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Abstract   The stability of stratified Rivlin-Ericksen fluid in porous medium in the presence of 
suspended particles and magnetic field has been investigated. Upon application of normal mode 
technique, the dispersion relation was obtained. The important results obtained in this paper include 
the instability of non-oscillatory modes and the stability of oscillatory modes. Also, it was found that 
the system is stable for β < 0 and unstable for β > 0 under certain conditions. 
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دان يط متخلخل با ميبا ذرات معلق در مح  همراهي چگالة شديبند نهيارکسون چ_نيوليال ري سيداريپاچكيده       

ج ياز نتا. دست آمده است  ذرات بهي پراکندگةاز روش مد نرمال، رابط استفاده با.  شده استي بررسيسيطمغنا
 يط خاص براين تحت شرايهمچن.  استي نوساني مدهايداري و پاينوسان ريغ ي مدهايدارين مقاله ناپايمهم ا
β < 0يدار و برايپا ة سامان β > 0 شود يدار ميناپا. 

 
 

1. INTRODUCTION 
 
The problem of dust and suspended particles in 
gas-particle medium has attracted wide attention in 
recent years due to its relevance in laboratory and 
astrophysical plasma as discussed by Alfven, et al 
[1]. Scanlon, et al [2] have discussed the problems 
of suspended particles on the onset of B'enard 
convection. Sharma, et al [3] have carried out the 
investigation on the effect of suspended particles 
on the onset of B'enard problem (statically unstable 
configuration) in hydromagnetics. They have found 
that the effect of suspended particles is to 
destabilize the layer and the magnetic field has a 
stabilizing effect. Sharma [4] has also investigated 
the effect of magnetic field on the gravitational 
instability of self gravitating homogeneous gas-
particle medium with suspended particles. 
     Chhajlani, et al [5] have discussed suspended 
particles and the gravitational instability of rotating 
magnetized medium. Sharma, et al [6] have 
discussed the stability of stratified Rivlin-Ericksen 
fluid-particle mixture in hydromagnetics in porous 

medium. Sharma, et al [7] have discussed the effect 
of suspended particles on thermal instability in 
Rivlin-Ericksen elastico-visocus medium. 
     The stability derived from the equilibrium 
character of an incompressible heavy fluid of 
variable density under varying assumptions of 
hydrodynamics and hydromagnetics has been 
treated in detail by Chandrasekhar [8]. 
     Kumar [9] has considered the Rayleigh-Taylor 
instability of Rivlin-Ericksen elastico-viscous 
fluids in the presence of suspended particles 
through porous medium. Bhatia [10] has 
considered the Rayleigh-Taylor instability of 
two viscous superposed conducting fluids in the 
presence of a uniform horizontal magnetic field. 
The stability of superposed fluids in the presence 
of a variable magnetic field has been studied 
by Sharma, et al [11]. Rayleigh [12] examined the 
equilibrium of an incompressible, non-viscous 
fluid of variable density stratified in the vertical 
direction. 
     The problem has been extensively investigated 
under various physical situations (such as for an 



 

