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Abstract   Finding the equilibrium path by non-linear structural analysis is one of the most 

important subjects in structural engineering. In this way, Incremental-Iterative methods are extremely 

used. This paper introduces several factors in incremental steps. In addition, it suggests some control 

criteria for the iterative part of the non-linear analysis. These techniques are based on the geometric of 

equilibrium path. Finally, some examples illustrate the capabilities of suggested approaches. 
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1. INTRODUCTION 

 
Incremental-iterative methods are able to perform 

non-linear analysis for structural problems. These 

approaches can trace the equilibrium path by 

predictor and corrector steps. Most of the iterative 

techniques follow the classical Newton-Raphson 

procedure with some modifications. In this 

method, load factor remains constant during 
iterations. This makes the analysis divergent when 

it faces the limit points on the equilibrium path. In 

order to solve the mentioned problem, other 

criteria have been examined, such as displacement 

[1], work [2,3], residual energy [4], orthogonality 

[5] and so on. In this way, the comparison of 

various techniques could reveal the advantages and 

disadvantages of presented approaches [6,7]. 

     One of the most applicable techniques is the 

Arc-Length Method. In 1979, Riks introduced the 

constant arc-length which could pass the limit and 

turning points [8]. Subsequently, Crisfield modified 

Riks' approach and established the cylindrical arc-
length method [9,10]. Afterwards, Fujii and Ramm 

investigated the path switching for bifurcation 

points in equilibrium paths [11]. For more 

simplification, the linearization techniques (e.g. 

orthogonality [5]) can be applied. 

      On the other hand, the incremental part plays an 

important role in analysis convergence. Selecting 
suitable parameters in predictor steps, could make 

an excessive impression on the rate of convergence, 

specially in highly non-linear problems [12,13]. 

For example, a proper extrapolation in the 

incremental part can avoid divergence [14,15]. 

Incremental-iterative techniques, as a solution of 

non-linear problems, are also able to combine with 

Neural Networks, Boundary Element Method and 

Normal Flow Algorithm [16-18]. 

      This paper aims to suggest some geometrical 

parameters to modify the corrector part of 
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incremental-iterative solution. Furthermore, several 

incremental factors are examined to obtain the 

compatibility between suggested techniques and 
incremental parameters. Section 2 describes the 

incremental-iterative procedure. Afterwards, various 

formulations for the corrector load factor are 

suggested in Section 3. The state of predictor step 

is shown in Section 4. Finally, a number of 

numerical examples are provided to evaluate the 

suggested methods. 

 

 

 

2. THE INCREMENTAL-ITERATIVE 

METHOD 
 

In this section, the structure of incremental-

iterative analysis will be reviewed. As it is 

observed in Figure 1, the n th increment starts at 

equilibrium point )1n( − . 

     First iterative point can be achieved by 

linearization: 
 

Pn
1

n
1

u1nK λ∆=∆−  (1) 

 

Where, 1nK −  is the tangent stiffness matrix at 

)1n( − , u∆  represents the incremental displacement, 

λ∆  shows the incremental load factor and P  is the 

external load vector. Superscripts and subscripts 

indicate the number of increment and iteration, 

respectively. After each increment, iterative 

process begins. At this stage, n
iδλ  and n

iuδ , 

corrector load and displacement factors, are 

calculated and improve the incremental factors: 
 

n
i

n
i

n
1i

δλ+λ∆=+λ∆  (2) 

 

n
i

un
i

un
1i

u δ+∆=+∆  (3) 

 

In order to compute n
iuδ , the following linear 

problem should be solved: 
 

n
i

rn
i

un
i

K =δ  (4) 

 

where, n
ir  is the decreased residual force, and can 

be obtained by 
 

Pn
i

n
i
r~n

i
r δλ+=  (5) 

 

In this equation, n
ir

~  represents a residual force 

vector. By substituting Equation 5 into (4), n
iuδ  

can be computed as follows: 
 

n
i

un
i

n
i

un
i

u ′δδλ+′′δ=δ  (6) 

 
 

 

 
 

Figure 1. The structure of incremental-iterative method. 
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Here, n
iu ′′δ  and n

iu′δ  have been produced by the 

residual force and external load, respectively: 
 

n
i
r~n

i
un

i
K =′′δ  (7) 

 

Pn
i

un
i

K =′δ  (8) 

 

Equations 7 and 8 have no answers when the n th 

increment is located so close to a critical point. In 

order to overcome this problem, a coefficient 

should be considered beside the increment factor. 

