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Abstract This paper presents a scheduling problem with unrelated parallel machines and sequence-
dependent setup times that minimizes the total weighted tardiness. A new branch-and-bound (B and
B) algorithm is designed incorporating the lower and upper bounding schemes and several dominance
properties. The lower and upper bounds are derived through an assignment problem and the
composite dispatching rule (ATCS), respectively. We carry out computational experiments and the
related results are reported.
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1. INTRODUCTION

Production scheduling is a decision-making process
that plays a vital role in industries. Scheduling
problems are often categorized by the machine
configuration and constraints. Among the various
types of machine configurations, parallel machine
models are important in practice, in that such
models bring about more system capacity and
flexibility, while processing different jobs. Parallel
machine scheduling problems aim to allocate a set
of jobs on a number of parallel machines, so that
the customer’s requirements can be met. In
scheduling problems, machines often have to be
prepared between jobs. This process is considered
as a setup. Should the setups depend on both the
job to be processed and one just completed, setup
times are sequence-dependent.

Although there are many studies on scheduling
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problems, developing exact algorithms especially
for the problems involving sequence-dependent
setup times is so scarce. We focus on some studies
addressing either designing exact algorithms or
considering sequence-dependent setup times.
Dessouk [1] designed a branch-and-bound procedure
to schedule identical jobs with unequal ready times
on uniform parallel machines that minimized the
maximum lateness. An initial solution as an upper
bound was established by using some heuristic
procedures. Azizoglu, et al [2] addressed the
unrelated parallel machine scheduling problem
to minimize the total weighted flow time through
designing a branch-and-bound algorithm
incorporating some properties of optimal solution
and a lower bound scheme. Liaw, et al [3] developed
an efficient lower and upper bound to minimize the
total tardiness in the unrelated parallel machine
scheduling problem. The upper bound was derived
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from a two-phase heuristic method, while the
solution of an assignment problem resulted in the
lower bound. Rabadi, et al [4] proposed a branch-
and-bound (B and B) algorithm to solve a single
machine early/tardy scheduling problem with
unrestricted common due date and sequence-
dependent setup times. Luo, et al [5] proposed a B
and B algorithm including the implementation of
lower and upper bounding procedures, and
dominance rules to solve a single machine
scheduling problem with sequence-dependent setup
times that minimized the total tardiness. Shim, et al
[6] suggested a B and B algorithm by developing
several dominance rules and lower bound for an
unrelated parallel machine scheduling problem with
the objective of minimizing the total tardiness.

Pfund, et al [7] extended the composite
dispatching rule proposed by Lee, et al [8] to
minimize the total weighted tardiness on identical
parallel machines with sequence dependent setup
times. First, they developed a grid approach which
considered multiple values for scaling parameters,
and then used the experimentation to develop
regression equations to predict the scaling
parameters. Park, et al [9] considered the identical
parallel machine scheduling problem with sequence
dependent setup times. The objective of schedule was
to minimize total weighted tardiness. They
introduced a new factor, in addition to four factors
proposed by Lee, et al [10], to get more accurate
values for look-ahead parameters. They designed a
neural network to predict the look-ahead parameters.
Logendran, et al [11] considered the problem of
unrelated parallel machine scheduling with both the
machine and sequence-dependent setup times by
including dynamism for the job release and machine
availability. They also considered six different search
algorithms based on tabu search to minimize the
weighted tardiness, and investigated the efficacy and
efficiency of the proposed algorithm through an
extensive statistical analysis.

Anghinolfi, et al [12] addressed a parallel
machine scheduling problem with non-zero ready
times and sequence-dependent setup times and
designed a hybrid meta-heuristic (HMH) approach
that combines several aspects from a subset of
well-known meta-heuristics. The experimental
analysis showed that such an approach was suitable
to face the total tardiness criteria. Tavakkoli-
Moghaddam, et al [13] proposed a novel multi-
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objective model of a scheduling problem of
unrelated parallel machines with different speeds
that minimizes the number of tardy jobs and total
completion time of all jobs. They considered
sequence-dependent setup times, and some
precedence relations between jobs with non-
identical due dates and ready times. Tavakkoli-
Mogahddam, et al [14] presented an integer-linear
programming (ILP) model for an identical parallel-
machine scheduling problem with family setup
times that minimizes the total weighted flow time
(TWFT). They proposed genetic algorithms to
solve this model.

Nessah, et al [15] constructed a B and B
algorithm which incorporates the heuristic, the
lower bound, and the dominance properties to
minimize the total completion time in an identical
parallel machine scheduling problem with
sequence-dependent setup times and release dates.
Rocha, et al [16] designed a B and B algorithm to
minimize the additive functions including the
makespan and weighted tardiness criteria in an
unrelated parallel scheduling problem with
sequence and machine-dependent setup times. The
dominance rules have not been incorporated in the
proposed exact algorithm.

