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Abstract   In this work, rising of a single bubble in a quiescent liquid under microgravity condition 
was simulated. The related unsteady incompressible full Navier-Stokes equations were solved using a 
conventional finite difference method with a structured staggered grid. The interface was tracked 
explicitly by connected marker points via hybrid front capturing and tracking method. One field 
approximation was used, while one set of governing equations was only solved in the entire domain 
and different phases treated as one fluid with variable physical properties. The interfacial effects are 
accounted for by adding appropriate source terms to the governing equations. The results show that 
the bubble moves in a straight path under microgravity condition, compared to the zigzag motion of 
bubbles in the presence of gravity. Also, in the absence of gravity and temperature gradients, the 
hydrodynamic effect can still cause the upward motion of the bubble. This phenomenon was 
explicitly shown in our results. 
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صيد و رديابي مرز حباب  شبيه سازی حرکت حباب در گرانش کم به روش ترکيبي ،در مقاله حاضرچكيده       

 توليد نيروهاي برشي در مرز حباب ناشي از ،در کنار مطالعات عمومی اثرات گرانش کم .انجام شده است
اي برشي در مرز حباب نيروه. مورد بررسي قرار گرفته است) نيروي کشش سطحي(تغييرات انحناي حباب 

استوکس در شبکه ثابت اويلرين حل شده و -معادلات ناوير. آغازگر جابجايي حباب در غياب گرانش مي باشند
 فازهای ،به کمک تقريب تک ميداني. در حال حرکت مبادله مي شوداطلاعات حاصل با نقاط روی مرز حباب 

گر حرکت مستقيم الخط  نتايج بيان. است گرفته شده متفاوت مشابه يک سيال با خواص فيزيکي متفاوت در نظر
 از اين نيروي ليفت در شرايط گرانش صفر به واسطه جابحايي حاصل. حباب به واسطه نيروي ليفت مي باشد

 .تغيير انحناي حباب مي باشد
 
 

1. INTRODUCTION 
 
The variation of surface tension due to temperature 

gradient can initiate the onset of convection, which 
is known as the common Marangoni convection. 
Note that in the absence of temperature gradient, 
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variable surface tension force (not surface tension 
coefficient) may be generated due to the presence 
of surface curvature gradient. The variation of 
surface tension force can lead to a convective 
motion, which is referred to as hydrodynamic 
convection. 
     The Marangoni convection is particularly 
important in the absence of buoyancy. It plays a 
crucial role in many applications, such as in crystal 
growth under microgravity condition, which is of 
interest to microelectronic industries. Understanding 
the thermocapillary processes, especially process 
of initiation of convection and when the flow 
become irregular, is very important for the 
corresponding manufacturing processes. Most 
earlier technological or scientific works performed 
under microgravity conditions were concerned 
with the improvement of the material processing 
procedures, while the fundamental fluid mechanics 
of the process is not fully understood. Another 
important application is the boiling heat transfer 
for enhancing the heat exchange processes under 
microgravity conditions. Again, the fundamentals 
of microgravity boiling process are not fully 
understood. It is, therefore, important to have a 
thorough understanding of the process of bubble 
formation and motion under low gravity conditions, 
where buoyant rise is negligible. Otherwise, 
understanding the physics of bubble motion under 
microgravity condition is of great interest to a 
number of human life support applications in space. 
     In this work, the isothermal rising of a single 
bubble in a quiescent liquid under microgravity 
condition was computationally investigated. The 
path of the bubble and the corresponding 
hydrodynamic Marangoni convection were 
evaluated. Note, the bubble was limited to a two-
dimensional shape, which is a severe approximation 
employed to allow reasonable resolution and 
computational requirements. However, such a 
formulation allows us to observe the sole effect of 
the bubble dynamics. 
     For numerical simulation of dynamics of large 
bubbles, capturing and tracking of the interface is 
the most critical component. The computational 
results of Tryggvason, et al [1] have shown that the 
most accurate method for simulation of such flows 
is hybrid front capturing and tracking technique. 
Although, the efforts to compute multiphase flows 
are as old as computational fluid dynamics (CFD), 

solving the full Navier-Stokes equations in the 
presence of a deforming interface has proven to be 
quite challenging. Only in recent years, major 
progress has been achieved with the use of the 
hybrid front capturing and front tracking method 
and also level set method. 
     In addition to the hybrid front capturing and 
front tracking technique, several other techniques 
have been used in the past. A summary of the 
relevant techniques is provided here: 
 