     As it is observed, another equation is needed to 

estimate n
iδλ  and complete the non-linear analysis 

process. It is needless to say that using a proper 

equation can have a great effect on the rate of 

convergence. There are many methods based on 

various assumptions to obtain a formula for n
iδλ . 

Most of these approaches have been extracted from 

the geometry of the load-displacement diagram. In 
1981, Crisfield introduced one of the most reliable 

techniques in computation of the corrector load 

factor. He assumed that the length of n
1iu +∆  is 

constant for all iterations in each increment and it 

equals to the initial value nL  [9]: 

 

n
1

u
Tn

1
u2)

n
L( ∆∆=  (9) 

 

2)
n

L(n
1i

u
Tn

1i
u =+∆+∆  (10) 

 

After substituting Equations 3 and 6 into (10), n
iδλ  

can be computed by solving Equation 11: 
 

0c)n
i

(b2)n
i

(a =+δλ+δλ  (11) 

 

n
i

u
Tn

i
ua ′δ′δ=  (12) 

 

n
i

uT)n
i

un
i

u(2b ′δ′′δ+∆=  (13) 

 

2)
n

L()n
i

un
i

u(T)n
i

un
i

u(c −′′δ+∆′′δ+∆=  (14) 

 

The mentioned approach is called The Cylindrical 

Arc-Length Method [9]. Because of simplicity in 

computer programming and adequate reliability, 

this technique is excessively used in non-linear 

analyses. 

 
 

 

3. ESTIMATION OF THE CORRECTOR 

LOAD FACTOR 
 

There are many methods to procure a suitable 

formula for n
iδλ . This section suggests some 

techniques which can be applied for highly non-

linear problems. 

 

3.1. Linearization of Arc-Length Method   

The cylindrical arc-length method leads to a second 

order Equation 10. It can cause some problems 

when one of two answers is selected. To avoid this, 

Equation 10 is replaced by the following equation: 
 

2)
n

L()n
i

un
1

u(
Tn

i
u =δ+∆∆  (15) 

 

Where, nL  is obtained by using Equation 9. 

Considering Equation 6, n
iδλ  is available by a linear 

equation: 
 

n
i

u
Tn

i
u

)
n

i
u

n
1

u(
Tn

i
u

2
)

n
L(n

i
′δ∆

′′δ+∆∆−
=δλ  (16) 

 

3.2. Orthogonality of n
1u∆  and n

iuδ    One of the 

assumptions, that can lead to a simple formula for 

a corrector load factor, is to make an orthogonal 

condition between n
1u∆  and n

iuδ : 

 

0n
i

u
Tn

1
u =δ∆  (17) 

 

By applying Equation 6, the value of n
iδλ  will be in 

hand: 
 

n
i

u
Tn

1
u

n
i

u
Tn

1
un

i
′δ∆

′′δ∆
−=δλ  (18) 

 

3.3. Minimizing Residual Length   Another 

parameter, which can be useful in non-linear 
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analysis, is the residual length shown by n
iS  in 

each iteration. It is defined by summation of n
iuδ  

and n
ir : 

 

n
i

rn
i

un
i

S +δ=  (19) 

 

Minimizing the value of the residual length is one 

of the techniques that results in a suitable formula 

for n
iδλ : 

 

0)n
i

S
Tn

i
S( =

λ∂

∂
 (20) 

 

By substituting Equations 5, 6 and 19 into (20), the 

corrector load factor will be obtained: 
 

)Pn
i

u(T)Pn
i

u(

)Pn
i

u(T)n
i
r~n

i
u(n

i
+′δ+′δ

+′δ+′′δ
−=δλ  (21) 

 

It is noteworthy that the load and the displacement 

have been divided by the length of the relative 

vectors at the first Predicator Step. Consequently, 
Equation 20 is dimensionless. 

