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Abstract   In this paper, an elastic shell model is presented for postbuckling prediction of a long thin-
walled cylindrical shell under axial compression. The Ritz method is applied to solve the governing 
equilibrium equation of a cylindrical shell model based on the von-Karman type nonlinear differential 
equations. The postbuckling equilibrium path is obtained using the energy method for a long thin-walled 
cylindrical shell. Furthermore, the postbuckling relationship between the axial stress and end-shortening 
is investigated with different geometric parameters. Also, this theory is used for postbuckling analysis of 
a single-walled carbon nanotube without considering the small scale effects. Numerical results reveal 
that the single-walled carbon nanotube under axial compression has an unstable postbuckling behavior.  
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جدار نازک  ایاستوانه تهبيني مسير بعد از کمانش پوس براي پيشالاستيک در اين مقاله، مدل پوسته    چكيده
اي  روش ريتز براي حل کردن معادله حاکمه تعادل مدل پوسته استوانه. شود مي ارائهطويل تحت فشار محوري 

- استوانه پوستهبرای مسير بعد از کمانش . شودمیبراساس معادلات ديفرانسيل غير خطي وان کارمن به کار برده 
رابطه بعد از کمانش بين تنش محوري و  بعلاوه. آيدمیانرژي به دست جدار نازک طويل با استفاده از روش  ای

اين تئوري براي تحليل رفتار پس از کمانش همچنين . شودمیپارامترهاي هندسي مختلف بررسي  باشدگي  کوتاه
نشان  عددی نتايج. شودمیهاي کربني تک جداره بدون در نظر گرفتن اثر مقياس کوچک استفاده  نانو لوله

  .دارد یناپايداررفتار بعد از کمانش دهد که نانو لوله کربني تک جداره تحت فشار محوري  مي
  

 
1. INTRODUCTION 

 
Carbon nanotubes (CNTs) were discovered by 
Iijima in 1991 [1]. They are made of a highly 
ordered sheet of carbon atoms rolled into a tube 
form. This uniform structure gives CNTs their 

unique properties.  
     Many researchers investigated buckling of 
carbon nanotubes under axial compression and 
torsional loading, (see for example: Ru [2], Han 
and Lu [3], Zhang et al. [4], Sohi and Naghdabadi 
[5], Ranjbartoreh et al. [6] and Yao and Han [7]) 
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but there are few works on postbuckling analysis 
of this materials in the literature. 
     Shen [8] presented an elastic double-shell 
model for the buckling and postbuckling of a 
double-walled carbon nanotube (DWCNT) 
subjected to external hydrostatic pressure. Yao and 
Han [9] investigated the buckling and postbuckling 
of a DWCNT under axial compression based on a 
continuum mechanics model. Shen and Zhang [10] 
presented thermal postbuckling analysis for a 
DWCNT subjected to combined axial and radial 
loads. Zhang and Han [11] considered buckling 
and postbuckling behaviors of imperfect 
cylindrical shell subjected to torsional moment. 
They obtained the governing equations based on 
the Karman-Donnell type nonlinear differential 
equations. In their work, the boundary layer theory 
used to obtain the solutions that meet the boundary 
conditions. Yao and Han [12] studied the 
governing equations for the buckling and 
postbuckling behavior based on the Karman-
Donnell-type nonlinear differential equations. Yao 
et al. [13] investigated the bending buckling 
behaviors of single, double and multi-walled 
carbon nanotubes by using a modified finite 
element method (FEM).They examined the effects 
of the number of layers on the buckling load and 
critical bending angle of multi-walled carbon 
nanotubes. Moreover, they showed that their 
modified FEM is a fast and efficient way to study 
the buckling and postbuckling of CNTs. 
     In this paper, an elastic shell model is 
investigated for the postbuckling prediction of a 
long thin-walled cylindrical shell under axial 
compression. The Ritz method is applied to solve 
the governing equation based on the von-Karman 
type nonlinear differential equation for the large 
deflection. The postbuckling equilibrium path is 
obtained theoretically using the energy method for 
a long thin-walled cylindrical shell. Moreover, the 
postbuckling relationship between axial stress and 
end-shortening is presented with different 
geometric parameters. Also, this theory is used for 
postbuckling analysis of a single-walled carbon 
nanotube (SWCNT) without considering the small 
scale effects. Numerical results reveal that the 
SWCNT under axial compression has an unstable 
postbuckling behavior. The results are compared 
with both experimental and other theoretical 
results. The present method simply predicts the 

postbuckling behavior of CNTs. 
 