According to the literature review, there is no
research work regarding the design of a B and B
algorithm for the unrelated parallel machine
scheduling with sequence-dependent setup times.
Hence, in this paper by development of lower and
upper bounding schemes and dominance properties,
a B and B algorithm is designed to minimize the
total weighted tardiness. The main contributions of
this paper can be summarized as follows:

o Presenting new dominance properties
considering sequence-dependent setup times
in unrelated parallel machines scheduling.

. Developing the lower bound and upper
bound scheme based on the assignment
problem and composite dispatching rule
(ATCS), respectively, applied for the first
time for an unrelated parallel machine

scheduling  problem  with  sequence-
dependent setup times.
o Presenting the new concept of partial

pruning, in which only the children of the
parent node possessing specific features are
to be pruned.
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The reminder of paper is organized as follows. The
mathematical formulation is provided in Section 2.
Section 3 presents several dominance properties.
The lower bound scheme and upper bound
procedure are presented in the succeeding sections.
The proposed Band B algorithm is developed in
Section 6. The associated computational results are
given in Section 7. Finally, the remarking conclusion
is provided in Section 8.

2. PROBLEM DESCRIPTION
2.1. Notations

i,j Jobindices (i,j e J;i,j=1,2,.., n)

k  Machine index (ke M; k=1,2, ..., m)

t Position index (t € P;t=1,2, ..., n)

S,  Set of scheduled jobs in the partial schedule p

S, Set of unscheduled jobs

S, Set of unfilled positions

P, Processing time of job i on machine k&

d;  Due date of job i

w;  Priority (relative importance) of job i

S;;  Setup time to switch from job i to job j

AP"i,- The adjusted processing time for job j on
machine k when job i precedes job j

C'x The completion time of job i on machine k
scheduled in the #-th position

S]

Xip =
1 If jobischeduledin the t - th position on machine &
0 Otherwise

The processing and setup times are combined since
it makes the problem more appropriate to be
studied. So, the adjusted processing time matrix for
any machine k, [AP"] is defined as follows:

Rabadi, et al [4] also used a similar approach in
a single machine environment.

2.2. Assumptions

. Each job requires an operation that can
be processed on each machine.
o The setup time between two distinct jobs

depends on jobs sequence.
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. All jobs become available for processing
simultaneously.

. Processing times of jobs on different
machines may be varied.

o Preemptions and machine breakdown are
not allowed.

. All processing times and due dates are
deterministic.

o There is the triangular inequality among

setup times, that is S;; + Sy > Sy

2.3. Mathematical Model  Considering the
above-mentioned assumptions and notations, the
problem is formulated as the following integer
programming problem (P). The approach is similar
to the models presented in [2 and 3].

Problem P:
n m n
Z,=min ¥ ¥ X f(Cpy (1
i=lk=1t=1
s.t.
m n ¢ .
X X oy =1, vi 2
k=1t=1
nooy
Y xy <1, vtk 3)
i=1

t k s—1_s
cl=y Y ¥ AP xS IS 4
k Ig™1 k
k22 ss, ik e
l#iqg#i
. . C))
k1 k t—1
2 ARy + X AFyxy
l:] =
l#i
t
f(Ch)=wmax {0,Ch —d ;. } (5)

xhoel01}, Vikt(6)

Equation 2 ensures that each job is only assigned
to one position on one machine. Constraint (3)
implies that at most one job can be assigned to
each position on each machine. The completion
time of job i scheduled in the #th position on
machine & is given by Equation 4. Equation 5
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describes the considered objective function, called
total weighted tardiness. Finally, Equation 6 shows
the integrality constraint.

3. DOMINANCE PROPERTIES

In this section, we present several properties of an
optimal schedule leading to the substantial
improvements in the algorithm performance. The
following proposition generalizes the one given by
Azizoglu, et al [2] considering sequence-dependent
setup times.

