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Abstract   This paper presents a scheduling problem with unrelated parallel machines and sequence-
dependent setup times that minimizes the total weighted tardiness. A new branch-and-bound (B and 
B) algorithm is designed incorporating the lower and upper bounding schemes and several dominance 
properties. The lower and upper bounds are derived through an assignment problem and the 
composite dispatching rule (ATCS), respectively. We carry out computational experiments and the 
related results are reported. 
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سازي وابسته به توالی را  هاي آماده مرتبط با زمان هاي موازي نا بندي ماشين  زمانةاين مقاله مسئلچكيده       

گوريتم شاخه و کران جديدي شامل رويکردهايي براي لا. دهد کاهش می که کل ديرکرد وزني را کند سی میبرر
ترتيب  حد پايين و حد بالا به. هاي مسئله طراحي شده است بر ويژگي يافتن حد پايين و حد بالا و قوانين مبتني

در .  است  حاصل شده(ATCS) هاي ديسپچينگ مرکب کمک يکي از قانون طريق حل مسئله تخصيص و به از
 . شده است عرضههاز اجراي الگوريتم پيشنهاد شد انتها نتايج حاصل

 
 

1. INTRODUCTION 
 
Production scheduling is a decision-making process 
that plays a vital role in industries. Scheduling 
problems are often categorized by the machine 
configuration and constraints. Among the various 
types of machine configurations, parallel machine 
models are important in practice, in that such 
models bring about more system capacity and 
flexibility, while processing different jobs. Parallel 
machine scheduling problems aim to allocate a set 
of jobs on a number of parallel machines, so that 
the customer’s requirements can be met. In 
scheduling problems, machines often have to be 
prepared between jobs. This process is considered 
as a setup. Should the setups depend on both the 
job to be processed and one just completed, setup 
times are sequence-dependent. 
     Although there are many studies on scheduling 

problems, developing exact algorithms especially 
for the problems involving sequence-dependent 
setup times is so scarce. We focus on some studies 
addressing either designing exact algorithms or 
considering sequence-dependent setup times. 
Dessouk [1] designed a branch-and-bound procedure 
to schedule identical jobs with unequal ready times 
on uniform parallel machines that minimized the 
maximum lateness. An initial solution as an upper 
bound was established by using some heuristic 
procedures. Azizoglu, et al [2] addressed the 
unrelated parallel machine scheduling problem 
to minimize the total weighted flow time through 
designing a branch-and-bound algorithm 
incorporating some properties of optimal solution 
and a lower bound scheme. Liaw, et al [3] developed 
an efficient lower and upper bound to minimize the 
total tardiness in the unrelated parallel machine 
scheduling problem. The upper bound was derived 
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from a two-phase heuristic method, while the 
solution of an assignment problem resulted in the 
lower bound. Rabadi, et al [4] proposed a branch-
and-bound (B and B) algorithm to solve a single 
machine early/tardy scheduling problem with 
unrestricted common due date and sequence-
dependent setup times. Luo, et al [5] proposed a B 
and B algorithm including the implementation of 
lower and upper bounding procedures, and 
dominance rules to solve a single machine 
scheduling problem with sequence-dependent setup 
times that minimized the total tardiness. Shim, et al 
[6] suggested a B and B algorithm by developing 
several dominance rules and lower bound for an 
unrelated parallel machine scheduling problem with 
the objective of minimizing the total tardiness. 
     Pfund, et al [7] extended the composite 
dispatching rule proposed by Lee, et al [8] to 
minimize the total weighted tardiness on identical 
parallel machines with sequence dependent setup 
times. First, they developed a grid approach which 
considered multiple values for scaling parameters, 
and then used the experimentation to develop 
regression equations to predict the scaling 
parameters. Park, et al [9] considered the identical 
parallel machine scheduling problem with sequence 
dependent setup times. The objective of schedule was 
to minimize total weighted tardiness. They 
introduced a new factor, in addition to four factors 
proposed by Lee, et al [10], to get more accurate 
values for look-ahead parameters. They designed a 
neural network to predict the look-ahead parameters. 
Logendran, et al [11] considered the problem of 
unrelated parallel machine scheduling with both the 
machine and sequence-dependent setup times by 
including dynamism for the job release and machine 
availability. They also considered six different search 
algorithms based on tabu search to minimize the 
weighted tardiness, and investigated the efficacy and 
efficiency of the proposed algorithm through an 
extensive statistical analysis. 
     Anghinolfi, et al [12] addressed a parallel 
machine scheduling problem with non-zero ready 
times and sequence-dependent setup times and 
designed a hybrid meta-heuristic (HMH) approach 
that combines several aspects from a subset of 
well-known meta-heuristics. The experimental 
analysis showed that such an approach was suitable 
to face the total tardiness criteria. Tavakkoli-
Moghaddam, et al [13] proposed a novel multi-