1. The oldest and still the most popular 

approach is to capture the interface directly 
on a regular and stationary grid. The MAC 
methods, in which marker particles are 
advected for each fluid particle, and the VOF 
method, where a marker function is advected, 
are the best known examples. In the earlier 
implementations of these techniques, the 
stress condition at the interfaces was satisfied 
rather crudely. However, a number of recent 
developments, including a technique to 
include surface tension [2] and to use of 
“level sets” [3] to mark the fluid interface has 
increased the accuracy of these techniques 
and thus their applicability. The ferrous 
bio-oxidation in bubble column reactors was 
simulated by Vossoughi, et al [4] with using 
CFD approach. Mirbagheri [5], Sadrnezhad [6] 
also examined cavitation problem (as bubble 
nucleation). The heterogeneous nucleation in 
a uniform electric field was studied by 
Saidi, et al [7]. 

2. The second class, which potentially offers 
the highest accuracy, uses separate boundary 
fitted grids for each phase. The steady rise of 
buoyant, deformable, and axisymmetric 
bubbles were simulated by Ryskin, et al [8] 
using this method. Using this approach, 
Dandy, et al [9] also examined the steady 
motion of deformable axisymmetric droplets. 
While, Kang, et al [10] extended this 
methodology to axisymmetric, unsteady 
bubble motion. The work of Ryskin, et al [8] 
had a major impact on subsequent research 
work in this area. 

3. The third class is Lagrangian methods, where 
the grid follows the fluid. Recent examples 
include two-dimensional computations of the 
break up of a droplet by Oran, et al [11]. 
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4. The fourth category is the front tracking 
method, where a separate front marks the 
interface, but a fixed grid which is only 
modified near the front, is used for the fluid 
within each phase. This technique has been 
extensively developed by Glimm [12]. 

 

As mentioned earlier, in this work we used the 
hybrid front capturing and front tracking method of 
Tryggvason, et al [1], which is a combination of 
front capturing and front tracking techniques. In 
this method, a stationary regular grid is used for 
the fluid flow, while the interface is tracked by a 
separate grid (front grid) which is embedded on the 
first one but moves with the interface. Note, in the 
hybrid front capturing and front tracking method, 
all phases are treated by a single set of governing 
equations, while in the front tracking method each 
phase is treated separately. This method was 
developed by Unverdi, et al [13]. Loth, et al [14-
16] used this method to investigate shear flow 
modulation and bubble dispersion of a bubbly 
mixing layer flow. Others also used this method to 
examine a number of other multiphase flow 
problems, e.g., collision of two equal size droplets 
[17]. Another use of this method was the study of 
the breakup of accelerated droplets where both 
“bag” and “shear” breakup have been observed [18]. 
 
 
 

2. IMPORTANT DIMENSIONLESS 
NUMBERS 

 
The rise of a bubble in a quiescent liquid and its 
associated convection depend on the liquid physical 
properties, such as density, kinematic viscosity, and 
surface tension. The most important physical 
dimensionless numbers in such a flow are: bubble 
Reynolds number, ReB, Bond (Eotvos) number, Eo 
(Bo), Morton number, Mo, Weber number, We, and 
Froude number, Fr, defined, respectively, as: 
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viscosity of the liquid, respectively. Note that, the 
Morton number is related to the liquid physical 
properties and is independent of the flow 
conditions. Liquids can be categorized in different 
groups, namely those with high Morton numbers 

)10Mo( 2−> , those with intermediate Morton 
numbers, and those with low Morton numbers 

)10Mo( 6−< . On the other hand, the Bond number 
characterizes the bubble size, so that a functional 
relationship between any parameter and the Bond 
number describes how that parameter changes with 
the bubble volume. The terminal rise velocity of 
bubble (UT) in Definition (1) is a function of 
equivalent radius, density, kinematic viscosity, 
gravitational acceleration and surface tension. 
Note, in most practical applications, interest is 
mainly in low Morton numbers and moderate 
Reynolds numbers (between 200 and 900). At 
lower Reynolds numbers, however, bubbles have 
an approximately spherical shape, and they rise in 
a rectilinear path. Whereas, at intermediate and 
high Reynolds numbers, bubbles become oblate 
ellipsoids and rise in an irregular (zigzagging or 
spiraling) fashion. The summary of observed path 
and transition criteria at normal gravity is listed in 
Table 1 [19]. 
 