3.1. Proposition There exists an optimal
schedule in which the sum of processing times of
the jobs assigned on machine & does not exceed

> max (max APr)+
]eJ}”EMlEJ v

> max (max APr) ™)
reM]GJlEJ v

\r=k |
Proof Let /; be the last job to be processed on
machine &, and C, be the completion time of /; in

an optimal schedule. For any other machine r
(r#k), it must be

C, +4P" , >C, , vr
LA =

c, >C, —4p’ , ,
0= M

Vr (®)
With /, having been taken from machine £ and
placed on machine 7, the total cost (i.e., the total
weighted tardiness) would decrease or not change
if Equation 8 did not hold. By summing Equation
(8) over all machines r # k, we obtain

S ¢ ~C 2m-DC ~ ¥ AP,
reM T k k przk Tk

This implies that

¢ <L X ¢ - X AR
ko Mleepm v rek "k
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Taking into account that

> Cl < Y max (maxAPr)
reM T jeJreMield

and

AP[ / <max(maxAPr)
r'k jedJield Y

Consequently

max (max APJF) +

2 reMield
] jeJ
¢ =—
kom| ¥ max(maxAP]r)

reMjeJield
\r#k

For any machine %, the value of 4, can represent an
upper bound on the total processing times of the
jobs assigned to machine k. Thus, the node
associated with the partial schedule p will be
pruned in the case the completion time for a job, say
job i, in a partial schedule is greater than or equal to
the A; value; that is Cy(p) > 4;. The following
proposition is the direct result of Proposition 1.

3.2. Proposition There exists an optimal
schedule in which job j processed last on any one
of the machines if

d . —maxd ,and d . +m1nAPk>Ak for all &
ieJ J ies Y

Proof According to Corollary 1 in Shim, et al [6]
developed to minimize the total tardiness in the
unrelated parallel machine scheduling, if there is a
job j whose due date is the largest one and d; + Py
> A, for all k, there is an optimal schedule in which
job j can be processed last on any machine.

Replacing Py with mln APk,] proves Proposition 2.

The followmg two properties are the
generalization of the ones developed by Luo, et al
[5] for a single machine tardiness problem. In the
following propositions, job, [i] refers to the index
of the job scheduled in the i-th position and the
following notations is used.
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J(z k) Set of jobs in the partial schedule =
assigned on machine .

(k) | u New partial schedule obtained by
assigning job u on machine &
preceded by the given partial schedule
7 on machine £.

Y(mk)|lu  Completed schedule composed of

(m,k)|u, in which the jobs belonging to
J-J((r,k)|u) assigned to any machine
except k.

3.3. Proposition
If 3i[ile J(n,k),

+ P,

Ay =Syt Puw S+ n

Sti-nm =P ~ S+ n =0

A3 =Si-nm S+ ntSu-nm S~

Sti-nm ~Su+n " Su-nm =S =<0

and
Ar =T~ i
that dominates Y (7.,k) | u.

+T[l] _T[l] <0, there is a schedule

Proof The proposition is proved by illustrating
that the total weighted tardiness decreases or
remains unchangeable by exchanging job [/] and
job [/] in the sequence for machine k. Let the
schedule be S = Y (x,k) | u. Consider another schedule
S’ obtained by interchanging the position of job [/]
and job [/] (see Figure 1).

In Part 1: CI :C]’TI =T1

In Part 2: The completion time of job [/], [i+1] < [/]

S| Il 1 itl I ]

1
T Pl Pt AR

ST il 1 it] M i 1

-~

Figure 1. Interchanging the position of jobs [i] and [/].
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<[I-1] has a change of A,. Given that A, <0; that
is, Cj;; > C(;;. We consider the following two cases

of d;;>C;; and d;;; < ;. Then, we have
Case 1: If  dj;; >y, then d[ ;12 C[’j]. So,

ATy =wjymax(0.Cp = d -
wijymax (0, Cpjy = dpp) = wi(0) + w7 (0) =0

Case 2: If dj;; <(j;), then we could consider two
sub cases: (a) d[; < ({;; and (b) d[ ;1= [

(a) If d[j] < that is, i —d[j] >0, then
ATpjy =wi (G =dp) =wi (G —dpjy) =
wi(Gj =G <0

(b) If d|;; = C[;; that is,C ;3 —d| ;; <0, then

AT;jy = w1 (0) = w1 (Crjy —dpjp)
=wid =G <0

Therefore, because A, <0, the weighted tardiness
of no job [;] increased.

In Part 3, given that A; <0, C, >C,, following
exactly the same procedure as that for Part 2
proves that the weighted tardiness of job u does not
increase. With respect to jobs [i] and [/], the
change of the weighted tardiness is
Ap =T}~ Ty + T — Ty <0. If Ap <0, the sum

of weighted tardiness of jobs [i] and [/] decreased
or did not changed. Moreover, the weighted
tardiness of each of other jobs does not increase
since A, <0 and A;<0. So, the total weighted

tardiness of jobs does not increase by this
interchanging. This completes the proof.

3.4. Proposition

If 3i[ile J(m k),

A2:

Sti—nti+ 1~ Si—npin =S+ 1~ ik <0
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Ay =S+ n S S~

=10 0+ =Y

and

AT,‘ = T[’l] _T[i] <0, there 1s a schedule that

dominates Y (k)| u.

