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Abstract   This paper aims to describe a deterministic generation of extreme waves in a typical 
towing tank. Such a generation involves an input signal to be provided at the wave maker in such a 
way that at a certain position in the wave tank, say at a position of a tested object, a large amplitude 
wave emerges. For the purpose, we consider a model called a spatial-NLS describing the spatial 
propagation of a slowly varying envelope of a signal. Such model has an exact solution known as 
(spatial) Soliton on Finite Background (SFB) that is a non-linear extension of Benjamin-Feir 
instability. This spatial-SFB is characterized by wave focusing leading to almost time periodic 
extremes that appear between phase singularities. Although phase singularities and wave focusing has 
been the subject of number of studies, this spatial-SFB written in the field variables has many 
interesting properties among which are the existence of many critical values related to the modulation 
length of the monochromatic signal in the far fields. These properties will be used to in choosing 
parameters for a deterministic generation of extreme waves. Some example of such a generation in 
realistic variables will be displayed. 
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ن نسل يا. ک نمونه استديک مخزن يم در ي عظيها  از موجينيف نسل معين مقاله توصيهدف از اچكيده       

ت خاص در مخزن موج، يک موقعيساز وارد شود که در   در موجيد طوري است که بايگنال وروديک سيشامل 
 يي به نام مدل فضاين هدف ما مدلي ايبرا. جاد شودي اي تحت تست، دامنه موج بزرگيک شيت يمثلا در موقع

NLS) ا يspatial-NLS(ف يرات کند را تعرييگنال در حال تغيک بسته سي ييم که انتشار فضايکن ي را فرض م
ن يا. ر استيف-ني بنجاميداري ناپايرخطيکند که بسط غ يارائه م spatial-SFB به نام يقين مدل حل دقيا. کند يم

spatial-SFBن ي بيک زمانيوديبا به صورت پري تقرييشود نقاط نها يشود که سبب م ي با تمرکزموج مشخص م
 spatial-SFBاند،  بودهياريقات بسين فازها و تمرکز موج موضوع تحقيگرچه نقاط تک. اهر شوند فازها ظينگيتک

 ير بحرانيتوان وجود مقاد يجمله آنها م  دارد که ازياري نوشته شده، خواص جالب بسيداني ميرهاي متغيکه برا 
ن خواص در انتخاب يا. نام برد دور را يها دانيک در ميگنال مونوکروماتيون سيمتعدد وابسته به طول مدولاس

 يرهاين نسل در متغيچند مثال از ا. کار برده خواهندشد م بهي عظيها  از موجيني انتخاب نسل معيپارامترها برا
 . نشان داده خواهد شديواقع

 
 

1. INTRODUCTION 
 
The motivation of this activity stems from the need 
of hydrodynamic laboratories to generate “extreme 
waves”, also often called rogue or freak waves that 
do not break while running downward in the wave 
tank. In a realistic situation involving spatial large 
spatial and temporal interval, such generation is 
not easy. This is due to the physical limitation of 
the wave makers as well as the non linear behaviour 
that dominate the deformations of propagating 

signals from the wave makers. The dominant non 
linear effects in large wave generations can be seen 
from the previous theoretical [1-3], numerical [5,6] 
as well as experimental investigation on bichromatic 
waves such as in [7]. Depending on the input 
amplitudes as well as frequencies, large deformations 
and amplitude increase can be found. The location 
of the maximum amplitude increase within the 
wave tank also depends on these parameters; 
see [2-4]. 
     In a generation of extreme waves in hydrodynamic 
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laboratories, it is desirable that the position for 
which the extreme waves emerge be located at the 
position of tested object. A typical question in such 
a generation is that having the position within the 
wave tank for the extreme signal to appear and the 
amplitude of such a signal within some frequency 
region, a signal can be provided as an input to the 
wave makers (with their limitation) such that 
requested signal appears in the desired positions. 
     Using an exact solution of a spatial NLSE called 
spatial Soliton on Finite Background (SFB), it is 
indeed possible to generate waves of reasonably 
large the wave tank of 200m. This SFB is a non 
linear extension of Benjamin-Feir instability [15] 
characterized by wave focusing that is almost time 
periodic. It is recently observed that an exact 
solution has numerous interesting properties when it 
is written in the field variable. Phase singularity; the 
phenomena merging and splitting of waves; for 
which the extreme elevations are sandwiched 
between them are among these properties. Similar 
studies on wave focusing and phase singularities 
have been carried out previously such as in [8-13]. 
We, however, are interested in its direct application 
on the extreme wave generation in a hydrodynamic 
laboratory. 
     The content of the paper is as follows. In section 
2 we present a brief overview of the model used in 
this paper as well as the explicit formula for the 
spatial SFB. Some interesting features of spatial 
SFB will be presented in this section. In section 3, 
we will show a direct extreme wave generation 
based on the properties of the spatial SFB and 
transformation in to laboratory coordinates as well 
as its interpretation. Examples on realistic time and 
spatial laboratory scales of this wave generation will 
be presented there. In the last section, we present 
some concluding remarks are made. 
 
