20) 

)cossin(
)( 11111

αα oocz

czbzmz

zxk
zkkzCzm

+
=+++ &&&

                    
(21)                             

)]sin()cos([

)( 33333

αγαγ −−−

=+++

oocx

cxbgxx

zxk
xkkxCxm &&&

                  (22)
                           

ocycybgyy ykykkyCym =+++ 33333 )(&&&              (23)         

)]cos()sin([
)( 33333

αγαγ −+−

=+++

oocz

czbgzz

zxk
zkkzCzm &&&

             (24)
              

It can be inferred from Equations (19)-(24) that the 
dynamic of rotors 1 and 3 is highly dependent on 
the end movement of rotor 2. 
Equations of motion of rotor 2 are: 
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Substituting xr2 from Equation (4) into Equation 
(25) leads to: 
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At the steady state, r and φ are independent of time 
and can be expressed as Equations (27). [10]  
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are the bending natural frequency and damping 
ratio of rotor 2.  
Therefore, the solution of Equation (26) can be 
given as: 
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The equation of motion of rotor 2 in direction of y 
is solved in the same way as that for direction of x, 
to obtain the end displacement, yo, as a function of 
time and rotational frequency.  
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where 
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6. SOLUTIONS 
 
 

Substituting Equations (29) and (31) into 
Equations (19) to (24): 
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It is assumed that:  
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where i = √-1. Substituting y1(t,ω) from Equation 
(34) into the Equation (33) leads to:  
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solution of Equation (35) for Y1, gives: 
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Equation (19), which is a couple equation of x1, xo 
and zo, is solved to determine x1(t,ω). A reasonable 
assumption that zo is a harmonic function in phase 
with xo, simplifies the solution of Equation (19).  
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Substituting Equations (39) and (29) into Equation 
(19), leads to: 
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A solution for the Equation (40) would be:   
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Substituting Equation (41) into Equation (40) leads 
to:  
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Solution of Equation (21) by the same method as 
Equation (19) leads to: 
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This research is carried out in a real system, so the 
real mechanical parameters which have been listed 
in Table 2 should be used for the numerical 
analysis.  



160 - Vol. 24, No. 2, July 2011 IJE Transactions B: Applications 
 
  

 
TABLE 2. System mechanical parameters  

 
kcx kcy kcz 

1.22 GN/m 1.22 GN/m 0.735GN/m 

m1 m2 m3 

313 kg 313 kg 289 kg 

 
Equation (46) is used to calculate the stiffness of 
roller bearings [8]. 
 
Keq = 3×105N0.9L0.8P0.1cos1.9α1 (lb/in)                       (46)                                                                                
Therefor the stiffness of the motor-side bearing 
would be:  
 
kbm = 3×105×190.9×1.970.8×1046.40.1 = 146.4×105 
lb/in = 2.53 GN/m                                              (47)  
 
Bending stiffness of rotor 2, as a beam, can be 
calculated as follow: [9] 
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7. NUMERICAL RESULTS 

 
 

To study the effect of rotational frequency on the 
dynamic response of the system, results of the case 
study where Zo/ε = 2 and α =7 degrees were 
calculated. It should be noted that α is not the 
angular misalignment magnitude, and is the rotor 2 
orientation change due to the misalignment.                                                                                                          
Dimensionless form of the amplitude function of 
rotor 1 in direction of z1 is written as: 
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In the Equation (49), r and φ depend on the 
rotational velocity, eccentricity value, damping 
ratio and bending stiffness of rotor 2. After 
substituting Equation (27) into Equation (49), the 
dimensionless amplitude Z1/ε would be a function 
of the rotating frequency only. The dimensionless 

amplitude of rotor 1 in x and y directions as the 
functions of rotational frequency can be obtained 
by the same procedure as that of z direction. 
Variations of the dimensionless amplitudes versus 
the frequency ratio, for damping ratios of 0.05-1, 
have been illustrated in Figures 4 to 8.  
 