Proof Consider the schedule S = Y (7.k)|u. We

construct another schedule S’by putting job [i]
between job [/] and job u (see Figure 2).

The completion time of job [ /], [{ +1] <[ /] <[!],
has a change of A,=S8, ,.,,-S;

_S[i][i+1] _P[i]k .

triangle inequality is given among setup times, it is
clear that A, <0. Following the same procedure

i-1][i1]
Since the assumption of the

used for Part 1 of the proposition 3 proves that the
weighted tardiness of job [j] is decreased or
unchanged.

Let consider job u, because A, <0, we have

C, =2 C, . Thus, the weighted tardiness of job u is not
increased. With respect to job [i], the change of
weighted tardiness is Ay, =T —Tp; . If AT, <0, the
weighted tardiness of job [i{] is decreased or
unchanged. To summarize, since the weighted
tardiness of each job does not increase, the Y (7.k)|u
is dominated.

4. LOWER BOUND

By solving an assignment problem, a lower
bounding procedure is provided in this section.
This approach was proposed by Azizoglu, et al [2].
We generalize this approach to find a lower bound
for unrelated parallel machine with sequence-
dependent setup times.

o]
=
-

it . 1 u

(@]

il 1+ - 1 i 3

Figure 2. Putting jobs [] and [/].
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Replacing the exact completion times (Cj)

with the rough ones (CA'l-tk) is the main feature of

this lower bounding scheme that results into
defining an assignment problem as follows:

Problem AP:

n m n

Z, =min ¥y Y Y f(CL)xt 9)
S P P
S.t.
m n
xho=1, Vi (10)

k=1 t=1
n

xh <1, Vtk (11)
i=l1
F(CL) =w,max{0,C', —d,} (12)
xj €{0,1}, Vik,t (13)

Provided that the rough completion times (C%)
are smaller than or equal to the exact completion
times (Cj) for all i, k, and ¢, the optimal solution

of the above assignment problem will be a lower
bound on the original problem. The following

definition of ((A?,-tk) supports the conditions.

A

1 k
i = AB;

2

Vi k

Cl = min apk +ct1 , Vikt,and t#1
ik — T\ i T Y gk
J *1
To find a lower bound, we adhere to the same
procedure used by Azizoglu, et al [2]. We solve the
assignment problem only at the root node and use

the dual values at others nodes. The dual problem
of AP is defined as follows:

Su+ sy (14)
V4 =max u. + v
Ap s Zis
S.t.

ot _
w+vy <wily , Vitk (15)
vy <0, Vik (16)
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u; is unrestricted in sign, Vi (17

Where wu; and v4; are the dual variables
corresponded to Constraints (10) and (11),
respectively. Consider A(s) as an assignment

problem related to partial schedule o, the optimal
solution of which Z, (¢) is a lower bound on the

total weighted tardiness of unscheduled jobs. Since
flf( (o) uses more information in regard to the

partial schedule, never will 7 (s) be smaller than

7% for all unscheduled jobs and unfilled positions.
Hence, u] +vj, <wT} <wT (o). This implies that
the optimal solution at the root node provides a

feasible solution to the dual problem corresponding
to A(o). As the dual problem is a maximization

one, a feasible dual solution is a lower bound on
the total weighted tardiness of unscheduled jobs
provided by the following equation:

* *
Lo owp+ X vy=

icEo) ' (tk) e F(o)
Z (o)—- X uik— > v*
B e B L ubheRo ©

Where E (o) and F (o) denote the set of
unscheduled jobs and the set of unfilled positions,
respectively. Given the partial schedule o, with an
unscheduled job j added to the first available
position, say position g, on machine r, the lower
bound on the total weighted tardiness of all
possible complete schedules will be

LB =
r r
. > wl.Tl.(0')+wjmax(AP (0')+APZ j—dj,0)+
i¢ E(o) r
* k %

*
Z, p— > u.- > V, —U.—V
e N O 7

Where T;(o) is tardiness of job 7 in partial schedule

o, AP"(o) is the sum of the adjusted processing
times of the jobs processed on machine 7 in the
partial schedule o, and /, is the last job assigned on
machine 7 in o.