288 - Vol. 22, No. 3, September 2009 IJE Transactions A: Basics 

electrically conducting fluid in the presence of a 
magnetic field, thermally conducting fluid with 
temperature variation and instability problems 
through porous medium, etc.). Sharma, et al [13] 
have discussed the thermosolutal instability of 
Rivlin-Ericksen rotating fluid in the presence of 
magnetic field and variable gravity field in porous 
medium and found that stable solute gradient has a 
stabilizing effect on the system while the magnetic 
field and rotation have stabilizing effect under 
certain conditions. The problem of stability of 
stratified visco-elastic dusty fluid (Walter’s Model 
B’) in porous medium has been studied by Pundir, 
et al [14]. They have found that the system is 
stable for β < 0 and unstable for β > 0 under certain 
conditions. Kumar, et al [15] have studied the 
effect of magnetic field on thermal instability of 
rotating Rivlin-Ericksen visco-elastic fluid. Sharma, 
et al [16] have discussed the stability of stratified 
elastico-viscous fluid (Walter’s Model B') in the 
presence of horizontal magnetic field and rotation 
in porous medium. Gupta, et al [17] have studied 
Rivlin-Ericksen elastico-viscous fluid heated and 
soluted from below in the presence of compressibility 
rotation and Hall currents. Bhatia, et al [18] have 
discussed the problem of thermal instability of a 
visco-elastic fluid in hydromagnetics and found 
that the magnetic field has a stabilizing influence 
on a Maxwell fluid just as in the case of a 
Newtonian fluid. Sharma [19] has studied the 
instability of the plane interface between two 
Oldroydian visco-elastic superposed conducting 
fluids in the presence of an applied uniform 
magnetic field. Generally, the magnetic field has a 
stabilizing character; however, there are a few 
exceptions. For example, Kent [20], Gilman [21] 
and Jain, et al [22] have obtained unstable wave 
number ranges in the presence of a magnetic field 
which are known to be stable in its absence, 
showing thereby that a magnetic field acts as a 
catalyst for instability in certain situations. This 
dual character of a magnetic field has made the 
hydromagnetic stability of flows much more 
meaningful and interesting. 
     Recent spacecraft observations have confirmed 
that dust particles play an important role in the 
dynamics of atmosphere as well as in the diurnal 
and surface variations in the temperature of the 
Martian weather. It is therefore, of interest to study 
the presence of suspended particles in astrophysical 

situations. Further motivation for this study is the 
fact that knowledge concerning fluid-particle 
mixtures is not commensurate with their industrial 
and scientific importance. 
     The flow through porous medium is of 
considerable interest for petroleum engineers 
and for geophysical fluid dynamicists. When the 
fluid slowly percolates through the pores of 
macroscopically homogeneous and isotropic 
porous medium, the gross effect is represented by 
Darcy’s law according to which the usual viscous 
term in the equation of fluid motion is replaced by 

the resistance term q])
k

([
1

μ
− , where μ is the 

viscosity of the fluid, k1 is permeability of the 
medium and q is the Darcian (Filter) velocity of 
the fluid. 
     The instability in a porous medium of a plane 
interface between viscous (Newtonian) and visco-
elastic (Walter’s B') fluid containing suspended 
particles may be of interest in geophysics, 
chemical technology and biomechanics. 
     In view of the fact that the study of visco-elastic 
fluids in a porous medium may find applications in 
geophysics and chemical technology, a number of 
researchers have contributed in this direction. The 
effect of magnetic field on the stability of stratified 
Rivlin-Ericksen fluid in porous medium in the 
presence of suspended particles may find application 
in many modern technologies. However, the 
stability of stratified Rivlin-Ericksen fluid in 
porous medium in the presence of suspended 
particles seems to the best of our knowledge 
uninvestigated thus far. 
     In this paper, therefore, we have made an 
attempt to critically examine the stability of 
stratified Rivlin-Ericksen fluid in porous medium 
in the presence of suspended particles and 
magnetic field. It can be looked upon as an 
extension of work on the stability of stratified 
visco-elastic dusty fluid (Walter’s Model B') in 
porous medium by Pundir, et al [14]. 
 
 
 

2. CONSTITUTIVE EQUATION AND THE 
EQUATIONS OF MOTION 

 
Consider a static state in which an incompressible 
Rivlin-Ericksen visco-elastic fluid is arranged in an 
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isotropic and homogeneous porous medium 
confined between two infinite horizontal planes 
situated at axis z = 0 and having density ρ as a 
function of the vertical co-ordinates z  only. The 
fluid is under the action of gravity g(0,0,-g) and 
magnetic field H(0,0,H). This fluid layer is 
assumed to be flowing through an isotropic and 
homogeneous porous medium of porosity ε  and 
medium permeability k1. 
     Let μ, μ' and q(u,ν,w) denote respectively 
viscosity, visco-elasticity and the velocity of the 
hydromagnetic fluid in the x, y, z direction 
respectively. V(x,t) and N(x,t) denote the velocity 
and the number density of particles respectively, 
where x is the position vector at time t. k = 6πμη, 
where η is the particle radius, is a constant at a 
point X(x,y,z). 
     Hence, the governing equation is 
 