 
 

3. GOVERNING EQUATIONS 
 
As noted before, in the hybrid front capturing and 
front tracking technique used here, only one set of 
governing equations is used for both phases, which 
requires accounting for the interfacial effects by 
adding the appropriate source terms to the 
governing equations [20,21]. Since the physical 
properties and the flow field are discontinuous 
across the interface, all variables must be 
interpreted in terms of generalized functions. Thus, 
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various fluids can be identified by a step (Heaviside) 
function (H), which takes the value of one for one 
particular fluid and zero for the other. The 
interface is marked by a non-zero value of the 
gradient of the step function. It is most convenient 
to express H in terms of an integral over the 
product of one-dimensional δ-functions as follows: 
 

dA)Fyy(
A

)fxx()t,y,x(H −δ∫ −δ=  (6) 

 
The density, as well as any other physical 
properties, can be written in terms of both the 
constant densities on either side of the interface 
and the above Heaviside function as:  
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Here, ρi and ρ0 are the density at H = 1 and 0, 
respectively. On the other hand, for the viscous 
term, the full deformation rate tensor is 
implemented, while the conservative form of the 
advection term is normally used. Thus, the linear 
momentum equation is written as: 
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In above equation, u is the velocity vector (either the 
phases), σ is the surface tension coefficient, k is the 
curvature, g is the gravity acceleration, and n is a 
normal vector to the bubble surface. The density (ρ) 
and viscosity (μ) are allowed to vary, such that these 
equations are therefore valid for the whole flow field 
(both phases), and surface tension forces have been 
added as a delta function δ (x-xf), which is non-zero 
only on the bubble surface (xf), where X = Xf. 
     The mass conservation law is written as: 
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t
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In this work, the flows of fluids are both assumed 
to be incompressible, so that the density of a fluid 
particle in the flow field remains constant. Thus, 
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and 
 

,0u. =∇  (11) 
 

The viscosity of each fluid particle is also assumed 
to be constant. Thus,  
 

.0
tD

D
=

μ  (12) 

TABLE 1. Summary of Some Previous Experimental Results about Bubble Shape under Normal Gravity [19]. 
 

Observed Shapes and Onset of Shape Instability  
Spherical Ellipsoidal Unstable 

mm42.0req<  mm00.1req<  mm00.1req >  
Aybers, et al (1969) 

  7.3We >  

Haberman, et al (1954) 400Re <  5000Re400 <<   

Miksis, et al (1981)   23.3We >  

Contaminated Liquids 200Re >  
Ryskin, et al (1984) 

Pure Liquids 43We −>  

  2.4We >  
Duineveld (1994,1995) 

  mm34.1req >  

Benjamin (1987)   271.3We >  
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4. NUMERICAL METHODOLOGY 
 
In this work, the unsteady Navier-Stokes equations 
are solved using the finite difference method with a 
staggered fixed structured grid, while the interface 
(front) is tracked explicitly by connected marker 
points. The interfacial source term (surface tension 
effect) is computed at the front grid points and is 
interpolated on the fixed grid. The advection of 
fluid properties, such as density, is accounted for 
by following the motion of the front. Figure 1 
shows the fixed Eulerian and the moving 
Lagrangian grids used. The basic idea behind the 
original front tracking method, illustrated in 
Figure 1, is fairly simple. Two grids are used. One 
is a standard, stationary finite difference mesh. The 
other is a discretized interface mesh used to 
explicitly track the interface. It is represented by 
non-stationary, Lagrangian computational points 
connected to form a one-dimensional line. Once the 
Lagrangian points are defined one must decide on a 
method of structuring and organizing these points. 
Since the interface moves and deforms during the 
computation, interface elements must occasionally 
be added or deleted to maintain regularity and 
stability. 
     For solving the governing equations, the 
following points have to be accounted for: 
 
• The density and the viscosity changes due to 

the phase transport. 
• The surface tension effect is only at the 

front. 
• Accurate evaluation of velocity and the 

pressure fields at each time step. 
• Accurate evaluation of motion of the 

interface itself. 
 
The procedure used for evaluation of the density 
and viscosity transport and the surface tension 
term is the key element in the numerical 
approach. In volume of fluid (VOF) approach, an 
indicator function is used to identify different 
phases of the flow. In the hybrid front capturing 
and front tracking approach, however, the 
interface is explicitly marked and tracked. 
Knowing the location of the front, the values of 
the fluid property at different flow locations are 
easily specified. However, identification of the 
moving front is associated with the following 

difficulties: 
 
• How to best identify the front? 
• How the data are transported between the 

fixed and the moving grids? 
• How the front moves with time? 
• How to satisfy the conservation laws as the 

front shape changes during its motion? 
 
