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Abstract In this paper, an elastic shell model is presented for postbuckling prediction of a long thin-
walled cylindrical shell under axial compression. The Ritz method is applied to solve the governing
equilibrium equation of a cylindrical shell model based on the von-Karman type nonlinear differential
equations. The postbuckling equilibrium path is obtained using the energy method for a long thin-walled
cylindrical shell. Furthermore, the postbuckling relationship between the axial stress and end-shortening
is investigated with different geometric parameters. Also, this theory is used for postbuckling analysis of
a single-walled carbon nanotube without considering the small scale effects. Numerical results reveal
that the single-walled carbon nanotube under axial compression has an unstable postbuckling behavior.
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1. INTRODUCTION unique properties.

Carbon nanotubes (CNTs) were discovered by
lijima in 1991 [1]. They are made of a highly
ordered sheet of carbon atoms rolled into a tube
form. This uniform structure gives CNTs their
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Many researchers investigated buckling of
carbon nanotubes under axial compression and
torsional loading, (see for example: Ru [2], Han
and Lu [3], Zhang et al. [4], Sohi and Naghdabadi
[5], Ranjbartoreh et al. [6] and Yao and Han [7])
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but there are few works on postbuckling analysis
of this materials in the literature.

Shen [8] presented an elastic double-shell
model for the buckling and postbuckling of a
double-walled carbon  nanotube (DWCNT)
subjected to external hydrostatic pressure. Yao and
Han [9] investigated the buckling and postbuckling
of a DWCNT under axial compression based on a
continuum mechanics model. Shen and Zhang [10]
presented thermal postbuckling analysis for a
DWCNT subjected to combined axial and radial
loads. Zhang and Han [11] considered buckling
and postbuckling behaviors of imperfect
cylindrical shell subjected to torsional moment.
They obtained the governing equations based on
the Karman-Donnell type nonlinear differential
equations. In their work, the boundary layer theory
used to obtain the solutions that meet the boundary
conditions. Yao and Han [12] studied the
governing equations for the buckling and
postbuckling behavior based on the Karman-
Donnell-type nonlinear differential equations. Yao
et al. [13] investigated the bending buckling
behaviors of single, double and multi-walled
carbon nanotubes by using a modified finite
element method (FEM).They examined the effects
of the number of layers on the buckling load and
critical bending angle of multi-walled carbon
nanotubes. Moreover, they showed that their
modified FEM is a fast and efficient way to study
the buckling and postbuckling of CNTs.

In this paper, an elastic shell model is
investigated for the postbuckling prediction of a
long thin-walled cylindrical shell under axial
compression. The Ritz method is applied to solve
the governing equation based on the von-Karman
type nonlinear differential equation for the large
deflection. The postbuckling equilibrium path is
obtained theoretically using the energy method for
a long thin-walled cylindrical shell. Moreover, the
postbuckling relationship between axial stress and
end-shortening is presented with different
geometric parameters. Also, this theory is used for
postbuckling analysis of a single-walled carbon
nanotube (SWCNT) without considering the small
scale effects. Numerical results reveal that the
SWCNT under axial compression has an unstable
postbuckling behavior. The results are compared
with both experimental and other theoretical
results. The present method simply predicts the
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postbuckling behavior of CNTSs.

2. THE ENERGY METHOD

Consider a cylindrical shell under axial
compression P where E, v, R and h represent
the Young’s modulus, Poisson’s ratio, the middle
radius and thickness of shell, respectively.
Consider a Cartesian coordinate system with a
center in the middle surface of the shell; x and y

the axial and circumferential coordinates of the
shell, respectively, and the z direction normal to
the middle surface. Figure 1 shows a long thin-
walled cylindrical shell with a Cartesian coordinate
system. Also Figure 2 depicts a cylindrical shell
element which the displacement components in the
x, y and z directions has been defined as u, v

and w, respectively.

Figure 1. A long thin-walled cylindrical shell under axial
compression.

Figure 2. A cylindrical shell element.
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According to Donnell type shell theory with
von-Karman’s large deflection assumptions, the
relationships between strain and displacement
components can be defined for a cylindrical shell
as follows [14]

e, =& +1zKk,
&, =&, +1K, D

7xy:77xy+22k><y

where ¢, and ¢, are the normal strain in the x
and y directions, respectively, and y, represents

the shear strain in the x—y plane. Also &, &,
and 7, are the nonlinear membrane strain

components of the mid-plane and K,,K, and K,

are the bending strain components which are
defined as

Z =V +—+%W 2 2)

kx =Wy
k, =-W,, 3)
Ky = =W,y

The strain energy for an isotropic medium
referred to arbitrary orthogonal coordinates may be
written as

U= Ilfoy e v
= %”ﬂaxgx +to,&,+0,6,+0,28,, +0,2¢,+0,, Zgyz]dxdy dz
A

(4)