objective model of a scheduling problem of 
unrelated parallel machines with different speeds 
that minimizes the number of tardy jobs and total 
completion time of all jobs. They considered 
sequence-dependent setup times, and some 
precedence relations between jobs with non-
identical due dates and ready times. Tavakkoli-
Mogahddam, et al [14] presented an integer-linear 
programming (ILP) model for an identical parallel-
machine scheduling problem with family setup 
times that minimizes the total weighted flow time 
(TWFT). They proposed genetic algorithms to 
solve this model. 
     Nessah, et al [15] constructed a B and B 
algorithm which incorporates the heuristic, the 
lower bound, and the dominance properties to 
minimize the total completion time in an identical 
parallel machine scheduling problem with 
sequence-dependent setup times and release dates. 
Rocha, et al [16] designed a B and B algorithm to 
minimize the additive functions including the 
makespan and weighted tardiness criteria in an 
unrelated parallel scheduling problem with 
sequence and machine-dependent setup times. The 
dominance rules have not been incorporated in the 
proposed exact algorithm. 
     According to the literature review, there is no 
research work regarding the design of a B and B 
algorithm for the unrelated parallel machine 
scheduling with sequence-dependent setup times. 
Hence, in this paper by development of lower and 
upper bounding schemes and dominance properties, 
a B and B algorithm is designed to minimize the 
total weighted tardiness. The main contributions of 
this paper can be summarized as follows: 
 
• Presenting new dominance properties 

considering sequence-dependent setup times 
in unrelated parallel machines scheduling. 

• Developing the lower bound and upper 
bound scheme based on the assignment 
problem and composite dispatching rule 
(ATCS), respectively, applied for the first 
time for an unrelated parallel machine 
scheduling problem with sequence-
dependent setup times. 

• Presenting the new concept of partial 
pruning, in which only the children of the 
parent node possessing specific features are 
to be pruned. 
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The reminder of paper is organized as follows. The 
mathematical formulation is provided in Section 2. 
Section 3 presents several dominance properties. 
The lower bound scheme and upper bound 
procedure are presented in the succeeding sections. 
The proposed Band B algorithm is developed in 
Section 6. The associated computational results are 
given in Section 7. Finally, the remarking conclusion 
is provided in Section 8. 
 
 
 

2. PROBLEM DESCRIPTION 
 
2.1. Notations 
 
i, j Job indices (i, j ∈ J; i, j = 1, 2, ..., n) 
k Machine index (k ∈ M; k = 1, 2, ..., m) 
t  Position index (t ∈ P; t = 1, 2, ..., n) 
Sp Set of scheduled jobs in the partial schedule p 
Su  Set of unscheduled jobs 
Sv  Set of unfilled positions 
Pik Processing time of job i on machine k 
di  Due date of job i 
wi  Priority (relative importance) of job i 
Sij  Setup time to switch from job i to job j 
APk

ij The adjusted processing time for job j on 
machine k when job i precedes job j 

Ct
ik  The completion time of job i on machine k 

scheduled in the t-th position 
 

⎩
⎨
⎧

=

Otherwise     0
 machineon position th - tin the scheduled  job If     1 ki

xt
ik

 
The processing and setup times are combined since 
it makes the problem more appropriate to be 
studied. So, the adjusted processing time matrix for 
any machine k, [APk] is defined as follows: 
 
APk

ij = Pjk + Sij; (i, j =1, 2,..., n) 
 
Rabadi, et al [4] also used a similar approach in 
a single machine environment. 
 
2.2. Assumptions 

 
• Each job requires an operation that can 

be processed on each machine. 
• The setup time between two distinct jobs 

depends on jobs sequence. 

• All jobs become available for processing 
simultaneously. 

• Processing times of jobs on different 
machines may be varied. 

• Preemptions and machine breakdown are 
not allowed. 

• All processing times and due dates are 
deterministic. 

• There is the triangular inequality among 
setup times, that is Sij + Sjk ≥ Sik 

 
2.3. Mathematical Model   Considering the 
above-mentioned assumptions and notations, the 
problem is formulated as the following integer 
programming problem (P). The approach is similar 
to the models presented in [2 and 3].  
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t
ikx

n

1i

m

1k

n

1t
t
ikCfpZ )(min ∑

=
∑
=

∑
=

=  (1) 

 
s.t. 
 

1
m

1k

n

1t
t
ikx =∑

=
∑
=

,   i∀  (2) 

 

1
n

1i
t
ikx ≤∑

=
 ,   k,t∀  (3) 

 

∑

≠
=

−+∑
=

+−∑

≠
=

∑

≠
=

∑
−

=
=

n

il
1l

1t
lkxk

liAP1
lkx

n

1l
k
llAP

s
qkx1s

lkx
n

il
1l

n

iq
1q

1t

2s
k
lqAPt

ikC

 (4) 

 

}{max)( idt
ikC0,iwt

ikCf −=  (5) 
 

{ }0,1t
ikx ∈  ,   t,k,i∀ (6) 

 

Equation 2 ensures that each job is only assigned 
to one position on one machine. Constraint (3) 
implies that at most one job can be assigned to 
each position on each machine. The completion 
time of job i scheduled in the t-th position on 
machine k is given by Equation 4. Equation 5 
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describes the considered objective function, called 
total weighted tardiness. Finally, Equation 6 shows 
the integrality constraint.  
 