 

3.4. Minimizing the Residual Area   The residual 

area (or the residual energy) is an applicable 

parameter in estimation of the corrector load factor 

during non-linear analysis. This factor is a product 
of decreased residual force and corrector 

displacement factor. Minimizing the residual area 

(the area abcd in Figure 2) can be a proper criterion 

for iterative part of the analysis: 
 

0)n
i

u
Tn

i
r( =δ

λ∂

∂
 (22) 

 

By applying Equations 5 and 6, n
iδλ  is achieved: 

 

n
i

uTP2

n
i

u
Tn

i
r~

n
i

u
T

Pn
i

′δ

′δ+′′δ
−=δλ  (23) 

 
3.5. Minimizing Residual Perimeter   Another 

practical parameter is the residual perimeter. In 
fact, this factor is the perimeter of the residual area 

in Figure 2. Similar to the previous approach, 

minimizing the perimeter leads to a suitable 

formula for the corrector load factor: 
 

0)n
i

r
Tn

i
r2n

i
u

Tn
i

u2( =+δδ
λ∂

∂
 (24) 

 

Similar to Section 3.3, Equation 24 is dimensionless. 

 

 

 

 
 

Figure 2. Residual load-displacement diagram. 
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By considering Equations 5 and 6, n
iδλ  will be 

obtained: 

 

P
T

P
n

i
u

Tn
i

u

P
Tn

i
r~

n
i

u
Tn

i
un

i
+′δ′δ

+′δ′′δ
−=δλ  (25) 

 

 

 

4. PREDICATOR STEP 
 

When the equilibrium point )1n( −  is definite, the 

load incremental factor ( n
1λ∆ ) should be estimated 

at the beginning of the next step. There is no need 

to mention that the increment is directly related to 

the convergence of the analysis. In other words, if 

the value of increment were inordinately chosen 

large or small, the problem would become divergent 
or the rate of convergence would decrease. 

     Other incremental parameters can be utilized 

instead of the load increment. One of them is the 

length of the equilibrium path and called the length 

incremental factor ( nL ). The value of nL  is 

dependent on previous length increment ( 1nL − ) [19]: 

 

2

1

1n
J

D
J

1n
L

n
L















−
−±=  (26) 

 

Where, DJ  and 1nJ −  are the number of selected 

iterations by the analyzer and the number of 

iterations in the preceding steps, respectively. 

Therefore, the load incremental factor at predicator 

step can be achieved by substituting Equation 26 
into the following equation: 

 

PTPn
1

uTP2n
1

u
Tn

1
u

n
Ln

i

+′∆+′∆′∆

±=δλ  (27) 

 

Where, n
1u′∆  is obtained by solving a linear equation: 

 

Pn
1

u1nK =′∆−  (28) 

 

The first value of length incremental factor ( 1L ) 

depends on the value of load increment at the initial 

point ( 1
1λ∆ ): 

 

PTP2)1
1

(1
1

uTP1
1

21
1

u
T1

1
u2)

1
L( λ∆+∆λ∆+∆∆=  (29) 

 

In addition, the constant arc-length and cylindrical 

arc-length incremental factors (named the 

perimeter and displacement increments, 

respectively) have been applied by researchers. If 
1
1

T1
1 uP2 ∆λ∆  in Equation 29 and n

1
T

uP2 ′∆  in 

Equation 27 were omitted, the procedure of 

perimeter increment would be achieved. Similarly, 

by neglecting PP
T  and PP)(

T21
1λ∆ , displacement 

incremental factor will be in hand. Another 

parameter, which is used in non-linear analysis, is 

the work (area) incremental factor. 

 

 
 

5. NUMERICAL EXAMPLES 
 

In this section, some examples are given to evaluate 

the advantages and disadvantages of the suggested 

methods. The behavior of the provided structures is 

highly non-linear (including snap-through and 

snap-back behaviors) and the analyses have been 

performed by several incremental factors. By 

doing this, the effects of incremental parameters on 
the iterative process can be seen. In the following, 

four space trusses and a shallow arch are analyzed 

by the cylindrical arc-length and five suggested 

methods. In these examples, the effect of material 

non-linearity is not considered and this paper 

focuses on geometrically non-linear structures. 

Each example contains the shape and properties of 
the structure, load-displacement diagram and a 

table. Tables give the number of iteration for each 

method which is related to the incremental factor. 