For plane stress state, the nonzero components
of stress tensor are o,, o, and o,,. These stresses
can be written in terms of the Airy’s stress function
p(xy) as

(®)
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Substituting Egs. (1)-(3) into Eg. (4) and
applying relations (5), yields [15]

Uy = [0 - Lio.0] ey ©®)
and
U, =%Lj[(v2w)2 — (1-v) L(w,w)] dxdy @)
where

, &

K €)

62)(1 627{2 _ 62}(1 azlz n 62)(1 azlz

Lz 7,)=
(1 22) =730 oy oxdy oxoy | oy o

U, and U, denote the membrane and the bending

strain energy of the shell, respectively.
Using Eq. (5), the stress function ¢(x,y) has to

meet the compatibility equation as follows [15]:

1, 10w 1
—Vip+= =—=L(w,w 9
E "R ox2 2 (. w) ©)

3. THE GOVERNING EQUATIONS FOR
POSTBUCKLING OF A SWCNT UNDER
AXIAL COMPRESSION

The Ritz method is applied to solve the governing
equation (9) based on von Karman nonlinear type
differential equation. Consider the deflection w as
[15]

w(x,y) = f,+ f,sin(ax)sin(By) + f, [sin(ax)sin( y)]?
(10)

_mz ,_n

where a = ; B R

and m and n are also axial and circumferential
wave numbers. Substituting Eq. (10) into Eqg. (9),
one can find the following equation:
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Eh®

1 4 O!Zﬂz 2 2
—Vip= f,” + f,7)(cos2ax +cos 2 where D=———-.
E @ > (f; 2 N a AY) 12(1—1/2)
a’B The end-shortening relationship of the tube is
- f,“(cos4ax+cos4d .
2 2 ( +eos4/y) deflned as
a2 .1 , . _ 2RL o
—?fz CoS2axX+ fl(E_ﬂ f,)sinax sin gy :? j j—dxdy
+a’f (1 % £,)cos2ax cos2py 1 FE a go (19)
AN =l (= —v—2)—=(—)? |dxd

2 2
+ azﬁ f,% (cos4ax cos 23y +cos 2ax cos4fy)
where e=A—LX. The potential energy of the external

+§a2ﬂ2 f, f,(sin3axsin Ay +sin ax sin34y)
loads V , can be written as:

(11)
The solution of the partial differential equation ph 2R LT 52
(11) yields L j I (Zp_v / (_) dx dy
1 E 9 X 2 ox
— @ =0,C052aX+ (g, C0S2/y + g, COS 4ax (16)
E B 2Ph R P 3o
+9, C0s4py + g, sin axsin gy = +Z 2)
+ g COS2aX COS2 8y + g, cosdaxcos2py  (12)
+ g COS 20X COS 4 By + g, Sin 3axsin py The total potential energy IT is
. . P y?
+gmsmaxsm3ﬂy—E7 M=U+V (17)
The constants g, —g,, are shown in Appendix From the v_ariationa-l calculus, the following
A relation can easily be written as:
Using Egs. (6) and (12), the membrane strain or
energy of the shell can be obtained as ol :Eéf p —&,=0 (18)
1 2
T o ke e o It is convenient to define the following
U, =EhRLE{91 (2a)" +9,"(2P)" + 95" (4a) dimensionless quantities
1 1
+0, (48) +=05"(@® + 7)) + =0 (4a” +48%)? f, f, & f, = PR
2 2 é‘:—, V=—=— f:—, P:__a
1 1, h f, ¢ h Eh
+20,°(16a% +45%)* + = g4° (4o’ +165%)? “ R
2 2 2 g:E, n= IR, E=e (19)
1 1 P
#5090 00"+ ) + 20, (" +98°) +27} . 2
E Ay=2x 5 =6 Z=—
(13) P O-CI' , P O-cr ’ Rh

Substituting Eq. (10) into Eq. (7), the bending Partial differentiation of IT with respect to f,
strain energy of the shell can be written as and 1, variables yield:
) .

U, = 2R 120t + 3 1,200 + 1 1.2 P =B, +B,{ " +By ¢ +By¢ (20-a)
27 2 2 2 (14)

3
+o B e BT+ 1)) Boy*¢2 + By C + (B, + Byl )y + Byl =0 (20-b)
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The constants B, —B, are shown in Appendix
B.

Applying Egs. (19) on Eqg. (20-b), it can be
obtained

BB +BE

= B, + B, 1)

Substituting Eg. (21) into Eqg. (20-a), yields the
following equation for nondimensional axial
compression, P

3 2
F-p-p,D0st B *Bic g2 s (22)
B,E + B,

Applying the dimensionless quantities, and
substituting Egs. (10) and (12) into Eq. (15), P
can be simplified as

E:e__imgz(—4 Bs§3+BG§Z+B7§+3§2) (23)

32 B,& + B,

4. NUMERICAL RESULTS

Yamaki [16] reported precise experimental results
on the postbuckling behavior of cylindrical shell
under compression. To make a distinct comparison
with his experimental results, the calculations are
carried out for the same case by considering
v=0.3, R/h=405 and Z =210 [17,18].