 
 

2. THE ENERGY METHOD  
 
Consider a cylindrical shell under axial 
compression P  where E ,  , R  and h  represent 
the Young’s modulus, Poisson’s ratio, the middle 
radius and thickness of shell, respectively. 
Consider a Cartesian coordinate system with a 
center in the middle surface of the shell; x  and y  
the axial and circumferential coordinates of the 
shell, respectively, and the z  direction normal to 
the middle surface. Figure 1 shows a long thin-
walled cylindrical shell with a Cartesian coordinate 
system. Also Figure 2 depicts a cylindrical shell 
element which the displacement components in the 
x , y  and z  directions has been defined as u , v  

and w , respectively. 
 

 

Figure 1. A long thin-walled cylindrical shell under axial 
compression. 
 

 
 

 

Figure 2. A cylindrical shell element. 
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     According to Donnell type shell theory with 
von-Karman’s large deflection assumptions, the 
relationships between strain and displacement 
components can be defined for a cylindrical shell 
as follows [14] 
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where x  and y  are the normal strain in the x  

and y  directions, respectively, and xy  represents 

the shear strain in the yx   plane. Also yx  ,  

and xy  are the nonlinear membrane strain 

components of the mid-plane and yx kk ,  and xyk  

are the bending strain components which are 
defined as 
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     The strain energy for an isotropic medium 
referred to arbitrary orthogonal coordinates may be 
written as 
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     For plane stress state, the nonzero components 
of stress tensor are x , y  and xy . These stresses 

can be written in terms of the Airy’s stress function 
),( yx  as 
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     Substituting Eqs. (1)-(3) into Eq. (4) and 
applying relations (5), yields [15]  
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 mU  and bU  denote the membrane and the bending 
strain energy of the shell, respectively. 
Using Eq. (5), the stress function ),( yx  has to 
meet the compatibility equation as follows [15]: 
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3. THE GOVERNING EQUATIONS FOR 
POSTBUCKLING OF A SWCNT UNDER 

AXIAL COMPRESSION 
 
The Ritz method is applied to solve the governing 
equation (9) based on von Karman nonlinear type 
differential equation. Consider the deflection w  as 
[15] 
  

  2
210 )sin()sin()sin()sin(),( yxfyxffyxw  

 

 (10) 

where 
R

n

L

m
  , . 

     
and m and n are also axial and circumferential 
wave numbers. Substituting Eq. (10) into Eq. (9), 
one can find the following equation: 
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     The solution of the partial differential equation 
(11) yields 
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     The constants 101 gg   are shown in Appendix 
A.  
     Using Eqs. (6) and (12), the membrane strain 
energy of the shell can be obtained as 
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Substituting Eq. (10) into Eq. (7), the bending 
strain energy of the shell can be written as 

 

)}(
2

3
2

1

2

3

2

1
{

2

2
2

2
1

2242
2

42
1

42
2

42
1

fff

fffRL
D

Ub








 (14) 

 

where 
)1(12 2

3




Eh
D .  

     The end-shortening relationship of the tube is 
defined as 
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where 
L

x
e


 . The potential energy of the external 

loads V , can be written as: 
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     The total potential energy   is 
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     From the variational calculus, the following 
relation can easily be written as: 
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     It is convenient to define the following 
dimensionless quantities 
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     Partial differentiation of   with respect to 1f  

and 2f  variables yield:  
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     The constants 91 BB   are shown in Appendix 
B.  
     Applying Eqs. (19) on Eq. (20-b), it can be 
obtained  
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     Substituting Eq. (21) into Eq. (20-a), yields the 
following equation for nondimensional axial 
compression, P  
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 Applying the dimensionless quantities, and 
substituting Eqs. (10) and (12) into Eq. (15), P  
can be simplified as 
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4. NUMERICAL RESULTS  