The sign of "—" in tables shows that the approach 

becomes divergent. In addition, the diagrams of 

load-displacement are based on cylindrical arc-

length with displacement increment. 

 

5.1. The Space Truss    Many 2D and 3D trusses 

are investigated in literatures [20,21]. Figure 3 

illustrates one of the simplest structures including 

limit points [22]. This structure has 4 members and 

3 degrees of freedom. The properties of the space 

truss are dimensionless and assumed as follows: 
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1A = , 100E = , 100H = , 375.2=γ , 100P = , 

2.0
1
1 =λ∆ , 2JD = , 10Jmax =  and permitted error 

4
C 10

−=ε . 

      The equilibrium path of the structure includes 
two limit points (Figure 4). Table 1 reveals that all 

the suggested techniques have the same iteration 

number in comparison with the cylindrical arc-

length method for each increment factor. As Table 1 

shows, load parameter makes the analysis divergent. 
 

5.2. The Truss Arch   As it can be seen, Figure 5 

shows a truss arch with 24 members and 21 

degrees of freedom [23,18]. 

     In this figure, the values of A , E , H , L , S  and 

W  are equal to 317 mm2, 3 × 103 N/mm2, 62.16 mm, 

 

 

 

 
 

Figure 3. The space truss. 

 

 
                                   λP/AE 

 
 

Figure 4. The load-displacement diagram for the space truss. 

 

 

 
TABLE 1. The Number of Iterations in the Analysis of the Space Truss. 

 

Method 
Incremental Factors 

Load Displacement Length Perimeter Area 

All Methods — 54 34 44 36 

 



 

IJE Transactions B: Applications Vol. 22, No. 3, October 2009 - 251 

433 mm, 250 mm  and 20 mm, respectively. At the 

beginning of analysis, P  is assumed N150 , 1
1λ∆  is 

5.0 , DJ  equals 5 , maxJ  is 15  and Cε  is equal to 410− . 

     Figure 6 illustrates the load-displacement diagram 

containing two limit points. Table 2 presents the 

number of iteration for each approach with several 

incremental parameters. As it is shown, the 

displacement factor has almost the least iteration 

during analysis. Again, the load parameter does 

not obtain the correct equilibrium path. In this 

example, Minimizing Residual Length and 

Minimizing Residual Perimeter converge to the 

equilibrium point for most of the incremental 

factors, although the number of iteration has 

increased. 

 
5.3. The Truss Dome   The space truss in Figure 7 

has 264 members and 219 degrees of freedom [24]. 

This structure includes many degrees of freedom. 

Some characteristics of this truss are: A = 450 mm2, 

E = 2.1 × 10
5
 N/mm

2
, H = 4580 mm, P = 15 × 10

3
 N, 

15.0
1
1 =λ∆ , 5JD = , 20Jmax =  and 4

C 10
−=ε . 

     The load-displacement diagram, similar to 

previous examples, contains two limit points 

(Figure 8). The number of iterations for each 

method is provided in Table 3. As it can be 

observed, the displacement factor leads to answer 

for all mentioned techniques, especially for 

Cylindrical Arc-Length and Minimizing Residual 

Area which reach the minimum iteration. 

     Four suggested methods converge to the 

equilibrium path with three different incremental 

factors in similar way. 

 
5.4. The Shallow Truss Dome   The structure in 

Figure 9 has 168 members and 147 degrees of 

freedom [25,18]. Some characteristics of the shallow 

truss dome are assumed as follows: A = 100 mm2, 

E = 10
3
 N/mm

2
, H = 1790.22 mm, P = 1000 N, 

25.0
1
1 =λ∆ , 6JD = , 20Jmax =  and 4

C 10
−=ε . 

      Figure 10 illustrates the diagram of the load-

displacement. This structure buckles two times 

during analysis. Table 4 presents the number of 

iteration for each approach with several incremental 

factors. Except Minimizing Residual Area method, 

all techniques trace the equilibrium path with 

displacement, length and perimeter increments. 

Cylindrical Arc-Length and Orthogonality of n
1u∆  

and n
iuδ  reach the equilibrium path with minimum 

iteration. Conversely, Linearization of Arc-Length 

needs the maximum iteration. 