[ ],H)H(
4

e)qV(
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q
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q
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π
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,0q. =∇  (2) 

 

(q. ) 0
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∂ρ
ε + ∇ ρ =
∂
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)Hq(
t
H

××∇=
∂
∂

ε  (4) 

 
and 
 

0H. =∇ . (5) 
 
Where the magnetic permeability μe is assumed to 
be constant. 
     The presence of dust particles adds an extra 
force term proportional to the velocity difference 
between the particles and the fluid. Since there is a 
force exerted by the particles on the fluid, there 
must exist an extra force term equal in magnitude, 
but opposite in sign, in the equation of motion of 
the particles. Also, the distance between the 
particles is quite large as compared to their 
diameter. 
     Inter-particle reactions are also not considered 
as we assume that the distances between the 
particles are large as compared to their diameter. 

The equations of motion and continuity, under the 
above assumptions are 
 

)Vq(kNV).V(1
t
VmN −=⎥⎦

⎤
⎢⎣
⎡ ∇

ε
+

∂
∂  (6) 

 
and 
 

0)NV.(
t
N

=∇+
∂
∂

ε . (7) 
 
Here, m is the mass of the dust particles. 
 
 
 

3. BASIC STATE AND PERTURBATION 
EQUATIONS 

 
The initial stationary state whose stability we wish 
to examine is that of an incompressible, Rivlin-
Ericksen, visco-elastic fluid of varying density and 
variable viscosity arranged in horizontal strata in a 
homogeneous and isotropic porous medium. The 
system is acted upon by a variable horizontal 
magnetic field H(0,0,H) and the gravity field 
g(0,0,-g). The character of equilibrium is examined 
by supposing that the system in slightly disturbed 
and then by following its further evolution. 
     Let δρ, δp, q(u,ν,w), V(l,r,s) and H(hx,hy,H+hz) 
denote respectively the perturbation in density ρ, 
in pressure p, fluid velocity (0,0,0), filter velocity 
(0,0,0) and the magnetic field (0,0,H). Linearizing 
the equation in perturbations and breaking down 
the perturbations into normal modes, we seek the 
solution whose dependence on x, y and t is given 
by 
 

x yexp [i (k x k y) nt]+ +  (8) 
 
Where kx and ky are the wave numbers in the x and 

y direction respectively, 2
yk2

xkk +=  is the 

resultant wave number and n is the frequency 
which is complex, in general. 
     On expanding Equations 1 to 7 along x, y and z 
coordinates and analyzing the perturbation into 
normal modes (i.e., using (8)), we get: 
 

),zhxikxDh(
4

Heu)n(
1k
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π

μ
+μ′+μ−δ−=′

ε
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 (9) 
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),zhyikyDh(
4

He)n(
1k
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π

μ
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 (10) 
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,wDpn ρ−=δε  (13) 

 
,HDuxnh =ε  (14) 

 
,HDvynh =ε  (15) 

 
HDwznh =ε  (16) 

 
and 
 

.0zDhyhyikxhxik =++  (17) 
 
Here, D is the derivative w.r.t. z. 
     From Equation 6 
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Multiplying Equation 9 by ikx and (10) by iky and 
adding, we get: 
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Now, multiplying (11) by k2, we get: 
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Subtracting Equation 20 from (19), we get: 
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Using (18) and (16), we get: 
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Let us assume: 
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Where, ρ0, μ0, 0μ′ , N0, H0 and β are constants. 
Equation 23 shows that the coefficient of 
kinematic viscosity υ and coefficient of kinematic 
visco-elasticity υ' are constant everywhere. 
Substituting the value of ρ, μ, μ', N and H in 
Equation 22 and neglecting the effect of 
heterogenicity on inertia, we obtain 
 

0w2D)2k2D(
n

2
AV

n
w2kg

w)2k2D(
1k

n00
)n1(0

nmNn

=−
ε

−
ε
β

+−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ υ′+υ
+

τ+ερ
+

ε
 (24) 

 

Where, 
 

π

μ
=

ρ

μ′
=υ′

ρ

μ
=υ=τ

4

2
0He2

AVand
0

0
0,

0

0
0,

k
m . 