 
 

2. THE MATHEMATICAL MODEL FOR 
SURFACE WAVES 

 
Korteweg de Vries (KdV) equation is known as an 
asymptotic model for uni-directional surface gravity 
waves. In normalized variables with full dispersion 
[6] the equation has the form 
 

02
x4

3)xi(it =η∂+η∂−Ω+η∂ , (1) 

With η is the surface wave elevation. The symbol 
Ω is the operator that produces the dispersion 
relation between frequency ω  and wave number k 
for small amplitude waves given by ω = Ω (k) = 

ktanhk . The laboratory variables for the wave 
elevation, horizontal space and time lablablab t,x,η  
are related to the normalized variables by 

hxx,h lablab =η=η  and g/ht lab = , where h is the 
uniform water depth and g is the gravity 
acceleration. 
     In this paper we are looking for a solution of (1) 
in form of harmonic mode centered at a frequency 
ω0 modulated by a slowly varying envelope ψ(ξ,τ). 
The complex amplitude ψ(ξ,τ) satisfies spatial Non-
linear Schrodinger Equation (NLS) in the form 
 

02~i~i =ψψγ+ψττ∂β+ψξ∂ . (2) 
 
Here, the slow variable ξ = x and the shifted time 
variable )k(/xt 0Ω′−=τ  are introduced while 
parameters β~  and γ~  depend on the wavenumber 
of the monochromatic and the central frequency ω0 
related to the wave number k0 by the dispersion 
relation 
 

0k
0ktanh

0k)0k(0 =Ω=ω , (3) 

 
see [14]. 
 

Different from the temporal NLS that is openly 
used to describe evolution of ocean waves, spatial 
NLS is suitable to describe propagation of 
envelope in signaling problem such as in the 
problem of wave generation. In [15], it is shown 
that the temporal NLS has an exact solution called 
Soliton on Finite Background (SFB). Writing in 
the complex amplitude of such SFB in the form 
 

( ) ξγ−
τξ=τξψ

2
0a~i

e0a,a),( , (4) 
 
With 
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and 
 

2v2
*v2v~
−β=σ . 

 
If 
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With 
 

β
γ

=υ ~
~

a0
* , 

 
Then υ̂  lies in the region of Benjamin-Feir 
instability 2ˆ0 <υ< . This parameter υ  lies in the 
region of Benjamin-Feir instability. The last 
parameter is the frequency of monochromatic ω0 
absorbed in the coefficients of NLS equation. 
     By using (4) and after simplification, solution 
of (1) can be written as 
 

,)t,x(cos
vcos2/2v̂1cosh

22u0a2

C.C
)t0x0k(i
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With c.c denotes the complex conjugate of the 
previous term. In this solution 
 

,sinh2v̂2v̂
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and )u/(1tan2
0a~t0x0k)t,x( λ−+ξγ−ω−=φ , with ω0 

and k0 are the frequency and wave number of the 
monochromatic, respectively. We can see that the 
solution has three parameters (a0,v,ω0); the real 
amplitude in the far field 2a0, the modulated 
frequency ν describing the perturbation on the 
monochromatic by a long time signal and the 
monochromatic frequency ω0. 
     The largest elevation of the SFB (4) is at (ξ,τ) = 
(0,0) and at far distance from the position ξ = 0, 
a(ξ,τ) ≈ a0 where the surface wave is monochromatic 
in time. Some properties of SFB is that compared 
to the amplitude of monochromatic in the far field 

3),(a1 <τξ<  and in limiting case 3
a

),(alim
0

0 =
τξ

→υ  

giving the largest possible amplification factor is 3 
from this monochromatic background. 
     If M denotes the extreme (maximum) value of 
the η , then  
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It is clear that )0,0(2υ  and cos (0,0)=1, then  
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From this expression, we can see that the extreme 
elevation M depends on α0 ν and ω0. 
     It has been known that these extreme elevations 
appear between two phase singularities; a 
phenomenon when two waves are merging into 
one wave or one wave is splitting into two. The 
phenomenon can be seen in a close up contour plot 
of the elevation in Figure 1a. The envelope 
corresponding to this spatial SFB is shown in 
Figure 1b, where the (time) locations (or instants) 
of the phase singularities clearly visible; they are the 
instants when the envelope touches the x-t plane. 
     In Figure 2, we display a time signal with an 
SFB envelope at ξ = 0 for three parameter values 
ω0 = 2.5, a0 = 0.0207, υ = 0.3014 and so T = 2π/v = 
28.8458. We observe that the extreme elevation is 
almost repeated in time with periodicity T. 
     To give an easier interpretation related to the 
problem of wave generation later, in what follows, 
we require that at (ξ,τ) = (0,0), ψ(0,0) = m0. Suppose 
that the frequency of the monochromatic 0ω  is 
given, which is the center frequency of the wave 
group being generated. If the amplification factor α 
is defined as a quotient between the elevation at 
the extreme position and in the far field, that is m0 
= aa0 then the parameters of SFB (a0,v,ω0) can be 
recovered from a0 = m0/a and 
 

)0(ωβ
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)0(ωγ~
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21)(α2
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3. RESULTS AND DISCUSSIONS 
 
