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Abstract This paper aims to describe a deterministic generation of extreme waves in a typical
towing tank. Such a generation involves an input signal to be provided at the wave maker in such a
way that at a certain position in the wave tank, say at a position of a tested object, a large amplitude
wave emerges. For the purpose, we consider a model called a spatial-NLS describing the spatial
propagation of a slowly varying envelope of a signal. Such model has an exact solution known as
(spatial) Soliton on Finite Background (SFB) that is a non-linear extension of Benjamin-Feir
instability. This spatial-SFB is characterized by wave focusing leading to almost time periodic
extremes that appear between phase singularities. Although phase singularities and wave focusing has
been the subject of number of studies, this spatial-SFB written in the field variables has many
interesting properties among which are the existence of many critical values related to the modulation
length of the monochromatic signal in the far fields. These properties will be used to in choosing
parameters for a deterministic generation of extreme waves. Some example of such a generation in
realistic variables will be displayed.
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1. INTRODUCTION

The motivation of this activity stems from the need
of hydrodynamic laboratories to generate “extreme
waves”, also often called rogue or freak waves that
do not break while running downward in the wave
tank. In a realistic situation involving spatial large
spatial and temporal interval, such generation is
not easy. This is due to the physical limitation of
the wave makers as well as the non linear behaviour
that dominate the deformations of propagating
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signals from the wave makers. The dominant non
linear effects in large wave generations can be seen
from the previous theoretical [1-3], numerical [5,6]
as well as experimental investigation on bichromatic
waves such as in [7]. Depending on the input
amplitudes as well as frequencies, large deformations
and amplitude increase can be found. The location
of the maximum amplitude increase within the
wave tank also depends on these parameters;
see [2-4].

In a generation of extreme waves in hydrodynamic
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laboratories, it is desirable that the position for
which the extreme waves emerge be located at the
position of tested object. A typical question in such
a generation is that having the position within the
wave tank for the extreme signal to appear and the
amplitude of such a signal within some frequency
region, a signal can be provided as an input to the
wave makers (with their limitation) such that
requested signal appears in the desired positions.

Using an exact solution of a spatial NLSE called
spatial Soliton on Finite Background (SFB), it is
indeed possible to generate waves of reasonably
large the wave tank of 200m. This SFB is a non
linear extension of Benjamin-Feir instability [15]
characterized by wave focusing that is almost time
periodic. It is recently observed that an exact
solution has numerous interesting properties when it
is written in the field variable. Phase singularity; the
phenomena merging and splitting of waves; for
which the extreme elevations are sandwiched
between them are among these properties. Similar
studies on wave focusing and phase singularities
have been carried out previously such as in [8-13].
We, however, are interested in its direct application
on the extreme wave generation in a hydrodynamic
laboratory.

The content of the paper is as follows. In section
2 we present a brief overview of the model used in
this paper as well as the explicit formula for the
spatial SFB. Some interesting features of spatial
SFB will be presented in this section. In section 3,
we will show a direct extreme wave generation
based on the properties of the spatial SFB and
transformation in to laboratory coordinates as well
as its interpretation. Examples on realistic time and
spatial laboratory scales of this wave generation will
be presented there. In the last section, we present
some concluding remarks are made.

2. THE MATHEMATICAL MODEL FOR
SURFACE WAVES

Korteweg de Vries (KdV) equation is known as an
asymptotic model for uni-directional surface gravity

waves. In normalized variables with full dispersion
[6] the equation has the form

. . 3 2
6tn+1Q(—18X)n+Zaxn =0, @8
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With 7 is the surface wave elevation. The symbol
Q is the operator that produces the dispersion
relation between frequency o and wave number k
for small amplitude waves given by o = Q (k) =
Jktanhk . The laboratory variables for the wave
elevation, horizontal space and time M, Xi4p» tiap
are related to the normalized variables by
Ny = N, X, =hx and t,;, =4/h/g, where h is the
uniform water depth and g is the gravity
acceleration.

In this paper we are looking for a solution of (1)
in form of harmonic mode centered at a frequency
®, modulated by a slowly varying envelope y(&,1).