 

Assuming that the system is confined between two 
planes z = 0 and z = d and that both the boundaries 
are free, the boundary conditions for the case of 
two free surfaces are given by 
 

dzand0zat0w2Dw ==== . (25) 
 

The proper solution of Equation 24 satisfying (25) 
is given by 
 

d
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Where, A is a constant and m is any integer. 
     Substituting (26) in (25) and after simplification, 
we get 
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4. RESULTS AND DISCUSSION 
 
Depending upon various physical parameters, we 
obtain a number of results stating clearly the role 
of these parameters. 
 
4.1. Theorem   If β < 0 everywhere in the flow 
domain, then the system is stable. 
Proof   We observe that if β < 0, everywhere in the 
flow domain, then Equation 27 does not allow any 
positive value of n. Neither does it allow n to be 
zero so that n can take only negative values, 
implying thereby that the system is stable. 
 
4.2. Theorem   If β > 0, everywhere in the flow 
domain, then the system is stable provided 

L

2kg)2kL(2
AV β

>− . 

Proof   If β > 0 and 
L

2kg)2kL(2
AV β

>− , 

everywhere in the flow domain, then Equation 14 
does not allow any positive value of n. Neither 
does it allow n to be zero, so that n can take only 
negative values, implying thereby that the system 
is stable. 
 
4.3. Theorem   If β > 0, everywhere in the flow 
domain, then the system is unstable provided 

L

2kg)2kL(2
AV β

<− . 

Proof   If β > 0 and 
L

2kg)2kL(2
AV β

<− , 

everywhere in the flow domain: Since the constant 
term of Equation 14 is negative, it therefore allows 
one change of sign and has one positive root. The 
occurrence of a positive root implies that the 
system is unstable. 
     In the absence of a magnetic field, the system is 
clearly unstable for β > 0. However, the system can 

be completely stabilized by a magnetic field if 

L

2kg2
AV β

> . 

 

4.4. Theorem   If β > 0 everywhere in the flow 
domain, then the non-oscillatory modes are 

unstable when 
L

2kg)2kL(2
AV β

<− . 
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Proof   Let the modes be non-oscillatory so that ni 
= 0, then Equation 27 is reduced to 
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Where 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−

β
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ βτ
−−τ+

ευ
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
υ′+τυ

ε
+

ρ
+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ υ′
ε+τ=

)2kL(2
AV

L

2kg
1D

and

,
L

2kg)2kL(2
AV

1k
0C

)00(
1k0

0mN
1B

,
1k
01A

 

 
Equation 28 is a cubic equation in nr and if 
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n  are the roots of this equation, then 

since β > 0 and 
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>− , we have 
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So that either all of the three roots are positive or 
one root is positive and two roots are negative. In 
both cases the system becomes unstable. It follows 
that the one non-oscillatory mode, if it exists, is 
unstable when the density increase in vertically 
upward direction. 
 
4.5. Theorem   If β > 0 and the condition 

L

2kg)2kL(2
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<−  holds everywhere in the flow 

domain, then exactly one non-oscillatory mode is 
unstable and the other two are stable. 
Proof   If 
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Clearly, when 
L
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<−  and both A and 

B are already positive so that the product of roots 
is positive. Also if β > 0, then the sum of the roots 
is negative implying one root is positive and the 
other roots are negative. Therefore, the possibility 
that all three non-oscillatory modes are unstable is 
ruled out. It follows that one non-oscillatory mode 
is unstable and the other two are stable. 
 
