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Abstract   In this article, an exact levy solution is presented for bending analysis of a functionally 
graded (FG) annular sector plate. The governing equilibrium equations are obtained based on the 
classical plate theory. Introducing an analytical method for the first time, the three coupled governing 
equilibrium equations are replaced by an independent equation in term of transverse deflection. This 
equation which is a forth-order partial differential equation is similar to the governing equilibrium 
equation of a homogeneous isotropic annular sector plate. Using an equivalent flexural rigidity, the 
solutions of FG annular sector plates can be easily extracted from equation of homogeneous annular 
plates. Finally, the effects of the exponents of the power functions, aspect ratio, inner to outer radius 
ratio and boundary conditions on the mechanical behavior of a functionally graded annular sector 
plate are discussed. 
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شده از مواد هدفمند  هاي قطاعي توخالي ساخته در اين تحقيق، حل دقيق لوي براي تحليل خمش ورقچكيده       

با معرفي يک روش . اند دست آمدهه اساس تئوري کلاسيک ورق ب  تعادل بر برمعادلات حاکم. شده است عرضه
جايي جانبي  هب حسب جا  مستقل برةهم، تبديل به يک معادل  تعادل وابسته بهةتحليلي براي اولين بار، سه معادل

 ورق همگن همسان گرد  بر حاکمة مشابه معادلواي مرتبه چهار   ديفرانسيل پارهةيک معادل، اين معادله. شوند مي
توان از  شده از مواد هدفمند را مي از يک سفتي خمشي معادل، پاسخ ورق قطاعي توخالي ساخته استفاده با. است

 اثرات توان ماده هدفمند، نسبت ضخامت به بارة در انتها، در. دست آورد ه ورق همسان گرد ببر عادلات حاکمم
شده از مواد  روي رفتار ورق قطاعي توخالي ساخته شعاع، نسبت شعاع داخلي به خارجي و شرايط مرزي بر

 .هدفمند بحث شده است
 
 

1. INTRODUCTION 
 
A new class of materials known as “functionally 
graded materials” (FGMs) has been introduced in 
which the material properties vary continuously in 
one or more directions according to a specific profile. 
These materials are microscopically heterogeneous 
and are typically made of isotropic components 
such as metals and ceramics. FGMs exploit the 
ideal performance of their composition, e.g. heat 
and corrosion resistance of ceramics on one side, 
and mechanical strength and toughness of metals 
on the other side of a body [1]. 
     Thin plates are light weight structures with high 

load-carrying capacity, economy, and technological 
effectiveness. Because of the distinct advantages, 
thin plates are extensively used in all fields of 
engineering. Thus, understanding the behavior of 
such structures is the main purpose of the 
researchers in this field. Many models have been 
developed for static and vibration analysis of 
homogeneous or non-homogeneous plates with 
different shapes. Liu, et al [2] developed the 
differential quadrature element method (DQEM) 
for static analysis of the two-dimensional Reissner-
Mindlin plate in the polar coordinate system by 
integrating the domain decomposition method 
(DDM) with the differential quadrature method 
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(DQM). The axisymmetric bending and stretching 
analysis of functionally graded (FG) solid and 
annular circular plates was studied by Reddy, et al 
[3] using the first order shear deformation Mindlin 
plate theory. Cheng, et al [4] derived a three-
dimensional thermoelastic analysis for functionally 
graded elliptic plates. The analysis of the functionally 
graded plates based on classical plate theory was 
developed by Chi, et al [5,6]. They presented the 
solution for simply supported P-FG and S-FG 
rectangular plates. Abrate [7,8] showed that no 
special tools are required to study the analysis of 
functionally graded rectangular plates because they 
behave like homogeneous plates. He selected a 
different reference surface instead of middle surface 
and showed that based on this surface the static and 
vibration analysis of FG plates and homogeneous 
plates are related to each other. An approximate 
closed-form solution was presented for bending of 
thin isotropic sector plates with clamped edges 
subjected to uniform and non-uniform loading using 
the extended Kantorovich method (EKM) by 
Aghdam, et al [9]. Nie, et al [10] investigated the free 
and forced vibration of functionally graded annular 
sector plates with simply supported radial edges and 
arbitrary boundary conditions along the circular 
edges. They studied an approximate solution along 
the radial direction using the one-dimensional 
differential quadrature method (DQM). The meshless 
local Petrov–Galerkin (MLPG) method was used for 
analyzing two-dimensional static and dynamic 
deformations of functionally graded materials with 
material response modeled as either linear elastic or 
as linear viscoelastic by Gilhooley, et al [11]. Sahraee 
[12] presented the bending analysis of functionally 
graded circular sector plates based on the Levinson 
plate theory. He ignored the middle plane 
displacement of the FG sector plate and solved 
the problem similar to the isotropic one. A two-
dimensional higher-order deformation theory was 
presented for the evaluation of displacements and 
stresses in functionally graded plates subjected to 
thermal and mechanical loadings by Matsunaga [13]. 
Zhang, et al [14] presented a theoretical analysis to 
the FG thin rectangular plates based on the physical 
neutral surface. Jomehzadeh, et al [15,16] studied the 
vibration analysis of laminated sector and annular 
sector plates made of transversely isotropic layers. 
Saidi, et al [17] introduced an analytical method for 
decoupling the equilibrium equations of Kirchhoff 