The complex amplitude y(&,t) satisfies spatial Non-
linear Schrodinger Equation (NLS) in the form

. a~l 12
8g\u+1B8nw+1y|\u| y=0. 2)

Here, the slow variable § = x and the shifted time
variable t=t-x/Q'(k,) are introduced while

parameters B and 7 depend on the wavenumber

of the monochromatic and the central frequency o
related to the wave number ko by the dispersion
relation

tanh k
0 3)

0y =Q(kq)=k, o

see [14].

Different from the temporal NLS that is openly
used to describe evolution of ocean waves, spatial
NLS is suitable to describe propagation of
envelope in signaling problem such as in the
problem of wave generation. In [15], it is shown
that the temporal NLS has an exact solution called
Soliton on Finite Background (SFB). Writing in
the complex amplitude of such SFB in the form

7 a2
v —aleage 05, @)

With
a(g,1)=

(\72 —1)coshc&+V1— 2 /2 cos vt — ivy2 - 2 sinh &

coshc&—\/l—02/2 COSVT
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With

Then © lies in the region of Benjamin-Feir

instability 0<®<+/2. This parameter v lies in the
region of Benjamin-Feir instability. The last
parameter is the frequency of monochromatic ®,
absorbed in the coefficients of NLS equation.

By using (4) and after simplification, solution
of (1) can be written as

R e T

230 \/u2+7»2 &)

cosd(x,t),

coshcé—\/l—\?z /2 cosvt

With c.c denotes the complex conjugate of the
previous term. In this solution

u:(\Af2 —1)cosh0§+\/1—\72/2cosvr,
A=%2-%2 sinhot |

and ¢(x,0=kyx-0yt-Tade+tan ™ (h/u), with o

and kg are the frequency and wave number of the
monochromatic, respectively. We can see that the
solution has three parameters (ao,v,m¢); the real
amplitude in the far field 2ay, the modulated
frequency v describing the perturbation on the
monochromatic by a long time signal and the
monochromatic frequency ®,.

The largest elevation of the SFB (4) is at (§,7) =
(0,0) and at far distance from the position & = 0,
a(&,t) = ag where the surface wave is monochromatic
in time. Some properties of SFB is that compared
to the amplitude of monochromatic in the far field
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A
ag

l<a(§,1)<3 and in limiting case lim,_,,

giving the largest possible amplification factor is 3
from this monochromatic background.

If M denotes the extreme (maximum) value of
the n, then

2 2
Mzn(0,0)zzam/u 0.0+22(0.0) 00)

1-41-9/2

It is clear that v?(0,0) and cos (0,0)=1, then

2
02—1+,/1—V7 o2
M =2y ————2-=2a| 1+2)1-- | (6)

1—41- "

From this expression, we can see that the extreme
elevation M depends on o v and .

It has been known that these extreme elevations
appear between two phase singularities; a
phenomenon when two waves are merging into
one wave or one wave is splitting into two. The
phenomenon can be seen in a close up contour plot
of the elevation in Figure la. The envelope
corresponding to this spatial SFB is shown in
Figure 1b, where the (time) locations (or instants)
of the phase singularities clearly visible; they are the
instants when the envelope touches the x-t plane.

In Figure 2, we display a time signal with an
SFB envelope at & = 0 for three parameter values
™o =2.5,ay=0.0207,v=0.3014 and so T = 2n/v =
28.8458. We observe that the extreme elevation is
almost repeated in time with periodicity T.

To give an easier interpretation related to the
problem of wave generation later, in what follows,
we require that at (&,7) = (0,0), y(0,0) = my. Suppose
that the frequency of the monochromatic ®, is
given, which is the center frequency of the wave
group being generated. If the amplification factor a
is defined as a quotient between the elevation at
the extreme position and in the far field, that is m,
= aay then the parameters of SFB (ay,v,®() can be
recovered from a, = my/a and

2 ~
2-(-1)2 [7(©g)
v=v(0,,0)=2, 5 E(mo) . @)
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Figure 1. Contour plot of the elevation where the extreme
wave appears between the phase singularities signified by
merging of two waves into one and (a) splitting one wave into
two and (b) the corresponding envelope.
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Figure 2. Signal at extreme position & = 0 for wy = 2.5, ay =
0.0207, v =0.3014.
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3. RESULTS AND DISCUSSIONS

In what follows, we use the laboratory coordinate
for the case of a wave tank with depth H of 5 m.
The wave tank at MARIN (Maritime Research
Institute Netherlands, Waginingen) is taken as
reference tank; see [6]. The length of that tank is
200 m, and those extreme waves and the amplitude
amplification should appear within a distance of
200 m from the wave maker. It is our attention to
compare the results here with numerical computation
obtained from a numerical wave tank as well as
measurement in the near future. Although, here we
do not describe precisely on the technical restriction
of wave maker, our aims is that the required signal
can be fed easily to the wave makers.