 
Yamaki [16] reported precise experimental results 
on the postbuckling behavior of cylindrical shell 
under compression. To make a distinct comparison 
with his experimental results, the calculations are 
carried out for the same case by considering 

405/,3.0  hR  and 210Z  [17,18]. 
     Figure 3 illustrates the dimensionless buckling 
load of a long thin-walled cylindrical shell versus 
axial end-shortening. It can be seen that the present 
model yields closer results to the experimental 
results (Yamaki [16]) than the results reported by 
Shen [17] for various wave numbers in the 
circumferential direction ( n ). Furthermore, the 
postbuckling paths contain the wide region for the 
large aspect ratio ( RL / ). It is noted that the effect 
of imperfection is not concluded in the present 
study and the differences in the curves should be 
attributed to the initial imperfections. 

 
Figure 3. Comparing the analytical and experimental results. 

 
     Figure 4 shows the postbuckling path of a long 
thin-walled cylindrical shell under axial 
compression. The results are also compared with 
those obtained by Shen [18]. It can be seen that the 
present model predicts the postbuckling path very 
well. 

 
Figure 4. Postbuckling behavior of the cylindrical shell. 
 
As an approximation, let us apply the presented 
method to the postbuckling analysis of a single 
walled carbon nanotube (SWCNT). In this 
analysis, the small scale effect is ignored. Also, for 
a SWCNT the van der Waals force is vanished. 
The material properties are assumed to be [19] 
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     Figure 5 gives the postbuckling path for 
SWCNTs with different values of hR / . The 
aspect ratio ( RL / ) is considered to be 10. It is 
noted that for various values of hR / , the axial and 
circumferential buckling mode numbers ),( nm  are 
different. The results show that the load-shortening 
curve is nonlinear and for a SWCNT, the decrease 
in loading generally goes with the increase in 
deformation in the initial postbuckling region and 
the postbuckling equilibrium path is unstable.  

 
Figure 5. Postbuckling behavior of the carbon nanotubes with 
various radius to thickness ratios, 10/ RL . 

 
Figure 6. Postbuckling behavior of the carbon nanotubes with 
various aspect ratios, 100/ hR . 

 
 
     Figure 6 shows the postbuckling behavior of a 
SWCNT under axial compression with different 

aspect ratios and 100/ hR . It can be seen that the 
load-shortening curve is nonlinear and the 
postbuckling behavior includes the wide region for 
large aspect ratios. The results show that the 
postbuckling equilibrium path is unstable for 
SWCNTs. 
 
 
 
 

5. CONCLUSIONS  
 
In this work, an elastic shell model has been 
presented for the postbuckling prediction of a long 
thin-walled cylindrical shell under axial 
compression. The Ritz method was applied to 
solve the governing equation based on the von-
Karman type nonlinear differential equations for 
large deflection. Also, the postbuckling 
equilibrium path was obtained theoretically using 
the energy method for a long thin-walled 
cylindrical shell. Moreover, the postbuckling 
relationship between axial stress and end-
shortening has been investigated with different 
geometrical parameters. Also, this theory was used 
for postbuckling analysis of a single-walled carbon 
nanotube without considering the small scale 
effects. Numerical results reveal that the single-
walled carbon nanotube under axial compression 
had an unstable postbuckling behavior. It was 
observed that the decrease in loading generally was 
accompanied by the increase in deformation in the 
initial postbuckling region and the postbuckling 
equilibrium region was greater for the thin 
nanotubes. It was found that the present model 
yields closer results to the experimental results 
(obtained by Yamaki [16]) comparing with the 
results reported by Shen [17] for various wave 
numbers in the circumferential direction. 
Furthermore, the postbuckling behavior contains 
the wide region for the large aspect ratios. The 
present model can simply predict the postbuckling 
behavior of SWCNTs. 
     To find more accurate results for postbuckling 
analysis of a single-walled carbon nanotube, the 
small scale and elastic medium effects should be 
considered in the further works. Also this method 
can be used for postbuckling analysis of double 
walled carbon nanotubes by considering the the 
van der Waals forces between the inner and outer 
nanotubes. 
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APPENDIX A 
 
The constants g1-g10 in Eqs. (12) are as follows 
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APPENDIX B 

The constants 91 BB   in Eqs. (20) are as follows 
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