and Mindlin rectangular plates. 
     Many investigations dealing with static and 
dynamic behaviors of isotropic and functionally 
graded rectangular plates can be found in literature. 
However, no such work can be found for analysis of 
FG annular sector plate. In this study, the static 
analysis of functionally graded annular sector plates 
is presented based on classical plate theory. Using an 
analytical method, three coupled stretching and 
bending equilibrium equations of FG annular sector 
plates are decoupled. Solving the decoupled equation, 
the solution of FG annular sector plates is obtained. It 
is found that using an equivalent flexural rigidity, the 
decoupled equation of FG annular sector plates 
becomes similar to the equilibrium equation of 
isotropic plates in polar coordinates. The variations of 
some physical parameters are shown for different 
functionally graded materials. 
 
 
 

2. THE MATERIAL PROPERTIES OF FG 
ANNULAR SECTOR PLATES 

 
The annular sector plate material is made of a 
mixture of ceramic and metal. It is assumed that 
the Young modulus of the annular sector plate vary 
as a power law through the thickness as [18] 
 

p)h/z2/1)(mEcE(mE)z(E −−+=  (1) 
 
Where )z(E  is the Young modulus of the annular 
sector plate, h  is the total thickness of the plate, p  
is the power of FG plate, mE  is the Young 
modulus at 2/hz =  (pure metal) and cE  represents 
the Young modulus at 2/hz −=  (pure ceramic). 
According to the small range of Poisson ratio 
variation, it is assumed to be constant through the 
thickness of the FG annular sector plate [3,5,12]. 
 
2.1. Governing Equilibrium Equations of 
Annular Sector Plates   Consider a FG annular 
sector plate of inner radius a , outer radius b , 
uniform medium thickness h  and sector angle α  
as shown in Figure 1. The annular sector plate is 
subjected to transverse loading. It is assumed that 
the annular sector plate has simply supported radial 
edges and arbitrary boundary conditions along the 
circular edges. 
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     The displacement components of the plate in r , 
θ  and z  directions are assumed as 
 

r
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Where u , v  and w  are the displacements of 
middle surface in r , θ  and z  directions, 
respectively. Under the assumption of small 
deformation and linear strain-displacement 
relations, the strain components of a FG annular 
sector plate can be expressed as 
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In classical plate theory, it is assumed that the 
cross section perpendicular to the middle surface 
of the plate remains normal and unstretched after 
deformation. Consequently, the transverse shear 
deformations are neglected and the shear strain 
components rz2ε  and z2 θε  vanish. 
     Substituting strain components (3) into the 
principle of minimum potential energy, the 
equilibrium equations of Kirchhoff plate in polar 

coordinates are obtained as 
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Where ),r(P θ  is the external loading function and 
the resultant forces rN , θN  and θrN  can be 
defined by integrating corresponding stresses along 
the thickness as follows 
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and the resultant moments rM , θM  and θrM  are 
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Considering plane stress state for the FG annular 
sector plate, the stresses are defined as 
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Figure 1. The geometry of annular sector plate. 
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Using Equations 3, 7 and the definition of resultant 
forces and moments in Equations 5 and 6, one can 
obtain 
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(8) 
 