In what follows, we use the laboratory coordinate 
for the case of a wave tank with depth H of 5 m. 
The wave tank at MARIN (Maritime Research 
Institute Netherlands, Waginingen) is taken as 
reference tank; see [6]. The length of that tank is 
200 m, and those extreme waves and the amplitude 
amplification should appear within a distance of 
200 m from the wave maker. It is our attention to 
compare the results here with numerical computation 
obtained from a numerical wave tank as well as 
measurement in the near future. Although, here we 
do not describe precisely on the technical restriction 
of wave maker, our aims is that the required signal 
can be fed easily to the wave makers. 
     Let xwm = 0 be the location of the wave maker 
and xsh be the location in the tank such that the 
signal generated at the wave maker achieves its 
extreme. If ηlab(xlab,tlab) is the elevation of a signal 
with SFB envelope in the laboratory variables at 
xlab, let us define at a given position, the maximum 
temporal amplitude (MTA) in the form 
 

)labt,labx(lablabtmax)labx(M η= . (8) 

 
Here, xsh corresponding to ξ = 0 in NLS spatial 
variable and so the translation from laboratory to 
the NLS variables are as follows. 
 

shxx −=ξ  and 
)0k(

shxx
t

Ω′

−
−=τ , 

 

With 000 ktanhk=ω  and g/Hlab0 ω=ω , for the 
laboratory frequency ωlab and gravitational 
acceleration g. The MTA measures at each location 
in the wave tank the maximum over time of the 
surface wave elevation. As reported in [5], the 
location where the MTA curve achieves its 
maximum is the extreme position: there the largest 
waves will be found. 
     The amplification factor 
 

lab
0a2

)shx(M
=α  

 
With lab

0a2  is the amplitude in the laboratory 
variable of the monochromatic in the far field. The 

 
(a) 

 

 
(b) 

 
Figure 1. Contour plot of the elevation where the extreme 
wave appears between the phase singularities signified by 
merging of two waves into one and (a) splitting one wave into 
two and (b) the corresponding envelope. 
 
 
 

 
Figure 2. Signal at extreme position ξ = 0 for ω0 = 2.5, a0 = 
0.0207, υ = 0.3014. 
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actual amplification factor is 
 

)0(M

)shx(M
actual =α  

 

In what follow we list a number of cases of 
extreme waves generated based on SFB. The 
position of ship is taken to be 125 m from the wave 
maker while the maximum temporal amplitude of 
the signal at the ship position is M(xsh) = 0.5 m and 
ωlab = 3.5 Hz. 
     Further, we plot the signal at the wave maker 
and at the ship position 125 m away from the 
wave maker for two cases from Table 1, namely 
for α = 2.4142 and α = 2.7321. The maximum 
temporal amplitude M(xlab) as well as the 
corresponding the maximum temporal steepness 
for both cases is provided in the last figure. 

4. CONCLUDING REMARKS 
 
We have considered a model called spatial Non-
linear Schrodinger (NLS) equation that is suitable 
to describe the propagation of slowly varying 
envelopes in signaling problems such as in the 
wave generation often performed in hydrodynamic 
laboratory. This equation has an exact solution 
called spatial Soliton on Finite Background (SFB) 
with interesting properties related to wave focusing 
and phase singularity. Written in the field variables, 
it is interesting to see that the extreme waves 
appear between the phase singularities signified by 
merging of two waves in to one or one wave 
splitting into two. We have used properties of SFB 
in the generation of extreme waves in realistic 
laboratory coordinates. Cases on realistic time and 
spatial laboratory scales of this wave generation 

 
 
 

TABLE 1. Samples of Extreme Wave Generation Based on SFB. The Position of Ship is Taken to be 125 m from the  
Wave Maker and the Maximum Temporal Amplitude at the Ship Position is M(xsh) = 0.5 m. 

 

xsh = 125 m α v̂  lab
0a2  Vlab Tlab M(0) αactual 

Case 1 2.0000 23  0.2500 0.6238 10.0723 0.2707 1.8468 

Case 2 2.2642 1.0959 0.2208 0.4930 12.7439 0.2481 2.0151 

Case 3 2.4142 1 0.2071 0.4220 14.8906 0.2391 2.0916 

Case 4 2.7321 21  0.1830 0.2636 23.8337 0.2276 2.1967 

Case 5 2.9412 0.3405 0.1700 0.1179 53.2941 0.2247 2.2253 
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have been presented. The results showed that 
it was possible to generate such extreme waves in 
hydrodynamic laboratories. Future research will 
focus on both numerical and experimental 
evidences to validate the theoretical prediction 
(Figures 3-5). 
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(a) 

 

 
(b) 

 
Figure 3. (a) Signal for α = 2.4142 at the wave maker and (b)
at 125 m from the wave maker. 

 
(a) 

 

 
(b) 

 
Figure 4. (a) Signal for α = 2.7321 at the wave maker and (b)
at 125 m from the wave maker. 
 
 
 

 
Figure 5. Maximum temporal amplitude (full line) and
absolute steepness (dash line) for α = 2.4142 (black) and α = 
2.7321 (blue).
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