As the earliest possible completion time for
each unscheduled job i € E(o) is as follows:

EPC.= min {APk(U)+APZk}
P ol<k<m k'
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and the lower bound can be modified as follows:
LB =

r r
. > wl.Tl.(0')+wjmax (4P (0')+API j_dj’0)+
ig E(o) r

AP~ . up — Vik "% " Vagr
max i€ E(o) (tk)e F(o)
> W, max {O,EPCl.—dl.}
ieE(o)

5. UPPER BOUND

As a good upper bound has a direct impact on the
performance of the B and B algorithm, a two-phase
procedure is designed to compute the upper bound.
In the first phase, we generalize the composite
dispatching rule, namely apparent tardiness cost
and setup (ATCS), proposed by Lee, et al [10],
while in the second phase we improve the schedule
obtained in the first phase by a local improvement
procedure. The steps of the upper bounding
scheme are summarized as follows:

Step 1. Consider U as the set of unscheduled job,
and AP" as the sum of adjusted processing times of
the jobs that have already been processed on
machine k. Set the initial value of U = {1, 2,...,n}
and AP' =0 for k=1, 2, ..., m.

Step 2. Specify the first available machine; that
is AP* = min {4P"}

1<k<m

Step 3. Determine the unscheduled job ;* such
that ]j*k* :1}13/)({]},,(*}
[ 4=

jk

k*
w. max{(),dj—AP ij*} Sl ]
J exp = exp =

P . kP k,S

Jk k
I 4 The last job scheduled on
k

machine k"
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Py
— noo
Py=Y -2 k The average job processing
k i=1 "
times of machine k.
S The average of all setup
time combinations.
Step 4. Schedule job ; in the first available

position on machine k~ and update
APY = AP* 1+ AP,

Step 5. If all jobs are scheduled, go to Step 6;
otherwise, go back to Step 2.

Step 6. Improve the given schedule on each
machine applying adjacent pair-wise interchanges.

K, and k, are look-ahead parameters. We use
the equations suggested by Lee, et al [10] to
quantify them.

6. B AND B ALGORITHM

The implementation of the proposed B and B
algorithm to minimize the total weighted tardiness is
elaborated in this section. The main procedures
through which the B and B algorithm should be
designed are the choice of a lower bound, the
utilization of an initial solution as an upper bound,
the incorporation of dominance rules, and the
specification of branching mechanism (Baker [17]).
In the search tree, each node, say a node in the
i-th level corresponds to a partial schedule in
which i jobs are scheduled. In most B and B
algorithm for parallel machine, each parent node
can be partitioned into m(n-i) chilled nodes, each
of which includes the parent node plus the
assignment of an unscheduled job to the first
available position on one machine. To avoid
generating redundant schedules, we use the
branching scheme devised by Shim, et al [6]. In this
branching scheme, only the child nodes associated
with machines, the indices of which are not less
than the machine index associated with parent node
are generated from each parent node. This scheme
gives rise to substantial reduction in the number of
nodes generated in the branch-and-bound algorithm.
Before the execution of the B and B algorithm, the
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number of jobs to be considered should be reduced
using Proposition 2. The job which satisfies the
condition of this proposition can be scheduled last in
an optimal solution. Whenever one job is eliminated,
the value of 4 is updated for all machines and the
condition is again checked. Then, we utilize an initial
solution as an upper bound generalizing the
composite dispatching rule (i.e., ATCS) at the root
node of the search tree. Whenever a complete
schedule is found, the upper bound is updated
providing that the last complete schedule is better
than the initial solution. To select a node to
generate branches from, the best-first branching
rule is applied. The best-first branching rule leads
the algorithm to branch the active nodes with the
smallest lower bound. When the child nodes are
generated, the dominance propositions are employed
to check whether the schedule associated with the
child nodes are dominated or not. Not only the nodes
corresponding to the dominates schedules, but the
nodes whose lower bound is greater than or equal to
upper bound also are pruned. By using dominance
propositions, either full pruning or partial pruning can
be occurred. In full pruning, all children of the parent
node are to be pruned, while in partial pruning only
the children of the parent node associated with the
machines whose indices are greater than the index of
machine associated with the parent node are to be
pruned. Full pruning results from using Proposition 1,
while Propositions 3 and 4 lead to partial pruning.

7. COMPUTATIONAL EXPERIMENTS

The branch-and-bound algorithm has been compiled
in Matlab 2006a. The performance of the proposed
algorithm is reported on randomly generated
problems. Generally 144 test problems are generated,
one instance of each combination of six levels for
the number of jobs (n=6, 8, 10, 14, 18, 20), two
levels for the number of machines (m=2, 4), two
levels for the tardiness factor TF = 0.2, 0.9, three
levels for the due date ranges (DDR=0.2, 0.6,1), and
two levels for the setup times. Processing times are
randomly chosen from the uniform distribution
between 5 and 200. For the setup times, two
categories are defined. In the first category setup
times are small and generated from U[25,50], while
in the second category setup times are large and
generated from U[25,150]. Due dates are randomly
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generated from a uniform distribution whose mean
is set to P,xN%(1-TF) and whose range is set to
DDRxNxP,,, where P, is the mean processing
times. The overall performance of our proposed B
and B algorithm is illustrated in Table 1.