Where the integration coefficients ijA , ijB  and ijD  

)3,2,1j,i( =  are defined as 
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Substituting resultant forces and moments obtained 
in Equations 8 into the Equations 4, the governing 
equilibrium equations are obtained as 
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Equations 10 are three highly coupled equations in 
terms of in-plane and transverse displacements. For 
solving such coupled equations, it is reasonable to 
find a method for decoupling them. Using an 
analytical method, three equilibrium Equations 10 
are decoupled. Equations 10 can be rewritten as 
follows 
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0),r(Pw22
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Where 2∇  is two dimensional Laplace operator in 
polar coordinates )r/rr/r/( 222222 θ∂∂+∂∂+∂∂=∇  
and the variables 1ϕ  and 2ϕ  are defined as 
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Differentiating of Equation 11b with respect to θ  
and dividing by r  and differentiating Equation 11a 
with respect to r  and then adding the two results, 
yields 
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Upon substitution of Equation 13 into the last 
governing equilibrium Equation 11c, yields 
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Equation 14 is an independent forth-order partial 
differential equation in term of transverse 
displacement, w . This equation is very similar to 
the equation of isotropic homogenous Kirchhoff 
plate. Introducing an equivalent flexural rigidity, 
the decoupled governing equilibrium equation of 
FG annular sector plate (Equation 14) becomes 
identical to the governing equation of isotropic 
homogeneous annular sector plate. The Equation 
14 can be rewritten as 
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Where D̂  is the equivalent flexural rigidity of the 
FG annular sector plate which is equal to 
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1111 A/BD − . The coefficients 11A , 11B  and 11D  

can be defined in terms of the material properties 
of the FG annular sector plate from Equations 1 
and 9 as follows 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

ν−
=

1p
cmE

mE21

hA  (16a) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ν−

−=
)2p)(1p(2

p
21

2hcmE
B  (16b) 

 

)3p)(2p)(1p)(21(4

)2p2p(3hcmE

)21(12

3hmE
D

+++ν−

++
+

ν−
=  (16c) 

 
Also, differentiating Equation 11a with respect to 
θ  and dividing by r  and differentiating Equation 
11b with respect to r  and then subtracting the two 
results from each other, yields 
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Due to Equations 13 and 17 and the definition of 
variables 1ϕ  and 2ϕ  in Equation 12, it can be 
concluded that these equations are satisfied by 
letting the in-plane displacements as follows 
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It is easy to show that relations (18) satisfy 
Equations 13 and 17 and all boundary conditions 
along the edges of the plate. Substituting these 
middle plane displacements into Equation 2, the 
proposed displacement field of FG Kirchhoff annular 
sector plate becomes as 
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It can be found from Equations 18 that the in-plane 
displacements of the FG annular sector plate are 
not vanished at the middle surface )0z( = . Unlike 
the isotropic homogeneous annular sector plate, the 
FG plate is not symmetric with respect to the 
middle plane. Because of the variable properties 
through the thickness, the neutral surface of the FG 
annular sector plate is not located at the middle 



 

312 - Vol. 22, No. 3, September 2009 IJE Transactions A: Basics 

plane. It can be seen from Equation 19 that the in-
plane displacements of the plate at 1111 A/Bz =  are 
vanished. The surface located at 1111 A/Bz =  is the 
neutral surface of the FG annular sector plate. In 
fact, the neutral surface of the FG plates depends 
on the variation of material properties in the 
thickness direction and the location of the 
neutral surface is independent of the geometric 
parameters. 
     Based on the obtained displacement field for 
FG annular sector plate (Equation 19), the resultant 
moments can be obtained in the form 
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Where the parameter D̂  is the equivalent flexural 
rigidity as mentioned before. 
 
2.2. Solution   For static analysis of the FG 
annular sector plate which is simply supported at 
two radial edges, the transverse displacement and 
uniformly distributed load can be represented as 
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Where βm denotes mπ/α. Substituting the proposed 
series solutions (21) into Equation 15 and solving 
the resulting ordinary differential equation, yields 
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Imposing arbitrary boundary conditions at inner 
(r=a) and outer (r=b) circular edges, the four 
unknown coefficients (C1,C2,C3,C4,) can be 
determined. 
 