 
 

3. DOMINANCE PROPERTIES 
 
In this section, we present several properties of an 
optimal schedule leading to the substantial 
improvements in the algorithm performance. The 
following proposition generalizes the one given by 
Azizoglu, et al [2] considering sequence-dependent 
setup times. 
 
3.1. Proposition   There exists an optimal 
schedule in which the sum of processing times of 
the jobs assigned on machine k does not exceed 
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Proof   Let lk be the last job to be processed on 
machine k, and 

klC be the completion time of lk in 
an optimal schedule. For any other machine r 
(r≠k), it must be 
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With lk having been taken from machine k and 
placed on machine r, the total cost (i.e., the total 
weighted tardiness) would decrease or not change 
if Equation 8 did not hold. By summing Equation 
(8) over all machines r ≠ k, we obtain 
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For any machine k, the value of Ak can represent an 
upper bound on the total processing times of the 
jobs assigned to machine k. Thus, the node 
associated with the partial schedule p will be 
pruned in the case the completion time for a job, say 
job ,i  in a partial schedule is greater than or equal to 
the Ak value; that is Cik(p) ≥ Ak. The following 
proposition is the direct result of Proposition 1. 
 
3.2. Proposition   There exists an optimal 
schedule in which job j processed last on any one 
of the machines if 
 

id
Jijd

∈
= max , and kAk

ijAP
Jijd ≥

∈
+ min    for all k  

 
Proof   According to Corollary 1 in Shim, et al [6] 
developed to minimize the total tardiness in the 
unrelated parallel machine scheduling, if there is a 
job j whose due date is the largest one and dj + Pjk 
≥ Ak for all k, there is an optimal schedule in which 
job j can be processed last on any machine. 
Replacing Pjk with min

i J∈
 APk

ij proves Proposition 2. 

     The following two properties are the 
generalization of the ones developed by Luo, et al 
[5] for a single machine tardiness problem. In the 
following propositions, job, [i] refers to the index 
of the job scheduled in the i-th position and the 
following notations is used. 
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J(π,k) Set of jobs in the partial schedule π 
assigned on machine k. 

(π,k) | u  New partial schedule obtained by 
assigning job u on machine k 
preceded by the given partial schedule 
π on machine k. 

∑(π,k) | u  Completed schedule composed of 
(π,k)|u, in which the jobs belonging to 
J-J((π,k)|u) assigned to any machine 
except k. 

 
3.3. Proposition 
 
If )(][ k,πJii, ∈∃ ,  
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and 
 

−′= ][Δ iTT 0,lTlTiT ≤−′+ ][][][  there is a schedule 

that dominates ∑(π,k) | u. 
 
Proof   The proposition is proved by illustrating 
that the total weighted tardiness decreases or 
remains unchangeable by exchanging job [i] and 
job [l] in the sequence for machine k. Let the 
schedule be S = ∑(π,k)| u. Consider another schedule 
S ′ obtained by interchanging the position of job [i] 
and job [l] (see Figure 1). 
 
In Part 1: 1T1T,1C1C ′=′=  
 
In Part 2: The completion time of job [j], [i+1] ≤ [j] 

≤ [l-1] has a change of 2Δ . Given that 02 ≤Δ ; that 
is, ][][ jj CC ′≥ . We consider the following two cases 
of ][][ jj Cd ≥  and ][][ jj Cd ≤ . Then, we have 
 
Case 1: If    ][][ jj Cd ≥ , then ][][ jj Cd ′≥ . So, 
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Case 2: If ][][ jj Cd ≤ , then we could consider two 
sub cases: (a) ][][ jj Cd ′≤  and (b) ][][ jj Cd ′≥  
 
(a) If ][][ jj Cd ′≤ ; that is, 0][][ ≥−′ jj dC , then 
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(b) If ][][ jj Cd ′≥ ; that is, 0][][ ≤−′ jj dC , then 
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Therefore, because 02 ≤Δ , the weighted tardiness 
of no job [j] increased. 
 
In Part 3, given that 03 ≤Δ , uu CC ′≥ , following 
exactly the same procedure as that for Part 2 
proves that the weighted tardiness of job u does not 
increase. With respect to jobs [i] and [l], the 
change of the weighted tardiness is 

−′=Δ ][iT T 0][][][ ≤−′+ lli TTT . If 0≤ΔT , the sum 
of weighted tardiness of jobs [i] and [l] decreased 
or did not changed. Moreover, the weighted 
tardiness of each of other jobs does not increase 
since 02 ≤Δ  and 03 ≤Δ . So, the total weighted 
tardiness of jobs does not increase by this 
interchanging. This completes the proof. 
 