Figure 3 illustrates the dimensionless buckling
load of a long thin-walled cylindrical shell versus
axial end-shortening. It can be seen that the present
model yields closer results to the experimental
results (Yamaki [16]) than the results reported by
Shen [17] for various wave numbers in the
circumferential direction (n). Furthermore, the
postbuckling paths contain the wide region for the
large aspect ratio (L/R). It is noted that the effect
of imperfection is not concluded in the present
study and the differences in the curves should be
attributed to the initial imperfections.
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Figure 3. Comparing the analytical and experimental results.

Figure 4 shows the postbuckling path of a long
thin-walled  cylindrical ~ shell ~under axial
compression. The results are also compared with
those obtained by Shen [18]. It can be seen that the
present model predicts the postbuckling path very
well.
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Figure 4. Postbuckling behavior of the cylindrical shell.

As an approximation, let us apply the presented
method to the postbuckling analysis of a single
walled carbon nanotube (SWCNT). In this
analysis, the small scale effect is ignored. Also, for
a SWCNT the van der Waals force is vanished.
The material properties are assumed to be [19]

E =5.5Tpa, t =0.066nm, v =0.19

24
D =0.85eV (leV =1.6x10"°N.m), Et =360J / m’ (24)
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Figure 5 gives the postbuckling path for
SWCNTs with different values of R/h. The
aspect ratio (L/R) is considered to be 10. It is
noted that for various values of R/h , the axial and
circumferential buckling mode numbers (m,n) are

different. The results show that the load-shortening
curve is nonlinear and for a SWCNT, the decrease
in loading generally goes with the increase in
deformation in the initial postbuckling region and
the postbuckling equilibrium path is unstable.
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Figure 5. Postbuckling behavior of the carbon nanotubes with
various radius to thickness ratios, L/R =10.
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Figure 6. Postbuckling behavior of the carbon nanotubes with
various aspect ratios, R/h=100.

Figure 6 shows the postbuckling behavior of a
SWCNT under axial compression with different
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aspect ratios and R/h=100. It can be seen that the
load-shortening curve is nonlinear and the
postbuckling behavior includes the wide region for
large aspect ratios. The results show that the
postbuckling equilibrium path is unstable for
SWCNTSs.

5. CONCLUSIONS

In this work, an elastic shell model has been
presented for the postbuckling prediction of a long
thin-walled  cylindrical ~ shell ~under axial
compression. The Ritz method was applied to
solve the governing equation based on the von-
Karman type nonlinear differential equations for
large  deflection. Also, the postbuckling
equilibrium path was obtained theoretically using
the energy method for a long thin-walled
cylindrical shell. Moreover, the postbuckling
relationship between axial stress and end-
shortening has been investigated with different
geometrical parameters. Also, this theory was used
for postbuckling analysis of a single-walled carbon
nanotube without considering the small scale
effects. Numerical results reveal that the single-
walled carbon nanotube under axial compression
had an unstable postbuckling behavior. It was
observed that the decrease in loading generally was
accompanied by the increase in deformation in the
initial postbuckling region and the postbuckling
equilibrium region was greater for the thin
nanotubes. It was found that the present model
yields closer results to the experimental results
(obtained by Yamaki [16]) comparing with the
results reported by Shen [17] for various wave
numbers in the circumferential direction.
Furthermore, the postbuckling behavior contains
the wide region for the large aspect ratios. The
present model can simply predict the postbuckling
behavior of SWCNTSs.

To find more accurate results for postbuckling
analysis of a single-walled carbon nanotube, the
small scale and elastic medium effects should be
considered in the further works. Also this method
can be used for postbuckling analysis of double
walled carbon nanotubes by considering the the
van der Waals forces between the inner and outer
nanotubes.
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APPENDIX A

The constants g;-gso in Egs. (12) are as follows

1 (ﬂ22f12 AN

9" a7 2 R
2
a 2 2
9, =w(f1 +1,)
B’ 2
= f
957 " 510q7 2
o % g2
T os12p82 °
a? 1
gs=mf1(ﬁ—ﬂzfz)
a? 1
=% f (=g
gG (4a2+4ﬂ2)2 Z(R ﬁ 2)
a’ P,z
972%
2(16a” +45°)
a’pf?
98:%
2(4a +1657)
g B SaZﬂZ f
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=P g
22 +9p8%)2 1 °?

APPENDIX B

The constants B, — B, in Egs. (20) are as follows
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