 

 
Figure 4. Dimensionless amplitude of rotor 1 in z direction 

(Z1/ε), versus the frequency ratio (ω/ωn1z) 
 
  
 

 
Figure 5. Dimensionless amplitude of rotor 1 in x direction 

(X1/ε), versus the frequency ratio (ω/ωn1x) 
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Figure 6. Dimensionless amplitude of rotor 1 in y direction 

(Y1/ε), versus the frequency ratio (ω/ωn1y) 
 
 

 
Figure 7. Dimensionless deflection of rotor 2 (r/ε), versus the 

frequency ratio (ω/ωn2) 
  

 
Figure 8. Dimensionless end movement of rotor 2 (Xo/ε), 

versus the frequency ratio (ω/ωn2) 
 

Figures 4-6 show resonances on the frequency 
spectrums of rotor 1 that corresponds to the 
frequency ratios of 0.38 and 1.2 for the spectrums 
of x and y directions, and the frequency ratio of 
1.32 for the spectrum of z direction. The resonance 
frequency ratios of the x and y directions are equal 
because: 
kcx= kcy and kbmx= kbmy. 
As is shown in Figure 8, when ω/ωn2=1 then 
Xo/ε=1 The reason is clear from the Equation (50).  
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The first harmonic of Figures 5 and 6 is similar to 
that of Figure 8. This is because the first resonance 
arises from the excitation source harmonic, i.e., the 
rotor 2 harmonic. So, when the rotational 
frequency approaches the natural frequency of 
rotor 2, the resonance behavior of rotor 1 is similar 
to that of the end of rotor 2. This is not clear on the 
frequency spectrum of z direction in Figure(4), 
because the level of its second resonance is very 
high relative to the first one due to relatively high 
selected value for Zo/ε. Variation of the 
dimensionless amplitude of rotor 1 in z direction 
versus the frequency ratio and Zo/ε has been 
illustrated in Figure 9. It can be seen in this figure 
that for the small values of Zo/ε, the frequency 
spectrum of z direction is the same as the 
spectrums of x and y directions.    

 
Figure 9. Dimensionless frequency spectrum of rotor 1 in z 

direction,  versus Zo/ε and frequency ratio  
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It can be seen in Figures 4 to 6 that the resonance 
frequency ratios do not correspond to the "1x" or 
"2x" of the rotational frequency, response 
characteristics commonly observed in the field of 
misaligned rotating shaft systems. The first 
harmonic at the spectrums corresponds to the case 
that ω=ωn2, however, it corresponds to the case that 
ω/ωn1x= ω/ωn1y=0.38. The second harmonic also 
corresponds to the case: 

0)(1 2

1

=−+
znbmz

cz

k
k

ω
ω                                    (51)                                                                                                        

So, the harmonic of the frequency spectrums of 
rotor 1 do not correspond to the frequency ratios of 
1. 
   

8. VARIATION OF THE MISALIGNMENT 
ANGLE 

 
 

In this section, the effect of the angular 
misalignment on the system dynamic is 
investigated by providing the three dimensional 
amplitude diagrams versus the orientation change 
of rotor 2 (α) and the frequency ratio. In these 
diagrams, the large variation interval of α, [0, 
0.4]… has been used so that its effects can be 
clearly shown. Otherwise, the value of α=0.4 
radian is practically a very high angular 
misalignment value.   
 
 

Figure 10. Three dimensional diagram of rotor 1 amplitude in 
z direction 

  

Figure 11. Three dimensional diagram of rotor 1 amplitude in 
x direction  

  
In Figure 11, the amplitude of x direction has been 
multiplied by "-1" so that its variation can be better 
shown. Figures 10 and 11 show that increasing of 
the misalignment angle increases the amplitude of 
rotor 1 slightly in z direction while, it increases 
significantly in x direction. The reason is due to the 
selected value of Zo/ε. the three dimensional 
diagram of amplitude in z direction for Zo/ε=.05 is 
illustrated in Figure 12, and shows the same 
response to misalignment as that in x direction. 
 