4.6. Theorem    The estimate of n, for the growth 
rate of oscillatory modes under the condition β < 0 

is given by .
B
Dn 12 >  

Proof   Equation 27 can be written as 
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Dividing Equation 29 by n and separating real and 
imaginary parts, we get: 
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Let the modes be oscillatory, i.e., ni ≠ 0, then from 
Equation 31, we have: 
 

B2n
1D

rAn2 −= . 

 
Since A and B are definitely positive and β < 0, 

they ensure that D1 is positive. Therefore 
B
Dn 12 >  

implying that nr < 0, which yields the stability of 
the system. Hence, the estimate of n for the growth 
rate of oscillatory modes under the condition β < 0 

are given by 
B
Dn 12 > . 

 
4.7. Theorem   The estimate of n, for the growth 
rate of oscillatory unstable modes under the 

condition β < 0 are given by 
B
Dn 12 > . 

Proof   Consider Equation 31 
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Modes are oscillatory, i.e., ni ≠ 0. Hence for 

unstable modes, i.e., nr > 0 it implies 
B
Dn 12 < . 

Thus the estimate of n for the growth rate of 
oscillatory unstable mode under the condition β<0 

are given by 
B
Dn 12 < . 

 
4.8. Remarks   The above two theorems ensure 
the stability or instability of oscillatory modes under 
the given conditions of: 
 

• ⇒>+>
B
1D2

in2
rn.,e.i,

B
1D2n Oscillatory 

modes are stable. 
 

• ⇒<+<
B
1D2

in2
rn.,e.i,

B
1D2n Oscillatory 

modes are unstable. 
 
Hence, we can find a circle where the oscillatory 
modes are unstable inside the circle and stable 
outside the circle. 
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6. NOMENCLATURE 
 
d Depth of layer 
g(0,0,-g) Gravity field 
H(0,0,H) Magnetic field 
h(hx,hy,hz) Perturbation in magnetic field 
K Stoke’s drag coefficient 
k Wave number 
kx, ky Wave number in x and y 

directions 
m Mass of suspended particles 
N Number density of suspended 

particles 
n Stability parameter 
p Pressure 
t Time coordinate 
q(u,ν,w) Velocity of fluid 
V(l,r,s) Velocity of suspended particles 
X(x,y,z) Space coordinates 

pδ  Perturbation in pressure 
 
Greek Letters 
 
μ Fluid viscosity 
μ' Fluid visco-elasticity 
ε Medium porosity 
ρ Density 
β Uniform temperature gradient 
ν Kinematic viscosity 
ν' Kinematic viscoelasticity 
μe Magnetic permeability 

pδ  Perturbation in density 
 
 
 

7. REFERENCES 
 
1. Alfven, H. and Carlquist, P., “The Problem of Dust and 

Suspended Particles in Gas Particle Medium”, 
Astrophys. Space. Sc., Vol. 55, (1978), 487. 

2. Scanlon, J.H. and Segel, L.A., “The Problems of 
Suspended Particles on the Onset of B'enard Convection”, 
Phys. Fluids, Vol. 17, (1973), 1573. 



 

294 - Vol. 22, No. 3, September 2009 IJE Transactions A: Basics 

3. Sharma, R.C., Prakash, K. and Dube, S.N., “Effect of 
Suspended Particles on the Onset of B'enard Problem in 
Hydromagnetics”, Acta Physica Hungarica, Vol. 40, 
No. 2, (1976), 680. 

4. Sharma, R.C., “Effect of Magnetic Field on the 
Gravitational Instability of Self Gravitating Homogeneous 
Gas Particle Medium in the Presence of Suspended 
Particles”, Astrophys. Space Sc., Vol. 46, (1977), 255. 

5. Chhajlani,  R.K. and Sanghvi, R.K., “Magneto-
Gravitational Instability of a Fluid Through Porous 
Medium Including Finite Ion Larmor Radius”, Contrib. 
Plasma Phys., Vol. 25, No. 6, (1985), 623. 

6. Sunil Sharma, R.C. and Chandel, R.S., “Stability of 
Stratified Rivlin-Ericksen Fluid-Particle Mixture in 
Hydromagnetics in Porous Medium”, Ganita, Vol. 51, 
No. 2, (2000), 179. 