 
 

3. NUMERICAL RESULTS AND 
DISCUSSION 

 
For simplicity and generality, the following non-
dimensional terms are introduced 
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In numerical calculation, the FG annular plate is 
assumed to have simply supported radial edges. 
The inner radius, outer radius and thickness of the 
annular plate are considered to be a = 2.5, b = 10 
and h = 0.2, respectively. The Poisson ratio of the 
plate is assumed to be constant through the 
thickness and equal to 0.3. The functionally graded 
material used is composed of aluminum with Em = 
70 Gpa and Silicon Carbide with Ec = 420 Gpa. 
The plate is subjected to uniformly distributed load 
with intensity of p0 = 1 × 104 N/m2. 
     The boundary conditions are identified according 
to the inner and outer radius of the annular sector 
plates (e.g. F-C denotes free inner and clamped 
outer edges). 
     In Figure 2, the non-dimensional deflection is 
shown along the radial direction for FG annular 
sector plate with two circular edges simply 
supported. The variation is depicted for various 
power of FGM. As the power of FGM decreases, 
the FG annular plate becomes stiffer and this leads 
to lower deflection. The non-dimensional radial 
and circumferential stresses of FG annular sector 
plate with two circular edges simply supported are 
shown in Figure 3 and 4 for different power of 
FGM. It can be seen that unlike the homogeneous 
plates )0p( = , the stresses rσ  and θσ  do not 
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vanish at the mid-plane of the FG annular sector 
plates. The normal stress in r  direction is equal to 
zero at neutral surface which is located at A/Bz =  
as discussed. Also, the stress components of the 
FG annular sector plates along the thickness 
direction are not linearly proportional to z  
direction. 
     The variation of non-dimensional radial stress 

)( rσ  is depicted in Figure 5 through the thickness 
direction for different powers of functionally 
graded material (p). The plate is assumed to have 
clamped edges in two circular edges. It can be seen 
that for p  equal to 3.5, the non-dimensional stress 
is vanished in far distance from the middle plane. It 
can be easy to show that the parameter A/B  has 
maximum value at p = 3.5. 
     The non-dimensional transverse displacement is 
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Figure 2. Non-dimensional deflection along radial direction 
(S-S). 
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Figure 3. Non-dimensional radial stress along thickness 
direction (S-S). 
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Figure 4. Non-dimensional circumferential stress along 
thickness direction (S-S). 
 
 
 

z / h

⎯σ
r

-0.25 0 0.25 0.5

-0.1

-0.05

0

0.05

0.1

0.15

0.2

p=0.5
p=1
p=2
p=3.5
p=24

 
Figure 5. Non-dimensional radial stress along thickness 
direction (C-C). 
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shown for a/b = 0.25 and a/b = 0.5 in Figures 6 and 7 
respectively. It can be seen that when the inner 
edge of the annular plate is close to the center of 
the annular sector plate, the maximum deflection 
does not occur at the free edge. However, 
approaching the inner edge to outer one, the 
maximum non-dimensional deflection occurs at 
free inner edge. This is acceptable because with 

decreasing the inner radius, the length of the free 
inner edge decreases and the annular sector plate 
becomes stiffer. 
     In order to see the variation of the circumferential 
stress along the θ  direction, the non-dimensional 

stress )2/h,,
2

ba( θ
+

σθ  is depicted along the 

circumferential direction for different powers of 
FGM in Figure 8. It can be seen that the maximum 
stress is due to the homogeneous annular sector 
plate. 
     The maximum non-dimensional transverse 
deflection is tabulated for different sector angles 
and some aspect ratios and inner to outer radius 
ratios in Table 1. In this case, the plate has free 
inner and clamped outer edges and power of FGM 
is assumed to be 0.5. 
 
 
 

4. CONCLUSION 
 
In this paper, an exact analytical solution has been 
presented for static analysis of functionally graded 
annular sector plate. The annular sector plate is 
assumed to have simply supported radial edges and 
arbitrary boundary conditions along the circular 
edges. Three coupled governing equilibrium 
equations of FG annular sector plate have been 

 
 
 

r / b

⎯w

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0005

0.001

0.0015

0.002

0.0025

0.003

p=0
p=0.5
p=1
p=2

 
Figure 6. Non-dimensional deflection along radial direction 
(F-C). 
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Figure 7. Non-dimensional deflection along radial direction 
(F-C, a/b = 0.5). 
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Figure 8. Variation of non-dimensional stress )( θσ along 
circumferential direction (C-C). 
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converted to a decoupled equation in term of 
transverse displacement. Introducing a flexural 
rigidity, the decoupled equation of FG plate 
becomes similar to the governing equilibrium 
equation of isotropic homogeneous plate. Finally, 
the variation of some parameters has been shown 
in figures and table. 
     The exact solution for functionally graded 
annular sector plate has been obtained for the first 
time and the present results can be regarded as a 
database in the field of FG annular sector plates. 
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