 

5.5. The Shallow Arch   The structure shown in 

Figure 11 has a complicated behavior [6]. The arch 

is located on a circle arc and divided into 10 

elements. The values of A , I , E , H , L  and W  

are dimensionless and equal to 410 , 810 , 200 , 

500 , 5000  and 200 , respectively. At the beginning 

of analysis, P  is 1000 , 1
1λ∆  is assumed 4.0 , DJ  

equals 5 , maxJ  is 15  and Cε  is equal to 410− . 

     The equilibrium path of the structure includes 

two turning points and two limit points. Figure 12 

displays the diagrams of load-displacement. Table 5 

presents the number of iteration for each technique 

with several incremental parameters. As it can be 

seen, the Orthogonality of n
1u∆  and n

iuδ  and 

Minimizing Residual Area are become divergent 

for all incremental factors. On the other hand, 

Cylindrical Arc-Length with length incremental 

factor results in the minimum iteration. 

Linearization of Arc-Length, Minimizing Residual 

Length and Minimizing Residual Perimeter act 

similarly. It is noteworthy that these methods are 
convergence for a load incremental factor. 
 

 

 

6. CONCLUSION 
 

The modification of the incremental-iterative 

method is an important subject in non-linear 

analysis. To this aim, many efforts were made to 

find a fast and reliable solution for different 

problems. This paper aims to prove that various 

techniques can be used for iterative part of the non-
linear analysis. In addition, the compatibility 

between incremental factors and iterative methods 

was discussed by investigating highly non-linear 

problems. In some cases, a number of provided 

techniques became divergent which means they 

need revising. Conversely, other approaches traced 
the equilibrium path successfully for all numerical 

examples. In most of the analyses, displacement 

and perimeter increments led to the reliable 

answers. On the other hand, the load and area 

incremental factors make the non-linear analysis 

divergent. 
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Figure 5. The truss arch. 

 

 

 
                              (λP/AE)*10-4 

 
 

Figure 6. The load-displacement diagram for the truss arch. 

 
 

 
TABLE 2. The Number of Iterations in the Analysis of the Truss Arch. 

 

Method 
Incremental Factors 

Load Displacement Length Perimeter Area 

Cylindrical Arc-Length 

Linearization of Arc-Length 

Orthogonality of n
1u∆  and n

iuδ  

Minimizing the Residual Length 

Minimizing the Residual Area 

Minimizing the Residual Perimeter 

— 

— 

— 

— 

— 

— 

61 

61 

61 

153 

66 

145 

— 

— 

— 

96 

— 

96 

69 

74 

69 

100 

92 

100 

— 

— 

— 

102 

— 

108 
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Figure 7. The truss dome. 

 

 

 

                            (λP/AE)*10
-5

 

 
 

Figure 8. The load-displacement diagram for the truss dome. 

 

 

 
TABLE 3. The Number of Iterations in the Analysis of the Truss Dome. 

 

Method 
Incremental Factors 

Load Displacement Length Perimeter Area 

Cylindrical Arc-Length 

Linearization of Arc-Length 

Orthogonality of n
1u∆  and n

iuδ  

Minimizing the  Residual Length 

Minimizing the Residual Area 

Minimizing the Residual Perimeter 

— 

— 

— 

— 

— 

— 

52 

74 

69 

75 

52 

79 

— 

65 

93 

69 

— 

69 

— 

64 

93 

69 

— 

69 

— 

— 

— 

— 

— 

— 
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Figure 9. The shallow truss dome. 

 

 

 
                                          (λP/AE)*10

-3 

 
 

Figure 10. The load-displacement diagram for the shallow truss dome. 

 

 
 

TABLE 4. The Number of Iterations in the Analysis of the Shallow Truss Dome. 
 

Method 
Incremental Factors 

Load Displacement Length Perimeter Area 

Cylindrical Arc-Length 

Linearization of Arc-Length 

Orthogonality of n
1u∆  and n

iuδ  

Minimizing the Residual Length 

Minimizing the Residual Area 

Minimizing the Residual Perimeter 

— 

— 

— 

— 

— 

— 

99 

244 

101 

116 

— 

116 

140 

195 

147 

183 

— 

183 

152 

193 

141 

177 

— 

176 

— 

— 

— 

— 

— 

— 
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