7. Sharma, R.C. and Kumar, P., “Effect of Suspended 
Particles on Thermal Instability in Rivlin-Ericksen 
Elastico-Visocus Medium”, Indian J. Pure Appl. 
Maths., Vol. 30, No. 5, (1999), 477. 

8. Chandrasekhar, S., “Hydrodynamic and Hydromagnetic 
Stability”, Dover Publications, New York, U.S.A., (1981). 

9. Kumar, P., “Rayleigh-Taylor Instability of Rivlin-
Ericksen Elastico-Viscous Fluids in Presence of 
Suspended Particles Through Porous Medium”, India J. 
Pure Appl. Math., Vol. 31, No. 5, (2000), 533. 

10. Bhatia, P.K., “Rayleigh-Taylor Instability of Two 
Viscous Superposed Conducting Fluids in the Presence 
of a Uniform Horizontal Magnetic Field”, Nuov. Cim., 
Vol. 19B, (1974), 161. 

11. Sharma, R.C. and Thakur, K.D., “Stability of Superposed 
Fluids in the Presence of a Variable Magnetic Field”, 
Czech J. Phys., Vol. 50, (2000), 753. 

12. Rayleigh, L., “The Equilibrium of an Incompressible, 
Non-Viscous Fluid of Variable Density Stratified in the 
Vertical Direction”, Proc. Lond. Soc., Vol. 14, (1983), 
170. 

13. Sharma, V. and Rana, G.C., “Thermosolutal Instability 

of Rivlin-Ericksen Rotating Fluid in the Presence of 
Magnetic Field and Variable Gravity Field in Porous 
Medium”, Proc. Nat. Acad. Sci. India, Vol. 73, No. A, 
(2003), 1. 

14. Pundir, S.K. and Bahadur, R., “Stability of Stratified 
Visco-Elastic Walter’s (Model B’) Dusty Fluid in 
Porous Medium”, Acta Ciencia Indica, Vol. 3, 703 
(2005), 703-709. 

15. Kumar, P., Mohan, H. and Lal, M., “The Effect of 
Magnetic Field on Thermal Instability of Rotating 
Rivlin-Ericksen Visco-Elastic Fluid”, Int. J. of Maths. 
and Mathematics Sc., Vol. 28042, (2006), 1. 

16. Sharma, V.S. and Gupta, U., “Stability of Stratified 
Elastico-Viscous Walter’s (Model B') Fluid in the 
Presence of Horizontal Magnetic Field and Rotation in 
Porous Medium”, Archives of Mechanics, Vol. 58, No. 
2, (2006), 187. 

17. Gupta, U. and Sharma, G., “Rivlin-Ericksen Elastico-
Viscous Fluid Heated and Soluted From Below in the 
Presence of Compressibility Rotation and Hall Currents”, 
J. App. Maths. and Computing, Vol. 25, No. 1,2, 
(2007), 51. 

18. Bhatia, P.K. and Steiner, J.M., “Thermal Instability in a 
Visco-Elastic Fluid Layer in Hydromagnetics”, J. Math. 
Anal. Appl., Vol. 41, (1973), 271. 

19. Sharma, R.C., “The Instability of the Plane Interface 
Between Two Oldroydian Visco-Elastic Superposed 
Conducting Fluids in the Presence of an Applied 
Uniform Magnetic Field”, J. Maths. Phys. Sci., Vol. 12, 
(1978), 603. 

20. Kent, A., “Instability of a Laminar Flow of a Magnetic 
Field”, Phys. Fluids, Vol. 9, (1966), 1286. 

21. Gilman, P.A., “Instability of Magnetohydrostatic Stellar 
Meteorites from Magnetic Buoyancy”, Astrophysical J., 
Vol. 162, (1970), 1019. 

22. Jain, M.K. and Agrawal, S.C., “Stability of Stratified 
Shear Flow”, Ph.D Thesis, C.C.S. University, Meerut, 
Uttar Pradesh, India, (1983). 

 