By considering six levels for the number of jobs
and two levels for the number of machines, twelve
different size groups are produced. In each group,
twelve test problems characterized with different
tardiness factor, due date range, and setup times
exist. The result in Table 1 is concerned just with
different size. As can be seen, the percentage of
problems solved just using Proposition 2 is so
considerable for all job sizes, and the average
percentage of problem solved using this proposition
has been increased with the increasing the number
of machines. As it has been mentioned before,
Preposition 2 can schedule the jobs satisfying the
condition before starting the B and B algorithm.
Therefore, the problems solved just using this
preposition have not undergone the B and B
algorithm. When the number of jobs and the number
of machines is increased, test problems either
cannot be solved or are solved just using
Proposition 2. In this case, the average times
required for solving the problems is decreased as
this average is calculated only for the jobs solved
with 15 minutes. So the small amount of the average
processing time reported in Table 1 for large-sized
problems is because of solving most problems just
using Proposition 2. Table 2 shows the percentage
of the solved problems for two various categories
defined for the setup times. It can be seen that the
value of setup times does not have a significant
effect on the percentage of solved problems.

With respect to the results in Table 1, we find
out when the tardiness factor is set to the largest
value (i.e. 0.9), and the due date ranges is set to the
smallest value (i.e. 0.2), most test problems cannot
be solved. Since the levels which have been chosen
for the tardiness factor and due date ranges often
leads to test problems with tight due dates
especially for large-sized problems, we generate
36 new test problems, three instances of each
combination of six levels for the number of jobs
(n=6, 8, 10, 14, 18, 20), two levels for the number
of machines (m=2, 4), one level for the tardiness
factor TF = 0.7, one level for the due date ranges
(DDR=0.3), and one level for the small setup
times. The detailed results are provided in Table 3.
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The proposed B and B algorithm performs well
with up to four machines and 10 jobs. However, it
seems that the performance of the algorithm is
greatly affected by the input values of the given
problems. For example, when the number of jobs is
equal to 8 and the number of machines equals to 4,
the gap between execution times is so large. It is clear
that for obtaining more solid results more numerical
experiments should be carried out. It seems that the
uniform distribution proposed for generating due
dates is not appropriate. In future research, we are
going to complete the computational results and
clarify the influence of each factor on the
performance of the B and B algorithm.

8. CONCLUSION

This paper has developed a new branch-and-bound
(B and B) algorithm for unrelated parallel machine
scheduling problems with sequence-dependent setup
time. Several dominance properties have been
provided. The lower bound has been derived through
assignment problem. The upper bound has been
resulted from generalizing the composite dispatching
rule, namely ATCS. Our proposed B and B algorithm
has incorporated all these procedures to minimize
the total weighted tardiness. We have observed that
Proposition 2 often leads to the final solution with
increasing the size of problems, and also the
suggested algorithm gives the optimal solution for
problems with up to 10 jobs and 4 machines in all
combination of tardiness factor and due date
ranges. In following we aim to carry out more
numerical experiments to achieve solid results.
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10. APPENDIX

The result of Table 1 is the summarization of data
provided in Table 4 to 9.
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TABLE 1. The Overall Performance of the Algorithm.

Size Time (s.) PP2 Solved
(2,6) 5.58 50 100

(2,8) 35.79 33.33 83.33
(2,10) 222 41.67 75

(2,14) 2.26 41.67 83.33
(2,18) 4.02 33.33 66.67
(2,20) 3.96 66.67 83.33
(4,6) 68.01 83.33 100

(4,8) 3.75 50 91.67
(4,10) 2.28 58.33 91.67
(4,14) 2.27 75 91.67
(4,18) 3.93 75 83.33
(4,20) 4.16 66.67 83.33

PP2: Denotes the percentage of problems solved completely just using proposition 2.

TABLE 2. Influence of Setup Times on the Percentage of the Solved Problems.

No. of Jobs Setup Solved
6 small 100.00
Large 100.00
o small 100.00
Large 83.33
small 83.33
10
Large 83.33
small 83.33
14
Large 91.67
small 83.33
18
Large 66.67
small 83.33
20
Large 83.33
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TABLE 3. The Performance of the Algorithm at TF=0.3 and DDR=0.7.