Let Xum = 0 be the location of the wave maker
and Xy, be the location in the tank such that the
signal generated at the wave maker achieves its
extreme. If Mip(Xian,tian) 1S the elevation of a signal
with SFB envelope in the laboratory variables at
X, let us define at a given position, the maximum
temporal amplitude (MTA) in the form

Mxpgp)=maxy  Miap Klabstap) (®)

Here, x4, corresponding to & = 0 in NLS spatial
variable and so the translation from laboratory to
the NLS variables are as follows.

X~ %sh
(k)

laboratory frequency ®j,, and gravitational
acceleration g. The MTA measures at each location
in the wave tank the maximum over time of the
surface wave elevation. As reported in [5], the
location where the MTA curve achieves its
maximum is the extreme position: there the largest
waves will be found.
The amplification factor

E=x-xg and t=t-

M(xsh)

- lab
2a0

With 2af® is the amplitude in the laboratory
variable of the monochromatic in the far field. The
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actual amplification factor is

M(xsh)

%actual ~ M (0)

In what follow we list a number of cases of
extreme waves generated based on SFB. The
position of ship is taken to be 125 m from the wave
maker while the maximum temporal amplitude of
the signal at the ship position is M(xg) = 0.5 m and
Opap = 3.5 Hz.

Further, we plot the signal at the wave maker
and at the ship position 125 m away from the
wave maker for two cases from Table 1, namely
for o = 2.4142 and a = 2.7321. The maximum
temporal amplitude M(x;,5) as well as the
corresponding the maximum temporal steepness
for both cases is provided in the last figure.

4. CONCLUDING REMARKS

We have considered a model called spatial Non-
linear Schrodinger (NLS) equation that is suitable
to describe the propagation of slowly varying
envelopes in signaling problems such as in the
wave generation often performed in hydrodynamic
laboratory. This equation has an exact solution
called spatial Soliton on Finite Background (SFB)
with interesting properties related to wave focusing
and phase singularity. Written in the field variables,
it is interesting to see that the extreme waves
appear between the phase singularities signified by
merging of two waves in to one or one wave
splitting into two. We have used properties of SFB
in the generation of extreme waves in realistic
laboratory coordinates. Cases on realistic time and
spatial laboratory scales of this wave generation

TABLE 1. Samples of Extreme Wave Generation Based on SFB. The Position of Ship is Taken to be 125 m from the
Wave Maker and the Maximum Temporal Amplitude at the Ship Position is M(xg,) = 0.5 m.

X =125 m a \% 2af® Viab Than M(0) Olactual
Case 1 2.0000 3/2 0.2500 0.6238 10.0723 0.2707 1.8468
Case 2 2.2642 1.0959 0.2208 0.4930 12.7439 0.2481 2.0151
Case 3 2.4142 1 0.2071 0.4220 14.8906 0.2391 2.0916
Case 4 2.7321 1/2 0.1830 0.2636 23.8337 0.2276 2.1967
Case 5 2.9412 0.3405 0.1700 0.1179 53.2941 0.2247 2.2253
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have been presented. The results showed that
it was possible to generate such extreme waves in
hydrodynamic laboratories. Future research will
focus on both numerical and experimental
evidences to validate the theoretical prediction
(Figures 3-5).
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Figure 3. (a) Signal for o = 2.4142 at the wave maker and (b)
at 125 m from the wave maker.
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Figure 4. (a) Signal for a = 2.7321 at the wave maker and (b)
at 125 m from the wave maker.
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Figure 5. Maximum temporal amplitude (full line) and

absolute steepness (dash line) for o = 2.4142 (black) and a =
2.7321 (blue).
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