In the present approach, as the front shape changes, 
some grid points are added or subtracted to 
maintain proper grid for the front. Figure 2 shows a 
typical restructuring of the front grid. In the hybrid 
front capturing and front tracking approach, when 
data is transferred between the two grids, it is very 
important that the conservation laws are satisfied. 
To advect the discontinuous density and viscosity 
fields, and to compute surface tension forces, the 
bubble surface is represented by separate 
computational elements, referred to as the front. 
The front grid is of one lower dimension than the 
stationary fluid grid and is advected by the fluid 
velocity which is interpolated from the fluid grid. 
To inject surface tension forces onto the fixed fluid 
grid a technique that is usually called the Immersed 
Boundary Method and was introduced by Peskin 
[20] is used. In this Approach, the infinitely thin 
interface is approximated by a smooth distribution 
function that is used to distribute the surface forces 
over the grid points close to the surface in such a 
way that the total forces are conserved. Therefore, 
the front is given a finite thickness of about three 
to four grid spacings and there is no numerical 
diffusion of this front since the thickness remains 
constant for all time. To generate the density and 
viscosity fields from the front, a technique 
introduced by Unverdi et al. is used  which is based 
on distributing the jump in these quantities onto the 
fixed grid by Peskin’s technique and then solving a 
laplace’s equation for the field variable itself. 
     For code verification purposes, the incompressible 
lid-driven cavity flow was simulated. Figure 3 shows 
the X-velocity component profile along the vertical 
centerline and the Y-velocity component profile 
along the horizontal for Re = 100, which in compared 
with the results of Ghia, et al [22], showing relatively 
good agreements. 
     For a bubble under micro-gravity condition, 
grid independency studies were also performed for 
98 × 66, 146 × 98 and 194 × 130 grids. The related 
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results are summarized in Figure 4. It is seen that, 
for the fist course grid, the shape of the bubble is 
distorted, but for the last two refined grids, the 
front shape are roughly the same. Thus, the 146 × 
98 grid was chosen for the sake of economy of the 
computations. 

 
Figure 1. Eulerian and lagrangian grids in hybrid front 
capturing and front tracking technique. 
 
 
 

 
 

 
 
Figure 2. Restructuring of a lagrangian grid. 

 
Figure 3. X-and Y-velocity components profiles at the 
centerline of  the cavity. 
 
 
 

 
Figure 4. Grid independency study (case 2). 
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5. RESULTS AND DISCUSSIONS 
 
In this work, rising of a single bubble in a 
quiescent liquid under microgravity condition was 
computationally simulated. In addition to general 
studies of microgravity effects, the initiation of 
hydrodynamic convection solely due to the 
variations of interface curvature (surface tension 
force) and thus generation of shearing forces at the 
interfaces was also studied. The results show that 
the bubble moves in a straight path under 
microgravity condition, compared to the zigzag 
motion of bubbles in the presence of gravity. The 
related unsteady incompressible full Navier-Stokes 
equations were solved using a conventional finite 
difference method with a structured staggered grid. 
The interface was tracked explicitly by connected 
marker points via hybrid front capturing and 
tracking method. 
     Different cases studied are listed in Table 2. 
The selected simulation conditions are such that 
the bubble motion is under low or zero gravity. 
Different cases have been introduced in order to 
study both the buoyancy and hydrodynamic 
convection effects. According to Table 1, the 
bubble shape varies from spherical to ellipsoidal 
(or equivalent shape in 2 dimension) for different 
Reynolds and Bond numbers. Also, depending on 
these shapes, the bubble follows a straight line or 
zigzag curve while moving upward. 
     The evolutions of the pressure and density 
fields are shown in Figure 5. The unsteady motion 
of the bubble is clearly shown in this figure. 
     Figure 6 shows the bubble shape evolution from 
circular at initial stage to elliptical at later times, 
while following a straight path. Note that in cases 1, 

and 3, in the absence of gravity, the motion is only 
due to curvature induced lift force given as, 
 
Lift = σknδ (X-Xf) (13) 
 

This lift force is due to surface tension coefficient and 
interfacial curvature. However, for initial cylindrical 
bubble, the value of this force is zero and thus its 
onset is due to initial disturbance. It should be 
noted that a similar phenomenon entitled “parasitic 
currents” has been reported specially for gas-liquid 
interfaces. Parasitic currents are unphysical currents 
generated in using implementations of the continuum 
surface force (CSF) technique to model surface 
tension forces in multi-phase computational fluid 
dynamics problems. However this phenomenon has 
a limited magnitude regarding to the fluids properties 
[23]. Also in our computational methodology CFS 
scheme has not been used. Then it seems some 
parts of this hydrodynamic convection can exist 
physically. Equation 13 shows that changes in 
curvature or in surface tension coefficient can initiate 
bubble motion even in the absence of gravity. Here, 
the surface tension coefficient is constant (since no 
temperature gradient). Thus, the only driving force 
for the bubble motion is the variation in the shape of 
the interface and initial disturbance. Figure 6 shows 
the evolution of the shape of the bubble with time. 
     The results for case 2 are shown in Figure 7. As 
shown in this figure, when gravity is low, the 
buoyancy and the hydrodynamic forces tend to 
move the bubble. The resulting lift force is given as,  
 
Lift = ρg + σknδ (X-Xf). (14) 
 
As expected from this figure, the bubble movement 
is faster here, compared to case 1. 