3.4. Proposition 
 
If )(][ kπ,Jii, ∈∃ ,  
 

0,kiP1iiSi11iS1i1iS
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Figure 1. Interchanging the position of jobs [i] and [l]. 
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and 
 

0iTiTiT ≤−′=Δ ][][ , there is a schedule that 

dominates ∑(π,k) | u. 
 
Proof   Consider the schedule S = ∑(π,k) | u. We 
construct another schedule S ′ by putting job [i] 
between job [l] and job u (see Figure 2). 
     The completion time of job ][ j , ][][]1[ lji ≤≤+ , 
has a change of 2 [ 1][ 1] [ 1][ 1]i i i iS S− + −Δ = −  

[ ][ 1] [ ]i i i kS P+− − . Since the assumption of the 
triangle inequality is given among setup times, it is 
clear that 02 ≤Δ . Following the same procedure 
used for Part 1 of the proposition 3 proves that the 
weighted tardiness of job [j] is decreased or 
unchanged. 
     Let consider job u, because 03 ≤Δ , we have 

uu CC ′≥ . Thus, the weighted tardiness of job u is not 
increased. With respect to job [i], the change of 
weighted tardiness is ][][ iiiT TT −′=Δ . If 0Ti ≤Δ , the 
weighted tardiness of job [i] is decreased or 
unchanged. To summarize, since the weighted 
tardiness of each job does not increase, the ∑(π,k) | u 
is dominated. 
 
 
 

4. LOWER BOUND 
 
By solving an assignment problem, a lower 
bounding procedure is provided in this section. 
This approach was proposed by Azizoglu, et al [2]. 
We generalize this approach to find a lower bound 
for unrelated parallel machine with sequence-
dependent setup times. 

     Replacing the exact completion times )( t
ikC  

with the rough ones )ˆ( t
ikC  is the main feature of 

this lower bounding scheme that results into 
defining an assignment problem as follows: 
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Provided that the rough completion times )ˆ( t
ikC  

are smaller than or equal to the exact completion 
times )( t

ikC  for all i, k, and t, the optimal solution 
of the above assignment problem will be a lower 
bound on the original problem. The following 
definition of )ˆ( t

ikC  supports the conditions. 
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To find a lower bound, we adhere to the same 
procedure used by Azizoglu, et al [2]. We solve the 
assignment problem only at the root node and use 
the dual values at others nodes. The dual problem 
of AP is defined as follows: 
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Figure 2. Putting jobs [i] and [l]. 
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iu  is unrestricted in sign,   i∀  (17) 
 

Where ui and vtk are the dual variables 
corresponded to Constraints (10) and (11), 
respectively. Consider )(σ A  as an assignment 
problem related to partial schedule σ, the optimal 
solution of which )(σ Z A  is a lower bound on the 
total weighted tardiness of unscheduled jobs. Since 

)(ˆ σt
ikT  uses more information in regard to the 

partial schedule, never will )(ˆ σT t
ik  be smaller than 

t
ikT̂  for all unscheduled jobs and unfilled positions. 
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i ≤≤+ . This implies that 

the optimal solution at the root node provides a 
feasible solution to the dual problem corresponding 
to )(σ A . As the dual problem is a maximization 
one, a feasible dual solution is a lower bound on 
the total weighted tardiness of unscheduled jobs 
provided by the following equation: 
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Where )(σ E  and )(σ F  denote the set of 
unscheduled jobs and the set of unfilled positions, 
respectively. Given the partial schedule σ , with an 
unscheduled job j added to the first available 
position, say position q, on machine r, the lower 
bound on the total weighted tardiness of all 
possible complete schedules will be 
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Where )(σTi  is tardiness of job i in partial schedule 
σ , )(σAPr  is the sum of the adjusted processing 
times of the jobs processed on machine r in the 
partial schedule σ, and lr is the last job assigned on 
machine r in σ. 
     As the earliest possible completion time for 
each unscheduled job )(σEi∈  is as follows: 
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5. UPPER BOUND 
 
As a good upper bound has a direct impact on the 
performance of the B and B algorithm, a two-phase 
procedure is designed to compute the upper bound. 
In the first phase, we generalize the composite 
dispatching rule, namely apparent tardiness cost 
and setup (ATCS), proposed by Lee, et al [10], 
while in the second phase we improve the schedule 
obtained in the first phase by a local improvement 
procedure. The steps of the upper bounding 
scheme are summarized as follows: 
 
Step 1.   Consider U as the set of unscheduled job, 
and APk as the sum of adjusted processing times of 
the jobs that have already been processed on 
machine k. Set the initial value of U = {1, 2,...,n} 
and APk = 0 for k=1, 2, ..., m. 
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is }{min k

mk1

k APAP
*

≤≤
=  

 
Step 3.   Determine the unscheduled job j* such 
that }{max *** jkUjkj II

∈
=  

 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−

=

S2k

j*k
lS

*k
P1k

*jk
P

*kAPjd0,

*jk
P

jw

*jk
I

exp
max

exp
 

 
*k

l  The last job scheduled on 

machine k* 



 

276 - Vol. 22, No. 3, September 2009 IJE Transactions A: Basics 

∑
=

=
n

1i n

*jk
P

*k
P  The average job processing 

times of machine k*. 
 