 
 

Figure 12. Three dimensional diagram of rotor 1 amplitude in 
z direction for Zo/ε=0.05  

     
Rotors 1 and 3 have the same positions in the 
model (Figure 2) and hence their amplitude 
response would be similar. So, the amplitude 
responses of rotor 3 have been studied in details. 
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9. SUMMARY AND CONCLUSIONS 

 
 

In this study, a model for the lateral vibrations of 
three rotors subjected to the pure angular 
misalignment has been developed. The degrees of 
freedom of the system are the lateral deflections 
and the rigid-body rotation. The equations of 
motion of the system are obtained using the 
Lagrange equations through successive partial 
differentiations of the kinetic and potential 
energies. The equations of motion are coupled in 
the stiffness matrix and the force vector as a result 
of the presence of misalignment. The frequency 
spectrums revealed harmonics at the vibration 
amplitudes. 
It is interesting that the foregoing study did not 
provide any evidence of the presence of harmonics 
of (1x) and (2x) which observed in the field of 
misaligned rotating systems. 
Three dimensional diagrams of Figures 10 to 12, 
revealed that the angular misalignment would 
increase the axial and lateral vibration amplitudes. 
It is suggested that the nonlinearities of the 
bearing, rotation of rotor 2 around the y axis and 
the dynamic response of the parallel misalignment 
be studied. Work is currently underway to model 
the influence of these parameters on the vibration 
response of the system. 
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Nomenclature 
E             Modulus of elasticity 
I2             Area moment of inertia of rotor 2    

pI           Polar mass moment of inertia of rotor p,                               
p = 1, 2, 3 
Keq           Roller bearing's stiffness 
k2             Bending stiffness of rotor 2 
kcp            Connection stiffness in direction of p,                                  
p = x, y, z 
kbmp          Stiffness of the Motor side bearing in 
direction of p,           p = x, y, z      
kbgp          Stiffness of the Gearbox side bearing in 
direction of p,       p = x, y, z      

 
 
 
 
l2              Length of rotor 2  
L              Length of the rollers of roller bearing 
N              Number of rollers of the roller bearings 
P              Load that is inserted on the roller 
bearing  
rc21           Displacement vector of end of rotor 2 in 
direction of rotor 1 unit vectors  
rc23           Displacement vector of end of rotor 2 in 
direction of rotor 3 unit vectors  
Tp             Kinetic energy of rotor p,                                            
p = 1, 2, 3 
U             Total potential energy 
U2            Bending potential energy of rotor 2 
Ubm          Potential energy of the motor side 
bearing 
Ubg           Potential energy of the gearbox side 
bearing 
Uc21          Potential energy of the connection of the 
rotors 1 and 2 
Uc23          Potential energy of the connection of the 
rotors 2 and 3     
xp, yp, zp    Displacement of rotor p in directions of 
x, y and z                   p = 1, 2, 3 
xo, yo, zo    Rotor 2 end displacements in direction 
of x, y and z 
xr2, yr2       Relative displacements of the center of 
mass and the end of rotor 2  
 
 
 
Greek symbols 
ε               Eccentricity magnitude of rotor 2 
γ               Angular misalignment magnitude  
α               Orientation change of the spacer due to 
the angular misalignment 
φ               Phase delay of the deflection relative to 
the eccentricity of rotor 2   
βp              Rotation angle of rotor p                p = 
1, 2, 3 
ξip             Damping ratio of rotor p in direction of 
i,              p = 1, 2, 3,     i = x, y, z 
ξ2              Damping ratio of the rotor 2 
ωnip           Natural frequency of rotor p in direction 
of i,       p = 1, 2, 3,      i = x, y, z  
ωn2            Natural frequency of rotor 2 
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