 
 
 

TABLE 2. Different Test Cases Considered in This Study. 
 

Froude 
Number 

(Fr) 

Weber 
Number 

(We) 

Morton 
Number 

(Mo) 

Bond 
Number 

(Eo) 

Reynolds 
Number 

(ReB) 

Gravity 
(m/s2) 

Surface 
Tension 
(N/m) 

Case No. 

∞  800 0 0 800 0 0.2 1 

16666 800 7.5 × 10-8 0.048 800 0.06 0.2 2 

∞  320 0 0 2000 0 0.5 3 

∞  ∞  - 0 800 0 0 4 
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(a)                                                                                               (b) 
 

Figure 5. (a) Density and (b) Pressure shadowgraphs of bubble motion in a  
quiescent liquid under zero gravity condition (case 3). 

S. 

S. 

S. 

S. 

S. 
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     Figure 8 shows the results related to case 3, 
where surface tension coefficient is higher, but still 
gravity is set to zero. Note from this figure that, the 
bubble has higher upward velocity in comparison 
with the results of case 1, where surface tension 
coefficient was lower. The driving force for the 
bubble motion in this case is the hydrodynamic 
convection effect caused by the changes in the 
bubble curvature. This force is larger than the 

driving force of case 1, due to higher surface tension 
coefficient. 
     Figure 9 shows the results of case 4, where both 
surface tension and gravity are zero. According to 
Equation 14, the lift force is zero and thus there is 
no bubble motion with time, figure which is what 
has been obtained here. 
     In Figure 10, cases 1, 3 and 4 are compared for 
t = 1 s. Note, in the absence of gravity, the higher 

 
Figure 6. Bubble evolution (case 1). 
 
 
 

 
Figure 7. Bubble evolution (case 2). 

 
 
 

 
Figure 8. Bubble evolution (case 3). 
 
 
 

 
Figure 9. Bubble evolution(case 4). 
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the surface tension coefficient is, the higher is the 
upward lift force that leads to a higher bubble 
velocity. Also, as shown in this figure, higher 
surface tension coefficient causes higher upward 
motion of the bubble. 
     The results of case 1 at longer times are shown 
in Figure 11. The important point in this figure is 
that, the bubble has downward motion at t = 2 s. 
Here, the change in the direction of motion is due 
to the change in the sign of the lift force caused by 
changes in the bubble curvature (hydrodynamic 
convection effect). 
 
 
 

6. CONCLUSIONS 
 
In this work, large bubble motion in a quiescent 
liquid is computationally simulated by hybrid front 
capturing and front tracking method. The main 
conclusions are as follows: 
 
• for all cases studied here (for the values of 

the dimensionless numbers studied), bubble 
moves in straight path, which is in contrast 
with the bubble motion under normal gravity 
condition, and  

• at microgravity conditions, the driving force 
for the bubble motion is the variation in the 
bubble surface curvature. Both the buoyancy 
and hydrodynamic convection effects create 
positive lift and thus tend to move the bubble 
upward. However, this trend continues up to 
the point where the lift force changes 
in direction and thus the bubble moves 
downward. 

 
 
 

7. NOMENCLATURES 
 
V Bubble Volume 
g Gravitational Acceleration 

eqr  Equivalent Radius 

TU  Terminal Velocity 
u Velocity Vector Field 
σ Surface Tension Coefficient 
n Normal Unit Vector at Interface 
k Interfacial Curvature 
P Pressure 

ν Kinematic Viscossity Coefficint 
δ Dirac Delta Function 
H Heaviside Function 
xf, yf Coordinates of Nodes in Moving Grid 
x, y Coordinates of Nodes in Fixed Grid 
A The Bubble Surface Area 

 
Figure 10. The comparison of marangoni force (cases 1, 3 and 4)
at t = 1 s. 
 
 
 

 
Figure 11. Bubble evolution (case 1) showing negative lift
at t = 2 s. 
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