S  The average of all setup 

time combinations. 
 

Step 4.   Schedule job j* in the first available 
position on machine k* and update 
 

k
jl

kk
k

**
APAPAP +=  

 

Step 5.   If all jobs are scheduled, go to Step 6; 
otherwise, go back to Step 2. 
 
Step 6.   Improve the given schedule on each 
machine applying adjacent pair-wise interchanges. 
     K1 and k2 are look-ahead parameters. We use 
the equations suggested by Lee, et al [10] to 
quantify them. 
 
 
 

6. B AND B ALGORITHM 
 
The implementation of the proposed B and B 
algorithm to minimize the total weighted tardiness is 
elaborated in this section. The main procedures 
through which the B and B algorithm should be 
designed are the choice of a lower bound, the 
utilization of an initial solution as an upper bound, 
the incorporation of dominance rules, and the 
specification of branching mechanism (Baker [17]). 
     In the search tree, each node, say a node in the 
i-th level corresponds to a partial schedule in 
which i jobs are scheduled. In most B and B 
algorithm for parallel machine, each parent node 
can be partitioned into m(n-i) chilled nodes, each 
of which includes the parent node plus the 
assignment of an unscheduled job to the first 
available position on one machine. To avoid 
generating redundant schedules, we use the 
branching scheme devised by Shim, et al [6]. In this 
branching scheme, only the child nodes associated 
with machines, the indices of which are not less 
than the machine index associated with parent node 
are generated from each parent node. This scheme 
gives rise to substantial reduction in the number of 
nodes generated in the branch-and-bound algorithm. 
     Before the execution of the B and B algorithm, the 

number of jobs to be considered should be reduced 
using Proposition 2. The job which satisfies the 
condition of this proposition can be scheduled last in 
an optimal solution. Whenever one job is eliminated, 
the value of Ak is updated for all machines and the 
condition is again checked. Then, we utilize an initial 
solution as an upper bound generalizing the 
composite dispatching rule (i.e., ATCS) at the root 
node of the search tree. Whenever a complete 
schedule is found, the upper bound is updated 
providing that the last complete schedule is better 
than the initial solution. To select a node to 
generate branches from, the best-first branching 
rule is applied. The best-first branching rule leads 
the algorithm to branch the active nodes with the 
smallest lower bound. When the child nodes are 
generated, the dominance propositions are employed 
to check whether the schedule associated with the 
child nodes are dominated or not. Not only the nodes 
corresponding to the dominates schedules, but the 
nodes whose lower bound is greater than or equal to 
upper bound also are pruned. By using dominance 
propositions, either full pruning or partial pruning can 
be occurred. In full pruning, all children of the parent 
node are to be pruned, while in partial pruning only 
the children of the parent node associated with the 
machines whose indices are greater than the index of 
machine associated with the parent node are to be 
pruned. Full pruning results from using Proposition 1, 
while Propositions 3 and 4 lead to partial pruning. 
 
 
 