No. of Jobs No. of Machines Time (s.) NS
2.00 4.02 12.00
2.00 7.40 347.00
6 2.00 7.11 313.00
4.00 16.44 950.00
4.00 4.00 24.00
4.00 20.27 1304.00
2.00 18.33 1318.00
2.00 441.09 14572.00
g 2.00 257.83 9458.00
4.00 554.97 12234.00
4.00 3600.00 31341.00
4.00 4.07 32.00
2.00 34.10 3646.00
2.00 1419.48 46571.00
10 2.00 902.36 32173.00
4.00 Not Solved
4.00 2.24 0.00
4.00 3600.00 38885.00
2.00 Not Solved
2.00 Not Solved
14 2.00 Not Solved
4.00 Not Solved
4.00 5400.00 59380.00
4.00 5400.00 56881.00
2.00 Not Solved
2.00 Not Solved
18 2.00 Not Solved
4.00 Not Solved
4.00 Not Solved
4.00 Not Solved
2.00 Not Solved
2.00 Not Solved
20 2.00 Not Solved
4.00 Not Solved
4.00 Not Solved
4.00 Not Solved

NS: Denotes the number of sub problems considered for the problem.
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TABLE 4. The Performance of the Algorithm at N=6.

No. Job No. Machine Time (s.) No. Nodes DDR TF Setup
6 2 2.29 13 0.2 0.2 Large
6 2 3.84 0 0.6 0.9 Large
6 2 3.78 4 1 0.2 Large
6 2 14.83 368 0.2 0.9 Large
6 2 3.88 4 0.6 0.2 Large
6 2 3.61 0 1 0.9 Large
6 2 3.75 12 0.2 0.2 Small
6 2 3.60 0 0.6 0.9 Small
6 2 3.71 0 1 0.2 Small
6 2 16.18 1092 0.2 0.9 Small
6 2 3.72 0 0.6 0.2 Small
6 2 3.76 0 1 0.9 Small
6 4 3.61 0 0.2 0.2 Large
6 4 3.62 0 0.6 0.9 Large
6 4 3.64 0 1 0.2 Large
6 4 775.65 13148 0.2 0.9 Large
6 4 3.70 0 0.6 0.2 Large
6 4 3.70 0 1 0.9 Large
6 4 3.69 0 0.2 0.2 Small
6 4 3.68 0 0.6 0.9 Small
6 4 3.58 0 1 0.2 Small
6 4 3.84 16 0.2 0.9 Small
6 4 3.72 0 0.6 0.2 Small
6 4 3.68 0 1 0.9 Small

280 - Vol. 22, No. 3, September 2009 IJE Transactions A: Basics



TABLE 5. The Performance of the Algorithm at N=8.

No. Job No. Machine Time (s.) No .Nodes DDR TF Setup
8 2 231 16 0.2 0.2 Large
8 2 3600.00 34318 0.6 0.9 Large
8 2 3.69 0 1 0.2 Large
8 2 294.08 10176 0.2 0.9 Large
8 2 3.81 14 0.6 0.2 Large
8 2 3.68 6 1 0.9 Large
8 2 4.09 16 0.2 0.2 Small
8 2 35.29 2034 0.6 0.9 Small
8 2 3.64 0 1 0.2 Small
8 2 977.54 18667 0.2 0.9 Small
8 2 3.73 0 0.6 0.2 Small
8 2 3.60 0 1 0.9 Small
8 4 3.84 0 0.2 0.2 Large
8 4 3.88 4 0.6 0.9 Large
8 4 3.64 0 1 0.2 Large
8 4 3600.00 30484 0.2 0.9 Large
8 4 3.88 12 0.6 0.2 Large
8 4 3.80 4 1 0.9 Large
8 4 3.64 0 0.2 0.2 Small
8 4 3.71 8 0.6 0.9 Small
8 4 3.67 0 1 0.2 Small
8 4 3.97 32 0.2 0.9 Small
8 4 3.61 0 0.6 0.2 Small
8 4 3.64 0 1 0.9 Small
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TABLE 6. The Performance of the Algorithm at N=10.

No. Job No. Machine Time (s.) No. Nodes DDR TF Setup
10 2 3600.00 41432 0.2 0.2 Large
10 2 2.30 0 0.6 0.9 Large
10 2 2.28 0 1 0.2 Large
10 2 3600.00 39161 0.2 0.9 Large
10 2 2.23 20 0.6 0.2 Large
10 2 2.29 11 1 0.9 Large
10 2 2.25 20 0.2 0.2 Small
10 2 221 18 0.6 0.9 Small
10 2 2.16 0 1 0.2 Small
10 2 3600.00 37609 0.2 0.9 Small
10 2 2.10 0 0.6 0.2 Small
10 2 2.10 0 1 0.9 Small
10 4 2.24 0 0.2 0.2 Large
10 4 2.31 16 0.6 0.9 Large
10 4 2.27 0 1 0.2 Large
10 4 2.37 40 0.2 0.9 Large
10 4 233 0 0.6 0.2 Large
10 4 2.24 0 1 0.9 Large
10 4 2.26 0 0.2 0.2 Small
10 4 2.31 0 0.6 0.9 Small
10 4 2.23 0 1 0.2 Small
10 4 3600.00 43872 0.2 0.9 Small
10 4 221 20 0.6 0.2 Small
10 4 2.27 16 1 0.9 Small
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TABLE 7. The Performance of the Algorithm at N=14.