7. COMPUTATIONAL EXPERIMENTS 
 
The branch-and-bound algorithm has been compiled 
in Matlab 2006a. The performance of the proposed 
algorithm is reported on randomly generated 
problems. Generally 144 test problems are generated, 
one instance of each combination of six levels for 
the number of jobs (n=6, 8, 10, 14, 18, 20), two 
levels for the number of machines (m=2, 4), two 
levels for the tardiness factor TF = 0.2, 0.9, three 
levels for the due date ranges (DDR=0.2, 0.6,1), and 
two levels for the setup times. Processing times are 
randomly chosen from the uniform distribution 
between 5 and 200. For the setup times, two 
categories are defined. In the first category setup 
times are small and generated from U[25,50], while 
in the second category setup times are large and 
generated from U[25,150]. Due dates are randomly 
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generated from a uniform distribution whose mean 
is set to Pm×N×(1-TF) and whose range is set to 
DDR×N×Pm, where Pm is the mean processing 
times. The overall performance of our proposed B 
and B algorithm is illustrated in Table 1. 
     By considering six levels for the number of jobs 
and two levels for the number of machines, twelve 
different size groups are produced. In each group, 
twelve test problems characterized with different 
tardiness factor, due date range, and setup times 
exist. The result in Table 1 is concerned just with 
different size. As can be seen, the percentage of 
problems solved just using Proposition 2 is so 
considerable for all job sizes, and the average 
percentage of problem solved using this proposition 
has been increased with the increasing the number 
of machines. As it has been mentioned before, 
Preposition 2 can schedule the jobs satisfying the 
condition before starting the B and B algorithm. 
Therefore, the problems solved just using this 
preposition have not undergone the B and B 
algorithm. When the number of jobs and the number 
of machines is increased, test problems either 
cannot be solved or are solved just using 
Proposition 2. In this case, the average times 
required for solving the problems is decreased as 
this average is calculated only for the jobs solved 
with 15 minutes. So the small amount of the average 
processing time reported in Table 1 for large-sized 
problems is because of solving most problems just 
using Proposition 2. Table 2 shows the percentage 
of the solved problems for two various categories 
defined for the setup times. It can be seen that the 
value of setup times does not have a significant 
effect on the percentage of solved problems. 
     With respect to the results in Table 1, we find 
out when the tardiness factor is set to the largest 
value (i.e. 0.9), and the due date ranges is set to the 
smallest value (i.e. 0.2), most test problems cannot 
be solved. Since the levels which have been chosen 
for the tardiness factor and due date ranges often 
leads to test problems with tight due dates 
especially for large-sized problems, we generate 
36 new test problems, three instances of each 
combination of six levels for the number of jobs 
(n=6, 8, 10, 14, 18, 20), two levels for the number 
of machines (m=2, 4), one level for the tardiness 
factor TF = 0.7, one level for the due date ranges 
(DDR=0.3), and one level for the small setup 
times. The detailed results are provided in Table 3. 

     The proposed B and B algorithm performs well 
with up to four machines and 10 jobs. However, it 
seems that the performance of the algorithm is 
greatly affected by the input values of the given 
problems. For example, when the number of jobs is 
equal to 8 and the number of machines equals to 4, 
the gap between execution times is so large. It is clear 
that for obtaining more solid results more numerical 
experiments should be carried out. It seems that the 
uniform distribution proposed for generating due 
dates is not appropriate. In future research, we are 
going to complete the computational results and 
clarify the influence of each factor on the 
performance of the B and B algorithm. 
 
 
 

8. CONCLUSION 
 
This paper has developed a new branch-and-bound 
(B and B) algorithm for unrelated parallel machine 
scheduling problems with sequence-dependent setup 
time. Several dominance properties have been 
provided. The lower bound has been derived through 
assignment problem. The upper bound has been 
resulted from generalizing the composite dispatching 
rule, namely ATCS. Our proposed B and B algorithm 
has incorporated all these procedures to minimize 
the total weighted tardiness. We have observed that 
Proposition 2 often leads to the final solution with 
increasing the size of problems, and also the 
suggested algorithm gives the optimal solution for 
problems with up to 10 jobs and 4 machines in all 
combination of tardiness factor and due date 
ranges. In following we aim to carry out more 
numerical experiments to achieve solid results. 
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10. APPENDIX 
 
The result of Table 1 is the summarization of data 
provided in Table 4 to 9. 



 

278 - Vol. 22, No. 3, September 2009 IJE Transactions A: Basics 

 

TABLE 1. The Overall Performance of the Algorithm. 
 

Size Time (s.) PP2 Solved 

(2,6) 5.58 50 100 

(2,8) 35.79 33.33 83.33 

(2,10) 2.22 41.67 75 

(2,14) 2.26 41.67 83.33 

(2,18) 4.02 33.33 66.67 

(2,20) 3.96 66.67 83.33 

(4,6) 68.01 83.33 100 

(4,8) 3.75 50 91.67 

(4,10) 2.28 58.33 91.67 

(4,14) 2.27 75 91.67 

(4,18) 3.93 75 83.33 

(4,20) 4.16 66.67 83.33 
 

PP2: Denotes the percentage of problems solved completely just using proposition 2. 
 
 
 

TABLE 2. Influence of Setup Times on the Percentage of the Solved Problems. 
 

No. of Jobs Setup Solved  

small 100.00 
6 

Large 100.00 

small 100.00 
8 

Large 83.33 

small 83.33 
10 

Large 83.33 

small 83.33 
14 

Large 91.67 

small 83.33 
18 

Large 66.67 

small 83.33 
20 

Large 83.33 
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TABLE 3. The Performance of the Algorithm at TF=0.3 and DDR=0.7. 
 

No. of Jobs No. of Machines Time (s.) NS 
2.00 4.02 12.00 
2.00 7.40 347.00 
2.00 7.11 313.00 
4.00 16.44 950.00 
4.00 4.00 24.00 

6 

4.00 20.27 1304.00 
2.00 18.33 1318.00 
2.00 441.09 14572.00 
2.00 257.83 9458.00 
4.00 554.97 12234.00 
4.00 3600.00 31341.00 

8 

4.00 4.07 32.00 
2.00 34.10 3646.00 
2.00 1419.48 46571.00 
2.00 902.36 32173.00 
4.00 Not Solved 
4.00 2.24 0.00 

10 

4.00 3600.00 38885.00 
2.00 Not Solved 
2.00 Not Solved 
2.00 Not Solved 
4.00 Not Solved 
4.00 5400.00 59380.00 

14 

4.00 5400.00 56881.00 
2.00 Not Solved 
2.00 Not Solved 
2.00 Not Solved 
4.00 Not Solved 
4.00 Not Solved 

18 

4.00 Not Solved 
2.00 Not Solved  
2.00 Not Solved 
2.00 Not Solved 
4.00 Not Solved 
4.00 Not Solved 

20 

4.00 Not Solved 
 

NS: Denotes the number of sub problems considered for the problem. 
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TABLE 4. The Performance of the Algorithm at N=6. 
 

No. Job No. Machine Time (s.) No. Nodes DDR TF Setup 

6 2 2.29 13 0.2 0.2 Large 

6 2 3.84 0 0.6 0.9 Large 

6 2 3.78 4 1 0.2 Large 

6 2 14.83 368 0.2 0.9 Large 

6 2 3.88 4 0.6 0.2 Large 

6 2 3.61 0 1 0.9 Large 

6 2 3.75 12 0.2 0.2 Small 

6 2 3.60 0 0.6 0.9 Small 

6 2 3.71 0 1 0.2 Small 

6 2 16.18 1092 0.2 0.9 Small 

6 2 3.72 0 0.6 0.2 Small 

6 2 3.76 0 1 0.9 Small 

6 4 3.61 0 0.2 0.2 Large 

6 4 3.62 0 0.6 0.9 Large 

6 4 3.64 0 1 0.2 Large 

6 4 775.65 13148 0.2 0.9 Large 

6 4 3.70 0 0.6 0.2 Large 

6 4 3.70 0 1 0.9 Large 

6 4 3.69 0 0.2 0.2 Small 

6 4 3.68 0 0.6 0.9 Small 

6 4 3.58 0 1 0.2 Small 

6 4 3.84 16 0.2 0.9 Small 

6 4 3.72 0 0.6 0.2 Small 

6 4 3.68 0 1 0.9 Small 
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TABLE 5. The Performance of the Algorithm at N=8. 
 

No. Job No. Machine Time (s.) No .Nodes DDR TF Setup 

8 2 2.31 16 0.2 0.2 Large 

8 2 3600.00 34318 0.6 0.9 Large 

8 2 3.69 0 1 0.2 Large 

8 2 294.08 10176 0.2 0.9 Large 

8 2 3.81 14 0.6 0.2 Large 

8 2 3.68 6 1 0.9 Large 

8 2 4.09 16 0.2 0.2 Small 

8 2 35.29 2034 0.6 0.9 Small 

8 2 3.64 0 1 0.2 Small 

8 2 977.54 18667 0.2 0.9 Small 

8 2 3.73 0 0.6 0.2 Small 

8 2 3.60 0 1 0.9 Small 

8 4 3.84 0 0.2 0.2 Large 

8 4 3.88 4 0.6 0.9 Large 

8 4 3.64 0 1 0.2 Large 

8 4 3600.00 30484 0.2 0.9 Large 

8 4 3.88 12 0.6 0.2 Large 

8 4 3.80 4 1 0.9 Large 

8 4 3.64 0 0.2 0.2 Small 

8 4 3.71 8 0.6 0.9 Small 

8 4 3.67 0 1 0.2 Small 

8 4 3.97 32 0.2 0.9 Small 

8 4 3.61 0 0.6 0.2 Small 

8 4 3.64 0 1 0.9 Small 
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TABLE 6. The Performance of the Algorithm at N=10. 
 

No. Job No. Machine Time (s.) No. Nodes DDR TF Setup 

10 2 3600.00 41432 0.2 0.2 Large 

10 2 2.30 0 0.6 0.9 Large 

10 2 2.28 0 1 0.2 Large 

10 2 3600.00 39161 0.2 0.9 Large 

10 2 2.23 20 0.6 0.2 Large 

10 2 2.29 11 1 0.9 Large 

10 2 2.25 20 0.2 0.2 Small 

10 2 2.21 18 0.6 0.9 Small 

10 2 2.16 0 1 0.2 Small 

10 2 3600.00 37609 0.2 0.9 Small 

10 2 2.10 0 0.6 0.2 Small 

10 2 2.10 0 1 0.9 Small 

10 4 2.24 0 0.2 0.2 Large 

10 4 2.31 16 0.6 0.9 Large 

10 4 2.27 0 1 0.2 Large 

10 4 2.37 40 0.2 0.9 Large 

10 4 2.33 0 0.6 0.2 Large 

10 4 2.24 0 1 0.9 Large 

10 4 2.26 0 0.2 0.2 Small 

10 4 2.31 0 0.6 0.9 Small 

10 4 2.23 0 1 0.2 Small 

10 4 3600.00 43872 0.2 0.9 Small 

10 4 2.21 20 0.6 0.2 Small 

10 4 2.27 16 1 0.9 Small 
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TABLE 7. The Performance of the Algorithm at N=14. 
 