No. Job No. Machine Time (s.) No. Nodes DDR TF Setup
14 2 2.51 28 0.2 0.2 Large
14 2 2.21 0 0.6 0.9 Large
14 2 2.12 0 1 0.2 Large
14 2 3600.00 48741 0.2 0.9 Large
14 2 2.27 16 0.6 0.2 Large
14 2 2.29 6 1 0.9 Large
14 2 2.43 28 0.2 0.2 Small
14 2 2.10 0 0.6 0.9 Small
14 2 2.18 0 1 0.2 Small
14 2 3600.00 45033 0.2 0.9 Small
14 2 2.07 0 0.6 0.2 Small
14 2 2.39 4 1 0.9 Small
14 4 2.26 0 0.2 0.2 Large
14 4 2.24 0 0.6 0.9 Large
14 4 2.19 0 1 0.2 Large
14 4 2.73 56 0.2 0.9 Large
14 4 2.16 0 0.6 0.2 Large
14 4 2.23 0 1 0.9 Large
14 4 2.26 0 0.2 0.2 Small
14 4 2.29 0 0.6 0.9 Small
14 4 2.11 0 1 0.2 Small
14 4 3600.00 53577 0.2 0.9 Small
14 4 2.23 4 0.6 0.2 Small
14 4 2.31 0 1 0.9 Small
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TABLE 8. The Performance of the Algorithm at N=18.

No. Job No. Machine Time (s.) No. Nodes DDR TF Setup
18 2 3600.00 35634 0.2 0.2 Large
18 2 4.05 28 0.6 0.9 Large
18 2 4.18 0 1 0.2 Large
18 2 3600.00 35804 0.2 0.9 Large
18 2 3.93 32 0.6 0.2 Large
18 2 3600.00 27686 1 0.9 Large
18 2 4.73 34 0.2 0.2 Small
18 2 3.90 28 0.6 0.9 Small
18 2 4.08 0 1 0.2 Small
18 2 3600.00 35600 0.2 0.9 Small
18 2 3.63 0 0.6 0.2 Small
18 2 3.70 0 1 0.9 Small
18 4 3.92 0 0.2 0.2 Large
18 4 3.83 0 0.6 0.9 Large
18 4 3.64 0 1 0.2 Large
18 4 3600.00 43796 0.2 0.9 Large
18 4 4.01 0 0.6 0.2 Large
18 4 3.83 0 1 0.9 Large
18 4 4.10 0 0.2 0.2 Small
18 4 3.98 0 0.6 0.9 Small
18 4 4.34 12 1 0.2 Small
18 4 3600.00 43592 0.2 0.9 Small
18 4 3.73 0 0.6 0.2 Small
18 4 3.90 0 1 0.9 Small
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TABLE 9. The Performance of the Algorithm at N=20.

No. Job No. Machine Time (s.) No. Nodes DDR TF Setup
20 2 4.56 40 0.2 0.2 Large
20 2 3.78 0 0.6 0.9 Large
20 2 3.96 0 1 0.2 Large
20 2 3600.00 36710 0.2 0.9 Large
20 2 4.57 32 0.6 0.2 Large
20 2 3.86 0 1 0.9 Large
20 2 3.72 0 0.2 0.2 Small
20 2 3.86 0 0.6 0.9 Small
20 2 3.84 0 1 0.2 Small
20 2 3600.00 36710 0.2 0.9 Small
20 2 3.74 0 0.6 0.2 Small
20 2 3.72 0 1 0.9 Small
20 4 5.98 0 0.2 0.2 Large
20 4 3.84 0 0.6 0.9 Large
20 4 3.87 0 1 0.2 Large
20 4 3600.00 45224 0.2 0.9 Large
20 4 4.10 4 0.6 0.2 Large
20 4 4.07 16 1 0.9 Large
20 4 3.85 0 0.2 0.2 Small
20 4 4.10 0 0.6 0.9 Small
20 4 3.76 0 1 0.2 Small
20 4 3600.00 44768 0.2 0.9 Small
20 4 4.07 0 0.6 0.2 Small
20 4 3.93 0 1 0.9 Small
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