No. Job No. Machine Time (s.) No. Nodes DDR TF Setup 

14 2 2.51 28 0.2 0.2 Large 

14 2 2.21 0 0.6 0.9 Large 

14 2 2.12 0 1 0.2 Large 

14 2 3600.00 48741 0.2 0.9 Large 

14 2 2.27 16 0.6 0.2 Large 

14 2 2.29 6 1 0.9 Large 

14 2 2.43 28 0.2 0.2 Small 

14 2 2.10 0 0.6 0.9 Small 

14 2 2.18 0 1 0.2 Small 

14 2 3600.00 45033 0.2 0.9 Small 

14 2 2.07 0 0.6 0.2 Small 

14 2 2.39 4 1 0.9 Small 

14 4 2.26 0 0.2 0.2 Large 

14 4 2.24 0 0.6 0.9 Large 

14 4 2.19 0 1 0.2 Large 

14 4 2.73 56 0.2 0.9 Large 

14 4 2.16 0 0.6 0.2 Large 

14 4 2.23 0 1 0.9 Large 

14 4 2.26 0 0.2 0.2 Small 

14 4 2.29 0 0.6 0.9 Small 

14 4 2.11 0 1 0.2 Small 

14 4 3600.00 53577 0.2 0.9 Small 

14 4 2.23 4 0.6 0.2 Small 

14 4 2.31 0 1 0.9 Small 
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TABLE 8. The Performance of the Algorithm at N=18. 
 

No. Job No. Machine Time (s.) No. Nodes DDR TF Setup 

18 2 3600.00 35634 0.2 0.2 Large 

18 2 4.05 28 0.6 0.9 Large 

18 2 4.18 0 1 0.2 Large 

18 2 3600.00 35804 0.2 0.9 Large 

18 2 3.93 32 0.6 0.2 Large 

18 2 3600.00 27686 1 0.9 Large 

18 2 4.73 34 0.2 0.2 Small 

18 2 3.90 28 0.6 0.9 Small 

18 2 4.08 0 1 0.2 Small 

18 2 3600.00 35600 0.2 0.9 Small 

18 2 3.63 0 0.6 0.2 Small 

18 2 3.70 0 1 0.9 Small 

18 4 3.92 0 0.2 0.2 Large 

18 4 3.83 0 0.6 0.9 Large 

18 4 3.64 0 1 0.2 Large 

18 4 3600.00 43796 0.2 0.9 Large 

18 4 4.01 0 0.6 0.2 Large 

18 4 3.83 0 1 0.9 Large 

18 4 4.10 0 0.2 0.2 Small 

18 4 3.98 0 0.6 0.9 Small 

18 4 4.34 12 1 0.2 Small 

18 4 3600.00 43592 0.2 0.9 Small 

18 4 3.73 0 0.6 0.2 Small 

18 4 3.90 0 1 0.9 Small 
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TABLE 9. The Performance of the Algorithm at N=20. 
 

No. Job No. Machine Time (s.) No. Nodes DDR TF Setup 

20 2 4.56 40 0.2 0.2 Large 

20 2 3.78 0 0.6 0.9 Large 

20 2 3.96 0 1 0.2 Large 

20 2 3600.00 36710 0.2 0.9 Large 

20 2 4.57 32 0.6 0.2 Large 

20 2 3.86 0 1 0.9 Large 

20 2 3.72 0 0.2 0.2 Small 

20 2 3.86 0 0.6 0.9 Small 

20 2 3.84 0 1 0.2 Small 

20 2 3600.00 36710 0.2 0.9 Small 

20 2 3.74 0 0.6 0.2 Small 

20 2 3.72 0 1 0.9 Small 

20 4 5.98 0 0.2 0.2 Large 

20 4 3.84 0 0.6 0.9 Large 

20 4 3.87 0 1 0.2 Large 

20 4 3600.00 45224 0.2 0.9 Large 

20 4 4.10 4 0.6 0.2 Large 

20 4 4.07 16 1 0.9 Large 

20 4 3.85 0 0.2 0.2 Small 

20 4 4.10 0 0.6 0.9 Small 

20 4 3.76 0 1 0.2 Small 

20 4 3600.00 44768 0.2 0.9 Small 

20 4 4.07 0 0.6 0.2 Small 

20 4 3.93 0 1 0.9 Small 
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